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A Trait Specific Model of GM Crop Adoption  
among U.S. Corn Farmers in the Upper Midwest 

 
 
1.    Introduction 

 

The advent of genetic engineering techniques has transformed how scientists can 

manipulate and change the characteristics of plants by giving them the ability to add 

specific and unique traits to already existing seeds.  This makes genetically modified 

(GM) seeds different from standard technological advances in agriculture which typically 

involve wholesale replacement of one input or seed with another.  In this case GM seeds 

involve adding specific traits into a plant in a manner similar to how a food company 

might add a trait to a food, for example sugar coating to corn flakes breakfast cereal.  

Such a difference implies a different type of adoption logic for GM seeds than has been 

the standard for such new technologies as hybrid seeds or new products such as rBST 

(bovine growth hormone).  

 
Models of farmer adoption of new technology typically emphasize farm and farmer 

characteristics rather than the characteristics of the technologies themselves.  For 

instance, two reviews of adoption studies in developing countries (Feder et al.,1985; 

Feder and Umali, 1993) fail to identify any study that analyzes the implications of 

farmers'  assessments of agricultural technology characteristics for adoption decisions.  In 

the same review, Feder and Umali (1993) emphasize the importance of distinguishing the 

effects of different farmer characteristics on adoption depending on the stage of the 

adoption process. Other later studies, like Fernandez-Cornejo and McBride (2002), 

similarly focus on the role of farm size on the adoption of GM crop varieties and use 

probit techniques to distinguish this effect from the effect of farmer wealth and credit 

access. Barham et. al. (2004, 1996) use a multinomial approach to analyze the adoption 

of rBST1 in terms of farmer education and age, use of specialized machinery, herd size 

and farmer attitude towards biotechnology.  Finally, (Fernandez-Cornejo et al., 2001; 
                                                 
1 Recombinant bovine somatotropin. 
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Napier et al., 2000; Roberts et al., 2002) focus on determining the characteristics of GM 

crop adopters using limited dependent variable or discriminant analysis. Yet, there are 

compelling reasons inherent to the GM technology innovations to extend these models to 

incorporate their traits.  Consumer demand analysts have accumulated considerable 

evidence illustrating the significance of product characteristics for consumer demand 

(Nevo 2001, 2000; Revelt and Train 1998, Berry 1994).  These studies have amply 

shown how consumer perceptions of different product attributes or traits may 

significantly affect product demand. 

 

Probits, logits, and their multinomial versions are the standard empirical methods used in 

estimating technology adoption models. The multinomial specifications in particular 

provide insights into the manner in which changes in farm and farmer characteristics 

push the individuals in and out of different adoption categories. However, they are not 

explicit in modeling the underlying behavioral choice that the farmer faces, especially in 

the presence of options with distinctive and perhaps multiple traits.  Indeed, 

anthropologists and sociologists have played a lead role in this area arguing through 

qualitative methods that farmers' assessments of the attributes of agricultural technologies 

influence adoption behavior (Kivlin and Fliegel, 1966, 1967; Nowak, 1992; Rogers, 

1962).  Previous models, especially multinomial techniques mentioned above, also 

impose restrictions, such as independence of irrelevant alternatives, which limit the 

between-choices substitution patterns. But, if farmers adopt crop varieties based on their 

traits and according to their preferences for each of these traits, then the introduction of 

new varieties -in particular those with stacked traits- might imply substitution among 

choices based on the similarity of the traits.  In this case, traditional empirical models are 

not likely to capture the important features of the trait differences that govern crop 

adoption, leaving classic economic approaches to technology adoption poorly specified 

analyses of the actual farmer choice problem. 

 

This work develops a new approach to the adoption of GM crop varieties that draws from 

the characteristics-based demand literature (Nevo 2001, 2000; Revelt and Train 1998).  

Characteristics-based techniques describe the adoption/purchase of a good as a function 
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of the traits of the good purchased, in addition to accounting for individual specific 

characteristics or individual specific experiences. These techniques have been widely 

applied in labor economics and studies of transportation and recreational demand and 

product-variety purchase and could pose a useful set of tools for analyzing technology 

adoption, the willingness of farmers to pay for traits, and the potential attractiveness of 

different “bundled” varieties which combine the available traits.  

 

The underlying choice model is based on a random utility framework (Marschack ,1960; 

McFadden and Train, 2000) that rests on the idea that consumers (or farmers) seek to 

maximize stable preferences whose domain is the vector of quantities and attributes of 

the commodities they consume. In this theory of rational choice the farmer collects 

information on alternative varieties and uses the rules of probability to convert this 

information into perceived attributes.  The farmer then undertakes a cognitive process 

which might be represented as an aggregation of the perceived attribute levels into a 

stable one-dimensional utility index.  Maximizing this index constitutes the decision 

whether to adopt.   

 

This model encompasses the more traditional adoption context of previous studies, which 

views profitability and relative advantage as the most important factors determining the 

adoption of new crops and new technologies (Qaim and Zilberman 2003, Ameden and 

Zilberman 2003 , Jovanovic and Stolyarov 2000, 1995, Griliches 1957). However, we 

emphasize the choice process of utility-maximizing farmers, allowing for variations in 

demand across individuals without making any explicit assumptions as to which are the 

intermediate steps in which goods are transformed by these individuals (farmers) to 

produce satisfaction, e.g., yield transformed in profit, or family labor transformed to 

household production. Thus, our model does not incorporate farm/household behavior 

with risk considerations in the standard sense.  Moreover, rather than focusing on the 

adoption of new crops and technologies, we consider our main objective to be the 

analysis of the adding of traits to existing high-yielding seeds, which is the very direction 

of the first round of innovation in GMO technology. Our main contribution here then is to 

illustrate how an adoption model may center on traits, rather than individual 
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characteristics. For simplicity, this paper will only exploit the trait-aspect of the adoption 

decision, leaving the more encompassing model for the next stage of work. 

 

As the first generation of GM crops incorporates agronomic traits like herbicide tolerance 

(Ht) or insect resistance (Bt), commercial farmers in developed countries have been the 

primary target-group of the biotech and seed industries. Reducing herbicide or insecticide 

applications and volumes has the potential of lowering farmers costs (depending on the 

seed price), increasing farmers’ yields, and saving them labor.  However, potential yield 

effects could be rather small for farmers who already use advanced weed and pest 

management techniques, and thus may not have much an influence on adoption..2  This is, 

of course, an empirical issue, and is explored below, but noting this prospect is another 

way of motivating this paper’s focus on the traits associated with the technologies and 

moving beyond the standard yield-profit nexus to the full set of traits associated with the 

first generation of GM crops. 

 

The model developed below centers on recovering a farmer’s willingness-to-pay for specific 

improved characteristics of a crop.  Obviously, a high willingness to pay for a certain trait 

should lead to increased demand for the new technology,3 while a low willingness-to-pay 

(WTP) for other traits may prevent them from adopting the technology.  Similarly, high or 

low price elasticities of demand for traits might determine the commercialization strategies 

used by agbiotechnology and seed firms.4  Overall, these types of estimates of farmers’ 

willingness-to-pay for traits shapes the type of transgenic varieties offered in the market 

including the potential value to farmers of “stacked” or “bundled” traits.  Thus, in order to 

understand the economics of GM crops and variety adoption in the context of genetically 

modified seeds, it is necessary to develop flexible economic models, capable of providing 

consistent estimates of farmer’s WTP and price elasticities of demand for traits, and which 

allow for non-fixed patterns of substitution among crop varieties.  It should also be noted, 

however, that a full treatment of the “bundling” issue requires consideration of the strategic 

                                                 
2 (like in the US, Argentina and Canada). 
3 (and higher amounts of royalties demanded by agbiotechnology firms) 
4 See Huso, S. and W. Williams (2005) for a model of industry strategies. Also, Lemarie and Ramani(2003) 
find that final form of vertical control accompanying the commercialization of GM seeds is greatly influenced 
by final market demand. 
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reasons related to market structure and pricing, which will not be treated here (see Nalebuff, 

2004).   

