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Modeling the Tail Distribution and Ratemaking:                                                             
An Application of Extreme Value Theory 

 
 
Abstract 

Economic analysis of weather risk often depends on accurate assessment of the 

probability (P) of tail quantiles (Q). Traditional statistics mostly focuses on laws 

governing the average and such methods might be misleading or biased when modeling 

tail risks since the primary statistics are often driven by the data clustered in the center. 

Extreme value theory can provide a promising estimation of the tail risk since it concerns 

the quantification of the largest events, the smallest events, or events over the threshold in 

a sample and derives the laws governing tail part events. This paper applies extreme 

value theory to quantify excess rainfall across selected regions in India during the 1871 to 

2001 period, and provides evidence for the feasibility and effectiveness of applying an 

extreme value model in modeling and assessing weather tail risk over alternative 

parametric methods. 

Introduction 

Economic analysis of weather risk often depends on an accurate estimation of the 

probability (P) or patterns depicting the stochastic nature of a random weather variable, 

especially the tail quantiles (Q). For example, accurate actuarial rates, which depend on a 

precise measurement of low tail risk, are essential elements of an actuarially sound 

insurance program. A few low-probability but high-consequence events often have 

dominant impacts in risk assessment and thus commercial investors often use the Value-

at-Risk method to assess the portfolio risk with a low probability at the tail part.  
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Accurate ratemaking and efficient risk assessment depend on the precise 

forecasting of a future occurrence, especially for the tail part risk. Technology is bringing 

some certainty to predictions associated with weather events -- the field that has always 

been considered unpredictable. However, until today, the most common method of 

forecasting is still to use historic records of meteorological variables to derive the 

probability distribution of related variables (e.g., temperature, precipitation, etc) 

associated with various weather events (Podbury et al., 1998), that is, the probabilistic or 

statistical method. Thus, modeling the underlying risk distribution and assessing the 

impact on economic analysis are essential to weather risk management. 

Considerable disagreement exists about the most appropriate characterization of 

risk distributions. A variety of approaches that have been used to represent risk 

distributions can be segmented into two primary groups:  parametric methods and non-

parametric methods.  

Under the parametric approach, a specific family of distributions (e.g., normal, 

beta, gamma) is selected and parameters of this family are estimated based on the 

observed data using the maximum likelihood method or the generalized method of 

moments. This approach works well when the underlying population distribution family 

is correctly assigned. In agriculture, parametric techniques have been extensively applied 

for estimating crop-yield distributions and premium ratemaking, such as the normal 

distribution (e.g., Botts and Boles, 1958; Day, 1965), the beta distribution (e.g., Babcock 

and Hennessy, 1996; Kenkel, Busby, and Skees, 1991; Nelson and Preckel, 1989; 

Tirupattur, Hauser, and Chaherli, 1996), the gamma distribution (e.g., Gallager, 1986), 

the lognormal distribution (e.g., Jung and Ramirez, 1999; Stokes, 2000), the Su family 



 3

(e.g., Ramirez, Misra, and Field, 2003), and a mixture of several parametric distributions 

(Goodwin and Ker, 2002). Different parametric distributions vary in terms of their 

flexibility and ability to capture the crop-yield process, therefore, Sherrick, et al. (2004) 

discussed the modeling of alternative distributional parameterization (i.e., the beta, the 

logistic, the lognormal, the normal, and the Weibull distribution) and their economic 

importance on crop insurance valuation.  

Parametric techniques are also commonly used in catastrophic risk modeling. For 

example, the Poisson distribution is often used to model rare and random events (i.e., 

earthquake occurrence), the Pareto distribution is used to estimate the flood frequency or 

fire loss, and the lognormal distribution is frequently used to track the earthquake motion, 

raindrop size, or Tornado path (Woo, 1999). 

The prerequisites of functional form and distribution assumptions for the 

parametric approach may result in an imprecise prediction and misleading inference 

when the underlying distribution choice is incorrect. That is, parametric methods are 

susceptible to specification errors and their statistical consequences. 

Nonparametric methods have been developed for the situation where we do not 

assume any knowledge of a specific distribution family of the underlying population. The 

simplest nonparametric technique is the histogram and the most commonly used 

nonparametric methods are based on the empirical distribution. Compared to the 

parametric approach, the nonparametric approach is free of functional forms and 

distribution assumptions (distribution free) and relatively insensitive to outliers. 

Therefore, this approach is impervious to specification errors and might result in more 

accurate and robust models (Featherstone and Kastens, 1998). However, some 
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nonparametric procedures (e.g., the kernel procedure) have a relatively slow rate of 

convergence to the true density (Silverman, 1986) and a potential difficulty in measuring 

rare events. Some efficiency might also be lost when prior knowledge of the underlying 

distribution form is available. Furthermore, it is problematic to use the nonparametric 

approach in analyzing multiple variables with small samples.  