 

This work estimates farmers’ WTP and price elasticities for different crop traits 

associated with GMO corn, applying characteristic-based techniques in conditional (CL) 

and mixed multinomial logit (MMNL) models of crop-variety choice. The application of 

the model is based on U.S. corn farmers in the Upper Midwest. The study investigates the 

degree of heterogeneity in farmers’ sensitivity to the attributes of the choices, which is 

related to both their observed and unobserved characteristics. Since correlation across 

alternatives is allowed for in the MMNL, and is based on the similarity of the attributes 

of the choices, flexible substitution patterns among the choice alternatives are accounted 

for in the estimation approach.  The study focuses on farmer adoption choices of a variety 

of trait-differentiated corn varieties: Ht, Bt, combined Ht/Bt, and non-GMO. The data, 

collected from corn farmers in Minnesota and Wisconsin in 2003-2004, provide 

information on crop characteristics as well as farm characteristics and individual 

demographics. This enables us to control for the influence that these variables might have 

on the effect of crop attributes on the farmer’s choice. In addition, data on previous year’s 

experiences with the performance of the choices are used to control for endogeneity of 

the traits to producer experiences.  

 

The rest of the paper is divided into six sections. In the following two sections, the model 

is formulated and the specifications and estimation strategy are described. Then, in 

section 4, the data on GMO crop adoption are introduced along with some selective basic 

descriptive statistics. Section 5 presents the results, and section 6 concludes. 

 
 
2.    Model Formulation 

 

As in many adoption studies, (Zepeda, 1990; Barham, 1996), the farmer choice model 

utilizes a random utility framework (Marschack ,1960; McFadden and Train, 2000).  

Farmers seek to maximize stable preferences whose domain is the vector of quantities 

and traits of the commodities they adopt/consume. In the context of the farmer’s rational 
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choice problem, they are assumed to collect information on alternative varieties, use the 

rules of probability to convert this information into perceived traits, and then go through 

a cognitive process that can be represented as aggregating the perceived trait levels into a 

stable one-dimensional utility index which is then maximized.  

 

We assume that a farmer faces a choice set consisting of J alternative crop varieties.5 The 

utility that farmer i receives from alternative j is denoted by Uij, which is the sum of a 

linear-in-parameters systematic component Vij  and a stochastic component  eij. The latter 

allows for some ignorance of the econometrician with respect to the exact choice process.   

Let the systematic component of the utility be a function of farmer’s marginal monetary 

gain/loss from the variety,  denoted as income net of the cost of the variety, (πij - pj), and 

the expected levels of K observed attributes of the variety j, E (xij| Iik), which the farmer 

predicts, given her information set Iik .  The income term considers two components: the 

budget that the farmer assigns for farm production and a risk premium if the variety that 

s/he grows is non-transgenic:  πij= πi
* + Pj. 

6
 

 

Assuming a linear shape for Vij, this systematic component, conditional on the type of 

information about characteristics that the farmer has can be written as: 

 
 

Vij| Iik = αi(πij – pj) + E (xij| Iik)*βi          (1) 
 
Where (αi , βi) is a vector of parameters to be estimated, which vary over individuals. In 
particular, we let  
           (2) 
           
 
with vi being a stochastic component of unobserved characteristics, with distribution  

Pv(v), and  Σ  a (K+1)*(K+1)  matrix of parameters. If we assume that Pv(v) is a standard 

multivariate normal distribution, as we do in the application below, then the matrix Σ 
                                                 
5 Here we deal with varieties of a single crop, however, the model can be generalized to different crops. 
The only difference would be that crop specific effects would have to be accounted for.  
6

 In the following analysis, we do not address formally how households allocate total income to their 
production budgets. 

i
i

i

v
α α
β β

   = + ∑   
  
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allows each component of vi to have a different variance and allows for correlation 

between these (unobserved) characteristics. 

 
The farmer chooses the variety that gives him the highest expected utility: 
 
max |j ij ikE U I    ( )max , |  ( , )j ij ikU e I dP e vβ =  ∫         i=1,…,I;   j, k =1,...,J 
 
 

Correlation of unobservables across alternatives 

 

With non-zero values for the components of the matrix Σ , correlation of unobservables 

across alternatives is included. Furthermore, this correlation depends on the similarity of 

the traits across the choices. Letting εij = E xij* σβ vi + eij  the covariance among 

unobservables for alternatives j and k is: 

  
              Cov (εij εik) = E xij xik * σβ 

         
 
Sources of Information: Learning-by-doing, learning from neighbors, advertisement 

and other exogenous information 

 

The farmer builds her expectations about the traits of the alternatives that are available to 

her, based on her own experience with the crop varieties, on the information from her 

“neighbors”, and also uses the information that is provided by extension agents, 

companies, media, local opinion leaders, on-farm trials and experiment station visits. In 

the case of having to decide about a very new variety or a variety the farmer has never 

grown, access to information about an innovation is a key factor in determining adoption 

decisions 7.  

 

In this work, we assume that the farmer forms her expectations of attributes in the 

following way:  

 
 
                                                 
7 See Argarwal (1983) 
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where xijt-1  is the value of the set of attributes of alternative j in the previous period, 

experienced by farmer i, xilt-1  is the value of the set of attributes of alternative j , for a 

neighbor farmer l, in the previous growing period, xaj is the value of the set of attributes 

of alternative j as advertised by the media, seed sellers and extension agents, and Ni is the 

set of (ni) neighbors of farmer i. 8 

 

Thus, if a farmer plans to grow the same variety that she grew the previous growing 

season, she uses her experience with the crop in that previous season as a proxy for the 

traits that she will expect, for that same variety, in the next season. If the farmer has never 

used the technology before, she looks at the experiences of other farmers in her county 

and agricultural district, in order to make inferences about the expected levels of the 

attributes of the new variety. Finally, if adoption is not pervasive in the neighborhood 

where this farmer grows the selected variety, the farmer obtains the information from 

extension agents, media and seed sellers.9 

 
 
3.    Model Specification and Estimation 
 

In order to analyze the relevance of different traits for the choice of corn variety and to 

investigate the importance of individual unobserved heterogeneity in adoption choices, 

we estimate two classes of choice-specific attribute models: a conditional logit (CL) 

(McFadden, 1974) and a mixed multinomial logit (MMNL).  We also investigate how the 

                                                 
8 The neighborhood used in this case was a geographical neighborhood, at the county level. Ideally, this 
neighborhood should be defined in a much tighter sense and distinguish indivduals with whom the 
individual exchanges information, from the ones he does not exchange information from. 
9 However, we also assume that the level of some traits is always adjusted e.g. yield is adjusted by 
expectations of pest infestations, and prices, adjusted according to market expectations.  In addition, unlike 
recent papers by Foster and Rosenzweig (1995) and Conley and Udry (2004), this paper does not consider 
the potential for “social effects” of neighbors. 
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results may differ if we were to use a standard multinomial logit approach to agricultural 

technology adoption in this traits-based modeling approach. 

 

The conditional logit model (CL) is mathematically equivalent to the standard 

multinomial logit, which is typically used in the adoption literature, however, it is derived 

from a behavioral model in which unobserved components enter into the subject’s 

choices. Assuming the disturbances for the J separate alternatives are iid standard 

extreme value, the conditional logit choice probabilities are: 

 

J1,...,kj, 1,...I,ifor         
)exp(

)exp(
===

∑ k ik

ij
ij

V

V
P  

 
from which a linear specification of the systematic component of utility implies:10 
 

J1,...,kj, 1,...I,ifor         
)'exp(

)'exp(
===

∑k ik

ij
ij x

x
P

β
β

      (3)    

 
Notice that the β coefficients are the same as in the underlying utility model. They are 

interpreted as measuring preferences for the traits xij. These traits vary across alternatives 

for a single individual (repeated choices). The necessary assumption is that the 

unobserved components are i.i.d. extreme value. Setting the variance of the disturbances 

at the standard value of π2/6 is enough to identify the coefficients, meaning that the scale 

of the effects differs from that of models of unit variance, such as probit. The logit effects 

are about 1.6 to 1.8 times as large.  

 

In the standard multinomial logit, the characteristics of the agent making the choices 

generally replace the traits of alternatives, and the coefficient estimates are not the same 

as in the underlying utility model. They, rather, capture how changes in one agent 

characteristic push the individual in and out of each specific choice category. Thus, each 

coefficient estimate is specific to an alternative, and each explanatory variable is specific 

to an individual. Even if this variable is a characteristic of the choice, it will be specific to 

                                                 
10 For simplicity of the illustration we ommit expectation operators in the previous section and generalize 
the notation of all covariates as  xij. 
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the choice of the individual i, and it will vary across individuals necessarily. The choice 

probabilities in the standard MNL are as follows: 

 

J1,...,kj, 1,...I,ifor         
)'exp(

)'exp(
===

∑k ik

ij
ij x

x
P

β
β

       

 
In this model, adding a constant to all coefficients, for any constant, produces an identical 

set of probabilities as above. This is a source of indeterminancy, which is generally 

solved by setting the coefficients of all explanatory variables for one of the alternatives to 

be equal to zero. Thus, all other coefficients are interpreted only relative to the baseline 

category and the choice probabilities become: 

 

J2,...,kj, 1,...I,ifor         
)'exp(1

)'exp(
==

+
=

∑k ik

ij
ij x

x
P

β
β

      (4) 

 
 
Although the basic CL model makes choice probabilities depend on the traits of the 

alternatives, they can also depend on the characteristics of subjects (which are constant 

across alternatives, but vary across subjects). These characteristics can be interacted with 

the traits of the choices, making preferences for a trait different for each level of the 

subject-specific characteristic and/or by adding them to the set of covariates in a linear 

fashion. The latter case requires baseline constraints to identify the effect, such that: 

 

J1,...,kj, 1,...I,ifor         
)'exp(

)'exp(
==

+
+

=
∑k ijik

ijij
ij yx

yx
P

γβ
γβ

 

 
where setting γ1=0 identifies the other γi coefficients. 
 
Since the CL model assumes independently and identically distributed error terms, it 

cannot account for differences in tastes that are linked to unobserved individual traits or 

characteristics  (taste variation in the CL is related only to observed traits or 

characteristics). The mixed multinomial logit (MMNL) model can be seen as a 

generalization of the CL which relaxes these assumptions and allows for the influence of 

unobserved heterogeneity in adoption choice. Also, the CL model assumes independence 
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of irrelevant alternatives, which restricts the relative odds of choosing a crop variety to be 

independent of other available varieties (and their attributes):  

 

( )[ ]ikij
ik

ij xx
P
P

−= 'exp β    , depends only on the characteristics of the two alternatives (j 

and k). 
 
Independently distributed error terms also imply the restriction that the similarity of the 

choices does not matter, when looking at the substitution between them, which is rather 

unrealistic and also unnecessary given the MMNL option. The resulting coefficients of 

the CL model might be better understood as an approximation of average preferences 

when the unobservable portion of utility is thought to be correlated across alternatives 

(Train, 2003).  The MMNL model relaxes the independence of irrelevant alternatives 

assumption, thus allowing more realistic inferences about, e.g., the effects of the 

introduction of new varieties, or the effects of policies that regulate levels or 

commercialization of traits, on the adoption of unchanged crop varieties. 

 
The MMNL choice probabilities are:   
 

J1,...,kj, 1,...I,ifor          )(
)'exp(

)'exp(
=== ∫ ∑

ββ
β

β
df

x
x

P
k ik

ij
ij       (5) 

 
where the β coefficients vary across individuals. In order to estimate these coefficients, 

we specify a normal distribution: β ~N(b, Σ), with Σ diagonal and individual elements 

equal to σh (h denoting the specific trait). Notice that if σh = 0 for all h, the distribution 

collapses to its average level and the choice probability is the same as in equation (3), the 

CL one. Therefore, the CL, when compared to the MMNL, provides an appropriate 

baseline for testing the significance of unobserved heterogeneity in GM adoption. 

 

While both the CL and the standard multinomial logit models can be estimated through 

maximum likelihood, the MMNL choice probabilities cannot be calculated exactly 

because the integral does not have a general closed form. Therefore, the integral is 

approximated through simulation. For a given value of the parameters (b, Σ), a value of β 

is drawn from f(β | b, Σ). Using this draw (r), the conditional logit formula  
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1
)'exp(

)'exp(
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β

β
β    is calculated. This process is repeated for many draws, and the 

average of the resulting )(βijL ’s is taken as the approximate choice probability: 

∑
=

=

R

1r
ij )(L1 r

ij R
P β           (6) 

 
 
3.1.      Willingness To Pay for Traits  
 

Although the direct effect of a trait on utility cannot be identified separately from the 

variance parameter of the iid error component in these models, the willingness-to-pay for 

each trait in the model can be calculated by the ratio of the coefficient of the trait of 

interest, with respect to the cost coefficient. To see this more clearly, recall that the 

general form of utility in matrix notation (the equations of the utilities of all alternatives 

stacked) is: 

 
U = α p + β x+ e , where α =α∗ /σ ,  β =β∗ /σ  and e= e*/ σ,  
 
Where α∗  stands for the cost coefficient and β∗  for the trait coefficient. 

Diferentiating,  dU = α dp + β dx  , and keeping utility constant, dU = 0 . 

Therefore,    dp/dx =-(β∗ /σ)/(α∗ /σ)  =  -β /α , is the willingness-to-pay for a one-unit 

change in the level of the trait that leaves the individual’s utility unchanged. 

 
Price elasticity calculation at the means of the traits is directly derived from the WTP 

values. This provides a unit-less measure of the value of the traits:  

 
Epx =(dp/dx)∗( x/p) =wtp∗( x/p) 
 
 
 
4.    Data 
 

Since 1998 the University of Wisconsin-Madison’s Program on Agricultural Technology 

Studies (PATS) along with researchers from the Universities of Minnesota and Nebraska, 
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have surveyed Wisconsin producers about their practices and experiences with 

genetically engineered corn. We analyze the survey data of the Minnesota and Wisconsin 

farmer samples. Additional information from several sources was used to complement the 

survey data: US Agricultural Census information on yields and agrochemical use, 

Wisconsin seed sellers information on seed prices, Wisconsin and Minnesota Agricultural 

Statistics Services information on insect and weed infestation, and trial information on 

price and yield from different sources.  