In agriculture, in addition to the empirical distribution and histograms, a variety of 

kernel functions have been used in estimating crop-yield distribution and rating crop 

insurance contracts, such as Turvey and Zhao (1999), Goodwin and Ker (1998), Ker and 

Goodwin (2000), and Ker and Coble (2003). 

Traditional statistics, including both parametric and nonparametric methods, 

mostly focus on the laws governing averages. Basic statistical measures of risk are all 

based on the centered data. When modeling weather risk, our interest is not in estimating 

the whole distribution but the tail risk. The use of standard parametric or nonparametric 

methods might be misleading or biased in modeling the tail risk since the primary 

statistics are driven by the data clustered in the center. This bias can further cause 

imprecise ratemaking when designing a weather-based contingent claims. To overcome 

the disadvantage of applying standard methods in modeling tail risk, extreme value 

theory could provide a promising solution since it is primarily concerned with the 

quantification of the stochastic behavior of a process at usually the largest, the smallest, 

or the events over a threshold in a sample and derives the laws governing tail events. 

This paper applies statistical techniques to quantify weather tail risk and compares 

the results from standard statistical distributions with an innovative approach – extreme 

value theory with risk estimation and premium setting. The objective of this essay is to 



 5

provide evidence for the feasibility of applying extreme value models in modeling 

weather tail risk and investigating its effectiveness over other alternative distributions on 

economic importance of premium ratemaking and risk assessment. Four parts are 

included in this essay. First, the essentials of tail distribution estimation is emphasized for 

modeling and assessing weather risk in the first part; Secondly, the statistical model for 

modeling the tail distribution – extreme value theory - is introduced along with the 

statistical properties; The third part develops a research procedure that compares the 

estimation and actuarial performance of the standard distributions and the extreme value 

model using monthly rainfall data across different regions in India over the period from 

1871 to 2001. The power and efficiency of the Extreme Value Model are further 

demonstrated by modeling the tail risk. Finally, conclusions and recommendations are 

developed. 

Tail Estimation -- Let the tails speak for themselves! 

Traditional statistics mostly looks at the laws governing the average. Basic 

statistical measures of risk, mean, variance, and the third or fourth central moments, are 

all based on the center of the observed data. For example, consider a sample of n 

observations, iy , for i=1 to n. The population mean is estimated from the sample 

average, i.e., ∑
=

=
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is a measure of the “peakiness” of the distribution. The sample estimate of the kurtosis is 
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= . It is obvious that the basic statistical measures of risk are all based on 

the center of the data ( y ), and they may not be able to truly reflect the tail characteristics. 

However, in weather risk estimation, a few low probability events will exert a 

high, or even dominant impact on risk assessment and the quantification of (P, Q) 

combinations needs to rely on the (asymptotic) form of tail distribution. Estimation and 

inference based on the whole distribution might be inaccurate since the data clustered in 

the center of the distribution will have too much influence over the estimators.  

Misspecification of the distribution family can, in turn, bias the calculation of the 

insurance premiums and indemnity payments.  

The reasons behind applying tail estimation are summarized as follows: 1) Model 

estimation and assessment of the model fit using standard statistical procedures are often 

driven by the centered values of the data; 2) A trend in frequency or magnitude might be 

confined to one or both tails of a distribution; 3) Alternative distributions that fit the 

observed data well might have different performance in a tail estimation; 4) Accurate 

ratemaking of weather contracts relies on tail part estimation. 

Recently, some researchers (e.g., Ker and Coble, 2003) have noticed this problem 

and suggest modeling the conditional risk distribution instead of the whole distribution in 

risk assessment. However, the risk estimation and economic analysis of alternative 

distribution specifications on modeling conditional weather risk have not been well 

documented. Specifically, the performance of alternative distributions on conditional tail 

part risk valuation has not been addressed in most of the literature. 
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Extreme Value Model 

Extreme value theory (EVT) dates back to the late 1920s to early 1940s following 

the pioneering work of Fisher and Tippett (1928), and Gnedenko (1943). In 1958 Gumbel 

laid out the theoretical framework of the extreme value model in his classical book. 

Extreme value techniques have been extensively applied in many disciplines during the 

last several decades, including meteorology (e.g., wind speeds, ocean wave, 

precipitation), engineering (e.g., quality control, wind engineering, alloy strength 

prediction), catastrophic phenomena (e.g., thermodynamics of earthquakes, floods, 

storms, hurricanes), and non-life actuaries (e.g., risk assessment, loss estimation). From 

the early 1990s, applications of EVT in modeling financial extremes have become more 

and more popular, especially measuring Value at Risk (VaR) on the tails of the Profit & 

Loss (P&L) distribution (Chen and Chen, 2002).  