 
Survey information for 1257 randomly selected corn growers was collected by the 

research team. Farmers were interviewed about their choices of corn varieties and their 

individual characteristics and experiences in the 2003 growing season. Furthermore, the 

late winter 2004 questionnaire also asked the farmers about their planting choices for the 

2004 growing season (most farmers would have ordered their seeds by the time of the 

survey). Variety characteristics, at the individual level, were obtained for four main corn 

types: herbicide tolerant (Ht), insect resistant (Bt), “stacked” (corn varieties with traits of 

both Ht and Bt technologies in the same seed), and conventional, non-GM, corn.  

 

Given the low rates of adoption of stacked varieties in the first year (due partially to lack 

of availability), we concentrate on the estimation of the most widely commercialized corn 

varieties and their traits (Ht, Bt and regular corn). We consider four exclusive alternatives 

faced by farmers when deciding about which corn varieties to grow in 2004, given the 

experience they had in the 2003 growing season and the information available: (1) to 

purchase some Ht but non Bt-corn seeds, (2) to purchase some Bt- but non Ht-corn seeds, 

(3) to purchase, both Ht and Bt-corn seeds, and (4) to grow only conventional (non-GM) 

varieties. While conventional corn was the most common choice for 2004 (32%), the 

second most common was the combination of Ht and Bt (22%). Then was Bt (15%) and 

finally Ht (11%). 19% of individuals did not answer the question or were undecided. 

 

Five main traits are considered in the econometric model of adoption: yields, aggregate 

seed and pesticide costs, insecticide savings, herbicide savings, and labor savings. Yield 

was measured in terms of bushels per acre, costs in terms of dollars per acre, 
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agrochemical use in terms of acres of corn treated, and labor in terms of workers per 

farm.11 Expected values for all of these traits were calculated for each specific variety.  

The survey only asked for a categorical measure of previous experience with the traits (5 

categories for each trait), corresponding to whether the farmer faced a much higher-, 

higher-, same-, lower-, or much lower level of the trait compared to the level that would 

have been obtained if conventional varieties were grown.  Thus, we calculate the levels of 

most of these traits based on purely exogenous information provided by different sources 

as described below. However, conclusive and detailed information does not exist for the 

labor-saving or herbicide-use traits. Thus, we combine our survey data, at the individual 

level, with the distributions of labor and herbicide used obtained from the 2002 

Agricultural Census, for each county in Wisconsin and Minnesota, which allows us to 

translate our categorical information into levels and obtain some variability in these 

measures. 

 

The calculated yield trait is based on per county levels of the 2002 Census, but also 

accounts for the fact that farmers adjust their expectations of yield according to expected 

pest infestation levels in their county. Yield losses due to local insect and weed 

infestation were calculated on the basis of infestation levels reported by the Minnesota 

and Wisconsin Agricultural Statistical Services. An average was calculated for the last 

three years for each agricultural district. The relationship between infestation levels and 

the percentage yield loss was established with UW-Extension and Pioneer information.12  

Aggregate seed costs including technology fees were calculated based on actual prices 

reported by seed dealers in Wisconsin (Renk, Dahlco, etc.). Pesticide costs per-acre were 

based on the information available on Monsanto’s web page and on the studies by 

Benbrook (2001) and Gianessi et al. (2002).  Insecticide costs were assumed to be zero 

                                                 
11 It is very difficult to separate work according to crop, but since our sample consists of corn farmers only, 
we assume that labor at the farm level varies accordingly to labor for corn growing. Variation by variety is 
introduced according to survey information (revealed preference data), as well as for herbicide use. The 
latter is necessary, given that it is not clear from exogenous data (industry advertisement, experimental 
trials, etc.) what predicted increases/decreases in labor and herbicide should be. This is done in a way such 
that the assumption is implicit that individuals base their expectations about labor and herbicide use for 
each variety, according to their own experience or the experience of their neighbors, if they never used the 
variety. 
12 http://www.uwex.edu/ces/cty/calumet/ag/documents/,  http://www.pioneer.com/usa/agronomy/insects/,    
http://www.ipm.iastate.edu/ipm/icm/1997/4-14-1997/cbloss.html 
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for Bt varieties, along with insecticide use. Otherwise, levels of insecticide and herbicide 

use were calculated from information of the 2002 Agricultural Census. Finally, we 

control for the minimum and maximum yield levels of each trait, such that none of them 

is higher or lower, respectively, than the levels reported in the Agricultural Census.  

 

Descriptive statistics are presented in Tables A and B in the appendix. In summary, the 

per acre average yield level across all varieties was 146 bushels, per acre aggregate cost 

was $65, average acres of corn treated with insecticide where 6.5 and with herbicide 

where 54. Average number of workers was 4. While on average, Ht corn had the highest 

per acre yield, Bt corn and the mixture of Ht and Bt achieved the absolute maximum. 

While the lowest herbicide use, on average, was for Ht corn varieties, the conventional 

varieties had the lowest price. Labor force, on average, was not very different across 

varieties, but conventional varieties achieved absolute maximum levels.13 

 

Our survey asked farmers specifically for reasons why they adopted or did not adopt each 

variety in 2003. Tables 1 and 2 below present the results of these questions for the 

herbicide tolerant variety. All varieties display similar ranking (in terms of percent of 

farmers who consider this aspect relevant) of the importance of characteristics that lead 

farmers to adopt/not adopt a particular type of seed. The only notorious difference is 

displayed by the ranking of yield expectations, between Ht and Bt corn. While Table 1 

shows that this variable is ranked fourth for Ht adopters, it is the number one for Bt 

adopters (see Tables C-D in the appendix). These tables show that the major 

characteristics of the variety that are considered by farmers in their decision of which 

variety to plant are: pest control, pesticide use, production costs, yield levels, labor 

savings, marketability and environmental/safety issues.  These traits are all included in 

the regression specification given below. 

 
 

 
 

                                                 
13 Survey information contained categorical information of the characteristics, which was translated into 
levels according to the actual distribution of the variables that was calculated on the per county basis, from 
the Agricultural Census of 2002. 
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Table 1.  Why Farmers Planted HT Corn in 2003 
Reasons % of Respondents 
To allow better weed control 81.4 
To reduce overall herbicide use 43.3 
To reduce overall corn production costs 39.0 
To increase corn yields 37.2 
To reduce the labor required to grow corn 25.1 
Recommendation from seed dealers/consultants 24.2 
Fits well with existing corn production practices 16.9 
Other* 10.8 
Recommendation from neighbors     4.8 
Recommendation from university or extension agents   0.9 

 * Written comments included: planted for trial purposes, use no-till cropping.  
 

 
Table 2.   Why Farmers Did Not Plant HT Corn in 2003 

Reasons % of Respondents 
Price of HT seed corn is too high 54.8 
Do not currently use Roundup or Liberty herbicides 32.2 
Did not anticipate having weed problems 20.0 
Concerned about having trouble selling HT corn 19.3 
Concerned about possible environmental or safety issues 18.3 
Concerned about having to segregate HT corn from non-HT corn 17.3 
Other* 13.8 
Concerned about weed resistance 16.9 
Not satisfied with the net return of HT corn   9.8 
Concerned about getting a lower price for HT corn   8.6 
Not satisfied with HT corn yields   7.1 
Experienced increased weed resistance to herbicide   1.2 

  * Written comments included: organic farm, use Roundup to kill corn in rotation with Roundup  
      Ready soybeans, no interest, unfamiliar with HT corn, corn used for silage. 
 
Nonetheless, there are two major aspects potentially influencing the decision of not 

growing GM varieties, for which we do not directly construct trait measures: 

environmental or safety issues and marketability or commercialization concerns, 

including the risk premium potentially associated with non-GM varieties. Instead, we 

include in our specifications of the model an alternative-specific component for 

conventional versus transgenic varieties, which is intended to capture both of these 

aspects. Finally, the survey information asked for the experiences with Ht and Bt 

varieties, separately, even if farmers where combining them in the same field or farm. 

Thus, our measure of traits for the Ht-Bt alternative might not capture unobserved 

complementarities or economies of scope due to their combination (e.g., no need to 
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segregate GM from non-GM varieties). The last specification of our empirical model also 

takes this aspect into account. 

 

5.       Results 
 

5.1.    Estimated Model  

 

The empirical model estimates expected utility from the expected traits: 

 
EUi(Ht-corn)=αi1πi,ht - αi2 pht+βi1ΕYht+ βi2Ε Iht+βi3Ε Hht+βi4Ε Labht 
 
EUi(Bt-corn) = αi1 πi,bt - αi2 pbt +βi1ΕYbt+βi3Ε Hbt+βi4Ε Labbt 
 
EUi(Ht&Bt) = γhb +αi1 πi,bh - αi2 pbh+βi1ΕYbh+ βi2Ε Ibh+βi3Ε Hbh+βi4Ε Labbh 
 
EUi(conventional)=γng+αi1 πi,ng -αi2 png + βi1EYng+ βi2E Ing+βi3E Hng+βi4E Labng 
 
where π = the individual’s variety revenue per acre outcomes including a variety risk 

premium for non-GM, p=cost of seed and pesticide per acre, Y=yield in bushels per acre,  

I=corn-acres treated with insecticide, H=corn-acres treated with herbicide and Lab = 

number of workers used. 

 

Notice that π budget drops out of the estimation due to the specified shape of the choice 

probabilities. Also, the risk premium offered in the market corresponds to a premium for 

conventional varieties as opposed to transgenic varieties. This premium is constant across 

individuals, thus we cannot identify this effect separately from the effect of the 

unincluded-factors component (γng) for non-GM corn (see next sub section below for an 

explanation about this component). 

 

5.2.    Model Specifications 

 

Estimates for three basic CL (fixed-effects) models are reported in Table 3. The first 

model (I) only includes the traits of the crop varieties. The second one (II) accounts for 

the average effect of the unincluded factors, which influence the choice between growing 
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conventional varieties as opposed to growing GM-varieties, through the inclusion of an 

alternative specific intercept for non-GM crops.  This binary variable captures the 

average effect of unincluded factors for this alternative with respect to all others. Finally, 

as the option of a combination of Ht and Bt might be driven by economies of scope or 

complementarities of the individual varieties, which we also do not observe, the third 

model accounts for these factors through another alternative-specific intercept. 

 

The coefficient estimates reveal the effect of each observed factor relative to the variance 

of the iid extreme value error term eij . This parameter is used to normalize the scale of 

utility and is not separately identified from the effect of the corresponding observed 

factor. Thus, even though the signs of the coefficients are meaningful, their absolute 

value cannot be interpreted in the usual way. The ratio of coefficients, however, is not 

affected by the scale parameter, and it generally provides economically meaningful 

information, as described above. 

 

A quick look at Table 3 allows us to see the importance of controlling for average 

unobserved factors in the specification. The signs of almost all coefficients are consistent 

with a priori expectations in all three models and they are significant: As the cost of a 

variety of corn increases in one dollar per acre, all other factors remaining the same, the 

probability of that corn type being chosen decreases. The same is the case for increases in 

the amount of pesticide and labor use. The lower the pesticide- and labor-saving levels 

that a variety induces, the lower is the probability of choosing it.  

 

In specification II of the CL model, we see that there exists a strong unincluded 

component in the utility that explains the choice to cultivate non-GM crops, which 

distinguishes this variety from transgenic crops. Judging from the survey information 

presented in tables 2 and D (the latter in the appendix), this term probably captures the 

potential effects of environmental and marketability traits of the crops, including the risk 

premium component of conventional varieties.  Controlling for this term changes the 

significance of the coefficient estimate on yield, which shows that the negativity of this 

coefficient in the first CL model may be spuriously driven by the fact that 32% of the 
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individuals in the sample choose to grow conventional crops, in spite of their potentially 

lower yield trait. Instead, that first yield coefficient estimate shows that these individuals 

have motives to grow this crop, which are different from the observed traits included in 

the model, and not that they ‘dislike’ higher yielding varieties.  

 

Insignificant yield effects in model II can be explained as follows: first, potential yield 

effects of GM crops might not have an influence on adoption choices of farmers who 

already used advanced weed and pest management techniques, and second, farmers may 

not base their decisions on yield because of uncertainty regarding this factor. Not only do 

they need to adjust their expectations of yield by the predicted level of pest infestations, 

but also to weather conditions. These predictions might prove very difficult and not 

trustworthy. Added to this uncertainty is the informational uncertainty, for individuals 

with no experience with GM-crops. Moreover, multiple studies present contradicting 

findings about the yield advantage of GM-crops, and some firmly assess that 

“comparative trials on Bt corn and cotton have not demonstrated a statistically significant 

yield drag”.14  Similarly, specification III indicates that growing Ht&Bt combined has 

positive unincluded factors also, with respect to growing any of them alone. We also 

notice in model III a larger magnitude for the coefficient estimate for the alternative of 

growing conventional varieties as compared with the estimate in model II.  

 

 

 

 

 

 

 

 

 
 
 
 
 

                                                 
14 Benbrook, C. (2003) 
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Table 3.   Conditional (Fixed Effects) Logit 
 

 
Explanatory Variable 

 
Coefficient 

 
Coefficient 

 
Coefficient 

   I  II III 
Yield Advantage -0.042** -0.013 -0.011 
 (0.01) (0.013) (0.013) 

Cost seed+pesticide -0.115** -0.09** -0.097** 
 (0.011) (0.014) (0.014) 
Insecticide use (Ht& HB) -0.044** -0.047** -0.053** 
 (0.005) (0.005) (0.005) 
Herbicide use -0.010** -0.011** -0.012** 
 (0.002) (0.002) (0.002) 
Labor  -0.150** -0.149** -0.135** 
 (0.05) (0.05) (0.05) 
Non gm average effects 
of unincluded factors 

-- 0.388** 0.63** 

 -- (0.14) (0.14) 
Combine Ht&Bt Avge. 
Unobserved Effects 

 --- 0.60** 

  --- (0.08) 

    
Log likelihood a -1520  -1516 -1486 

Prob> Chi2 0 0 0 
Obs 4768 4768 4768 

  a The log-likelihood with only alternative specific constants and an iid error  
      term is –1615. 
 
In Table 4, the mean and standard deviation of each coefficient were estimated thus 

allowing each coefficient to be different for each individual. Table 4 shows the estimated 

parameters for two different specifications. Model IV is equivalent to model II, in the CL 

version; i.e., it includes only an alternative-specific component for conventional varieties. 

However, it allows for unobserved heterogeneity in the tastes for attributes in the 

MMNL, as opposed to the CL. The second model, V, corresponds to the CL III 

specification, again, including unobserved taste-heterogeneity. 

 
Similar to Bhat (1998) and Revelt and Train (1997), we find that the magnitudes of the 

significant parameters increases from the CL to the MMNL. This is an expected result, 

since the variance before scaling is larger in the CL model compared to the mixture 

model. The signs of all coefficients are the same as in the CL and are expected, as 

discussed above.  
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Of particular interest is the significance of the standard deviation of the coefficients for 

some of the traits, indicating that individuals’ tastes significantly differ from the average 

taste and vary across the population. For example, the preference for work savings is not 

positive for all individuals. That is, some individuals do not care about choosing a variety 

that requires them to use more work, as long as the cost and the herbicide use are lower 

and/or factors like marketability or environmental protection are better. The coefficient of 

labor is normally distributed with mean -.22 and standard deviation .50. The share of 

people with coefficients below zero can be easily computed by calculating the value of 

the cumulative probability of a standardized normal deviate evaluated at .22/.5. Thus, we 

find that the share is .67. This means that 67% of the population is estimated to dislike 

varieties which are more labor using. The other factor whose value is heterogeneous 

among the population is insecticide use. However, the standard deviation is not big 

enough to reverse the sign of the coefficient for practically any farmer.  

 
Table 4.   Mixed Multinomial Logit 

 
 
Explanatory Variable 

 
Average ββββ 

 
StdDev  ββββ 

 
Average ββββ 

 
StdDev  ββββ 

  IV  IV  V V 
Yield advantage -0.02 0.004 -0.02 0.004 
 (1.44) (2.7) (1.49) (3.0) 

Cost of seed+pesticide     -0.092** -0.001     -0.092** -0.001 
 (0.02) (0.03) (0.02) (0.03) 

Insecticide use (Ht& HB) -0.057** 0.019** -0.068** 0.029** 
 (0.07) (0.07) (0.09) (0.08) 

Herbicide use -0.012** 0.0004 -0.013** 0.0001 
 (0.003) (0.003) (0.003) (0.004) 

Labor  -0.29** 0.748** -0.22** 0.50** 
 (0.09) (0.24) (0.08) (0.22) 

Non gm average effects of 
unincluded factors 0.43** 0.037 0.65** - 
 (0.15) (0.26) (0.08) - 

Combine Ht&Bt Avge. 
Unobserved Effects --- --- 

 
0.53** 

 
- 

 --- --- (0.16) - 

Log-likelihood         -1508  -1476  

Number of cases 4768   4768  
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The robustness of the five alternative models in Tables 3 and 4 can be evaluated formally 

using conventional likelihood ratio tests. A statistical comparison of the CL models 

among themselves and with respect to the MMNL model is shown in Table E in the 

appendix. The comparison leads to rejection of the CL models against the corresponding 

MMNL models.  

 

A different  way of testing for the validity of the CL model is to test the independence of 

irrelevant alternatives (IIA) assumption with the Hausman test. This provides a way of 

testing the IIA assumption without specifying any particular alternative model. The test is 

based on the idea that excluding one or more categories from the dependent variable 

should not affect the remaining estimates. We performed this test with different 

possibilities for exclusion of alternatives. The estimates did, in fact, change in all cases. 

This result further supports the rejection of the IIA assumption and the value of the 

MMNL approach to examining trait-based adoption decisions. 

 

Finally, we estimated a standard multinomial logit model including the traits of the crop 

alternatives as explanatory variables rather than the typical approach using the 

characteristics of the farmers. As explained in section 3, these traits enter as specific for 

each farmer. Thus, if all traits of all alternatives are to be taken into account, they all have 

to enter as covariates in the systematic part of the utility of any single alternative. This 

creates a proliferation of parameter estimates, severe problems of multicollinearity, 

instability in the parameters, and difficulties in the interpretability of the model. 

Moreover, all parameters have to be interpreted with respect to a baseline alternative 

(here the conventional varieties). Table F in the appendix shows the estimated 

coefficients of the standard multinomial logit model using traits. No coefficient estimates 

are shown for four traits (insecticide use of Bt, Ht&Bt and conventional varieties, and 

herbicide use by conventional corn), because they drop out from the estimation due to 

multicollinearity. The same problem seems to be the source of the reversed sign for the 

price coefficients for all alternatives, which are highly significant and positive. Other 

significant results show high substitutability between Bt and Ht&Bt yield and consistent 
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negative effects of unincluded factors of GM with respect to conventional varieties.  

Clearly, the alternative specifications used above dominate the standard multinomial logit 

for examining the importance of crop traits in farmer adoption choices. 

 

5.3.     Willingness-to-Pay and Price Elasticity Estimates of Demand for Traits 
 

As mentioned in section 3, the estimated coefficients of cost and of the various traits 

provide information on the value of the traits. Table 5, below, presents these estimates for 

the CL and MMNL models, in columns 4 and 6. Column 4 presents the average WTP 

derived from the CL model III, while column 6 presents the estimates for the 

corresponding MMNL model (V).  

 

WTP for traits in both models rank them similarly; however, the magnitudes of WTP for 

insecticide and labor are higher for the MMNL, and the WTP for herbicide is lower. We 

discuss the MMNL values, since we rejected the CL model against the MMNL in the 

previous section. The WTP for a one-corn-acre reduction in insecticide use is .6. Thus, 

the average farmer is willing to pay $.60 (ie., 60 cents) more per acre in higher seed and 

pesticide cost in order to reduce insecticide use on corn by one acre. Similarly, s/he is 

willing to pay $.11 per acre to reduce herbicide amount on one acre of the corn s/he 

grows. Finally, the value of one less worker in the farm is $1.93. i.e., the average farmer 

will be willing to pay 1 dollar and 93 cents per acre, if s/he can save the labor of one 

worker.  

 

Price elasticity estimates are shown in columns 5 and 7 for the CL and MMNL, 

correspondingly. While the CL model predicts that the highest price elasticity 

corresponds to the herbicide use(.11) characteristic, the MMNL estimates a highest 

elasticity for labor (.13). The price elasticity of demand for insecticide remains the same 

in both models (.06). We showed that the MMNL is superior to the CL in this setting, so 

we concentrate on column 7 for the discussion below.  
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Table 3.      WTP and Price Elasticities 

 

Variable Unit Mean 
WTP 
CL 

Price 
Elasticity 

CL 
WTP 

MMNL 

Price 
Elasticity 

MMNL 
(1) (2) (3) (4) (5) (6) (7) 

Price seed+pesticide $/Acre 64.9 --- --- --- --- 
Yield bushel/Acre 145.7 --- --- --- --- 
Insecticide corn acres treated 6.5 -0.55 -0.06 -0.6 -0.06 
Herbicide corn acres treated 53.6 -0.13 -0.11 -0.11 -0.09 
Labor # workers 4.0 -1.40 -0.09 -1.93 -0.13 
 
 
Overall, these results suggest that labor saving technologies have a much wider potential 

to be adopted. Potentially the high value for this trait may reflect the fact that family 

farms, where labor constraints are more likely to be binding, are adopting GM 

technologies, particularly in Wisconsin.  

 

Although, it is difficult to unbundle the effects of input- and labor-saving traits, there are 

important factors that cause them not to be correlated necessarily.  For example, even 

though Bt-corn reduces the amount of insecticide used, its refuge planting requirements 

might offset any possible labor saving effect of Bt corn varieties and make them less 

desirable from a labor-savings perspective. In Wisconsin, Bt requires that farmers plant a 

minimum of 20 percent of total corn acres to a non-Bt refuge in a separate field within 

0.5 mile of Bt corn fields or in blocks within the cornfields; that they do not use microbial 

Bt insecticides to treat target insects in the corn refuge and that they use other insecticides 

only if economic thresholds are reached. This result highlights the importance of 

allowing for correlation among the parameters in future studies, and testing for its 

significance. 

 

The high price elasticity estimates for labor and herbicide savings suggest that the 

strategy to charge royalties for these traits by agricultural biotechnology firms may be 



 26 

more adequately margin ones (as opposed to volume charges).15 It also suggests that final 

form of vertical control accompanying the commercialization of GM seeds is greatly 

influenced by the labor saving trait. 16 

 

The higher price elasticity for herbicide with respect to insecticide is probably driven by 

three facts: 1. More widespread weed problems in the region (wider areas of corn are 

treated with herbicides as opposed to insecticides –see Graphs1-2 in the appendix), 2. 

Many herbicide resistant cultivars are resistant to glyphosate, 3. New technologies allow 

for a more flexible use of broad-spectrum herbicides, but they do not necessarily decrease 

their volume.17,18  Development of corn varieties which enable a shift from relatively high 

field rates (glyphosate or atrazine) to low dose herbicides (imidazolinone or sulfonylurea 

families) should therefore favor their adoption, relative to other varieties. 

 

Given that the standard deviation of the price coefficient is shown to be non-significant in 

the MMNL , we also calculate the previous estimators based on a more parsimonious 

version of model (V), which  constrains the standard deviation of the price coefficient to 

be zero. In other words, we do not allow the price coefficient to vary, which amounts to 

having one less parameter to estimate. The result is an even higher estimates of WTP and 

price elasticity for labor (wtp=2.5, elasticity=.16) , and a slightly higher elasticity WTP 

and elasticity for herbicide use, as well (wtp=.13, elasticity =.10). 

 

If we were to estimate a willingness-to-pay and price elasticity for factors like 

environmental-friendly characteristics or marketability, it would be very high. However, 

given the difficulties we face in measuring these factors, we would not know at which 

‘mean’ or level of these factors to evaluate the estimates. 

 

 

                                                 
15 Huso, S. (2005). 
16 Lemarie and Ramani (2003) indicates that demand enhancing innovations give rise to incentives for 
mergers. 
17 Op. Cit. 
18 Independent research and USDA studies show that there has been on average about a 5% increase in herbicide 
pounds applied per acre in GM soybeans in contrast to conventional varieties. 
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6.     Conclusion  

 

This work offers a new approach to the adoption of GM crop varieties by adopting the 

econometric methodology of the characteristics-based demand literature. A random 

utility framework was implemented through different specifications of a conditional (CL) 

and a mixed multinomial logit (MMNL) model of crop-variety choice. Willingness-to-

pay and price elasticity estimates for traits were calculated. All specifications of the CL 

were rejected with respect to the equivalent MMNL specifications. However, there is 

some degree of consistency in the regression coefficient, willingness-to-pay, and price 

elasticity estimates and results of both models in terms of sign and magnitude. The 

attempt to estimate alternative specific coefficients through a standard MNL model 

including the characteristics of the alternatives as explanatory variables results in an 

unparsimonious model plagued with problems of multicollinearity, instability of the 

parameters, and problems of interpretability.  

 

The coefficients of the MMNL model allowed us to measure preferences of U.S. farmers, 

in the Upper Midwest, for the traits of Bt-, herbicide tolerant, and conventional, non-

transgenic, corn varieties. We find significant, expected signs for preferences for cost, 

pesticide and labor-saving traits; specifically, as the cost of a variety of corn increases 

one dollar per acre, all other factors remaining the same, the probability of that corn type 

being chosen decreases. The same is the case for increases in the amount of pesticide and 

labor use. The lower the pesticide- and labor-saving levels that a variety induces, the 

lower is the probability of that it will be chosen by a farmer. Yield effects, however, are 

insignificant on average. This might be explained in the following way: first, potential 

yield effects might not have an influence on adoption choices of farmers who already 

used advanced weed and pest management techniques, and second, farmers do not base 

their decisions on yield because of the high uncertainty regarding the impact of this 

factor. This uncertainty is underscored by the multiple studies that present contradicting 

findings about the yield advantage of GM-crops.  
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Individuals in the sample who chose to grow conventional corn varieties have motives to 

grow non-transgenic, crop varieties, which are different from the typical economic 

factors included in standard adoption regressions.  Traits related to environmental 

concerns and marketability, particularly a risk premium component of conventional 

varieties, are in explaining the choice of non-GM varieties.  Growing Ht and Bt combined 

has also positive complementarities, which are not captured from either of these GM 

varieties alone. 
 

The MMNL approach also demonstrates that individuals’ tastes can significantly differ 

from the average taste and vary significantly across the population. In particular, the 

value that individuals have for labor-savings varies widely across farmers. The value of 

the insecticide-saving trait is also significantly heterogeneous among the population; 

however, the range of variation is smaller than the one for labor-saving traits. 

 

Overall, the results regarding the willingness-to-pay for traits and their price elasticity 

estimates suggest that labor saving technologies have a much wider potential to be 

adopted. Interestingly, the high value for this trait suggests the possibility that many 

family farms, where labor constraints are tight, are adopting GM technologies, 

particularly in Wisconsin.  The difficulty in unbundling the effects of input- and labor-

saving traits highlights the importance of allowing for correlation among the parameters 

in future studies, and testing for its significance.  This would help, for example, to 

disentangle the labor-saving effect of insecticide reduction versus the labor-using effect 

of refuge planting requirements for Bt-corn. High price elasticity estimates for labor and 

herbicide savings suggest that the strategy to charge royalties for these traits by 

agricultural biotechnology firms may be more adequately margin ones (as opposed to 

volume charges).19 It also suggests that final form of vertical control accompanying the 

commercialization of GM seeds is greatly influenced by the labor saving trait. 20 Factors like 

widespread weed problems, herbicide resistance and lack of technologies reducing herbicide 

                                                 
19 Huso, S. (2005). 
20 Lemarie and Ramani (2003) indicates that demand enhancing innovations give rise to incentives for 
mergers. 
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amounts with certainty, might be the ultimate reason for the high price elasticity of demand 

estimates for herbicide-saving traits. 

 

New technologies can bring new economic issues to the forefront.  That is the case in GM 

crops, with their emphasis on adding traits to existing high yield seeds.  Our use of a trait-

based model to examine the adoption patterns of GM crop varieties among corn farmers in 

Minnesota and Wisconsin reveals a new set of results and lessons that classic adoption 

models cannot provide.  Further elaboration of this traits-based approach holds considerable 

promise for deepening our understanding of this new area of agricultural technology, but will 

also require some reorientation in the design of surveys and the types of information 

gathered from farmers and other sources associated with GM crops. 
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APPENDIX 

 

Table A. Descriptive statistics for all varieties, by trait 

 

Variable Obs Mean 
Std. 
Dev. Min Max 

      

Yield (bu/A) 4579 145.7 14.9 104.0 177.3 

Cost of Seed and 

Pesticide ($/A) 4928 64.9 3.7 53.7 77.7 

Insecticide  

Use (Acr CornTreated) 4850 6.5 14.8 0.0 242.0 

Herbicide Use (Acres 
CornTreated)  4772 53.6 90.8 0.0 990.1 
Labor (Number of 
workers per farm) 4928 4.0 0.9 1.4 11.2 
Variety choice 1232 2.93 1.06 1 4 

 
 
 

Table B. Descriptive statistics of traits, by variety 
 

Variable Obs Mean Std. Dev. Min Max 
      
yht 1197 149.7 14.2 110.6 174.5 
ybt 1195 146.2 15.1 107.1 177.3 
yhb 1196 147.8 14.5 107.1 177.3 
yng 1197 141.6 14.3 104.0 167.4 
yst 1195 154.2 14.9 113.8 183.9 
      
ps_ht 1197 63.6 2.2 53.7 66.7 
ps_bt 1197 68.7 3.4 60.2 77.7 
ps_hb 1197 66.0 2.7 53.7 77.7 
ps_ng 1197 61.1 0.0 61.1 61.1 
ps_st 1197 75.3 0.0 75.3 75.3 
      
iht 1193 10.5 19.1 0.0 242.0 
ibt 1197 0.0 0.0 0.0 0.0 
ihb 1197 5.3 9.5 0.0 121.0 
ing 1193 10.5 19.1 0.0 242.0 
ist 1197 0.0 0.0 0.0 0.0 
      
hht 1193 49.0 80.0 0.0 790.0 
hbt 1193 56.5 97.6 0.0 990.1 
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hhb 1193 52.6 86.8 0.0 799.8 
hng 1193 56.5 97.6 0.0 990.1 
hst 1193 49.0 80.0 0.0 790.0 
      
wht 1197 4.0 0.8 1.4 8.4 
wbt 1197 4.1 0.7 1.8 7.7 
whb 1197 4.0 0.8 1.4 8.4 
wng 1197 4.1 1.3 2.0 11.2 
wst 1197 4.0 0.8 1.4 8.4 

 
 

Table C.  Why Farmers Planted Bt-ECB Corn in 200321 
 

Reasons % of Respondents 
To increase corn yields     71.9 
To allow better insect control   68.1 
Anticipated having corn borer problems 46.4 
Recommendation from seed dealers/consultants  44.3 
To reduce overall insecticide use   34.9 
Fits well with existing corn production practices  17.9 
To reduce overall corn production costs   13.6 
To reduce the labor required to grow corn   9.8 
Anticipated having corn rootworm problems  8.9 
Other*        7.7 
Recommendation from neighbors    7.2 
Recommendation from university or extension agents  3.4 

              * Written comments included: planted for trial purposes, only way to get desired variety 
 
 

Table D.  Why Farmers Did Not Plant Bt-ECB Corn in 2003 
Reasons % of Respondents 
Price of Bt seed corn is too high 57.6 
Did not anticipate having corn borer problems 39.5 
Did not anticipate having corn rootworm problems 34.0 
Concerned about possible environmental or safety issues 18.1 
Concerned about having trouble selling Bt corn 16.0 
Other* 14.8 
Concerned about having to segregate Bt corn from non-Bt corn 13.3 
Not satisfied with the net return of Bt corn   9.5 
Concerned that insect resistance management requirements would be 
too much trouble or complicated   8.4 

Concerned about insect resistance   8.0 
Not satisfied with Bt corn yields   7.0 
Concerned about getting a lower price for Bt corn   6.3 

*Written comments included: use crop rotation, no interest, organic farm, corn used for silage, unfamiliar         
with Bt corn 

                                                 
21 Note: Tables C,D,E,F were calculated by Merrill et. al. (2005) with the same data set used in the present 
study. 
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Table E.      Likelihood Ratio Tests 

  df Xsq(.025) 
LR I-II 8 1 5.02 
LR II-III 60 1 5.02 
LR IV-II 16 6 14.5 
LR V-III 20 5 12.8 

 
 
 

Table F.    Standard Multinomial Logit 
 

By variety choice 
Explanatory Variable Coefficient  

Std. Err. 

    
HT    

Yht -0.144  (0.09) 
Ybt -0.027  (0.04) 
Yhb 0.038  (0.08) 
Yng 0.121  (0.09) 
Iht 0.009  (0.02) 
Hht 0.006  (0.01) 
Hbt -0.005  (0.01) 
Hhb 0.000  (0.02) 

ps_ht 0.575 ** (0.13) 
ps_bt 0.215 ** (0.07) 
ps_hb -0.463 ** (0.13) 
ps_ng -0.304 ** (0.01) 
Wht -0.689  (0.57) 
Wbt 0.045  (0.30) 
Whb 0.583  (0.60) 
Wng 0.052  (0.09) 
Ng -1.760 ** (0.45) 

    
BT    

Yht -0.006  (0.08) 
Ybt 0.175 ** (0.06) 
Yhb -0.241 ** (0.08) 
Yng 0.080  (0.09) 
Iht 0.020  (0.02) 
Hht 0.003  (0.01) 
Hbt -0.023 * (0.01) 
Hhb 0.029  (0.02) 

ps_ht -0.348 ** (0.09) 
ps_bt -0.694 ** (0.09) 
ps_hb 0.779 ** (0.12) 
ps_ng 0.292 ** (0.09) 
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Wht -0.222  (0.31) 
Wbt -0.019  (0.42) 
Whb 0.134  (0.50) 
Wng 0.037  (0.09) 
Ng -2.008 ** (0.41) 

    
HtBt    

Yht -0.150 * (0.08) 
Ybt -0.042  (0.05) 
Yhb 0.065  (0.07) 
Yng 0.130  (0.08) 
Iht 0.011  (0.02) 
Hht 0.004  (0.01) 
Hbt 0.005  (0.01) 
Hhb 0.003  (0.02) 

ps_ht -0.162 ** (0.08) 
ps_bt -0.231 ** (0.06) 
ps_hb 0.268 ** (0.08) 
ps_ng 0.187 ** (0.08) 
Wht -1.100  (0.37) 
Wbt -0.023  (0.31) 
Whb 0.820 * (0.46) 
Wng -0.064  (0.09) 
Ng -4.721 ** (0.38) 

------------------------------------------------------------ 
(Outcome typeb04==4 is the comparison group) 

 
 

Graphs 1.    Herbicide Use in Counties of Minnesota and Wisconsin (acres treated/farm) 
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Source: Agricultural Census, 2002  
*See graph categories below 
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Graphs 2.     Insecticide  Use in Counties of Minnesota and Wisconsin (acres treated/farm) 
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Source: Agricultural Census, 2002 
*See graph categories below 

 
 

Acres Categories in Graph 1. and 2.  
 

1 <25 
2 25<= x <35 
3 35<= x <50 
4 50<= x <100 
5 100<= x <200 
6 200<= x <300 
7 300<= x <400 
8 400<= x <500 
9 500<= x <600 

10 600<= x <700 
11 700<= x 
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