Generally, there are two principal kinds of approaches in modeling extreme 

values, the block maxima model (BMM) and the peak over threshold model (POT). The 

first approach models the largest or the smallest values for a series of identically 

distributed observations. For example, annual maximum sea level, the fastest race times 

in sport, daily minimum temperature, the largest claim in insurance, etc. This approach 

can be further extended to model the (r) largest order statistics. On the other hand, the 

peak-over-threshold approach models all large (small) observations that exceed (fall 

below) a high (low) threshold. This approach might be more useful for practical 

applications since it is more efficient to use limited resources on extreme values instead 

of only the largest or smallest observation. In some realistic situations, the extreme value 
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approach may involve a loss of information and the accuracy of estimation of a small 

sample size might be compromised. 

Block Maxima Model (BMM) 

The BMM approach focuses on the statistical behavior of the largest or smallest 

value in a sequence of independent random variables. In modeling weather risk and 

designing an efficient risk management system, it might be of particular interest when 

asking such a question as: “What is the probability that the maximum event for next year 

will exceed all previous levels?” In the actuarial industry, such information might be 

especially important in determining the buffer fund and probability of ruin that can 

jeopardize the position of the insurance or reinsurance company due to catastrophic loss.  

Statistically, assume nM be the maximum of the process over n independent 

random variables with a common distribution function F. 

},,max{ 1 nn XXM L=  

In theory, the distribution of nM can be derived by 

(1) n
nn zFzXzXPzMP )}({},,()( 1 =≤≤=≤ L  

Since the exact distribution of nM depends on F(z) which is unknown, the 

asymptotic distribution of nM is of particular interest. However, 0)( →zF n as ∞→n , 

the distribution of nM degenerates to a point. Thus, the extreme value ( )nM  needs to be 

normalized in order to have a non-degenerate limiting distribution. 

(2) 
n

nn
n a

bMW −
=  

where nb (>0) and na (>0) are the location and scale parameters respectively. 
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The Fisher-Tippet Theorem proves the existence of the limiting distribution of the 

normalized extreme value nW . 

(3) )()(lim zGz
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bMP
n
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n
=≤

−
∞→

 

where G is a non-degenerate distribution and a generalized extreme value (GEV) 

family can be used to capture the above distribution. 

(4) })](1[exp{)( /1 ξ

σ
μξ −

+
−

+−=
zzG  

Here, μ  and )0(>σ  are location and scale parameters, and ξ  is a shape 

parameter. Three families of limit distributions can be obtained from the GEV family: 
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The GEV family can be easily transformed to modeling the smallest value by 

changing the sign. Assume },,min{ 11 nXXM K= , let ii XY −=  and },,max{ 1 nn YYM K= , 

then 1MM n −= and nM can be fitted by the GEV family. The maximum likelihood 

estimate of the parameter )ˆ,ˆ,ˆ( ξσμ  for the asymptotic distribution of nM corresponds 

exactly to that of the asymptotic distribution of 1M , except for the sign change of the 

location parameter. Furthermore, the GEV family can be extended to model the rth largest 

or smallest order statistics and the parameters of the GEV family can be estimated in the 
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presence of covariates, such as trends, cycles, or actual physical variables (e.g., the 

Southern Oscillation Index in the rainfall process). 

Maximum likelihood procedures can be employed to estimate the GEV 

parameters ξσμ ,, . These estimators are unbiased, consistent, and asymptotically 

efficient. Although there is not always a straightforward analytical solution, the 

estimators can be found using standard numerical optimization algorithms.  

Peak over Threshold Model (POT) 

Modeling only maxima or minima can only be applied when the particular interest 

is in the largest or smallest event, and this method is also an inefficient approach if other 

data on the tail are available and of interest. Therefore, the BMM approach is too narrow 

to be applied to a wide range of problems. Generally, a question such as “what is the 

probability that the occurrence of the next event will exceed a predetermined level u 

(threshold)?” is more useful for weather risk analysis. 

POT can compensate such shortcomings and be used to model all large (small) 

observations that exceed (fall below) a high (low) threshold. These exceedances are 

important in determining the insurance or reinsurance premium rates, claims, buffer fund, 

ruin probability, and may even be helpful when design preventive strategies for risk 

management. 

Let’s assume u is the threshold and the tail events are regarded as those of iX that 

exceed u }},,{ 1 uXX r >L . Then the stochastic behavior of these events whose values 

are greater than the pre-specified threshold value u can be represented by the following 

conditional probability function. 
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Where r denotes these excess of iX  above u and F is the marginal distribution of 

the sequence of random variables Xi.. 

Pickands (1975), Balkema and de Haan (1974) have shown that if block maxima 

have an approximate GEV distribution, then threshold excesses have a corresponding 

approximate distribution within the Generalized Pareto Distribution family (GPD) and 

the parameters of GPD are uniquely determined by those of the associated GEV 

distribution of block maxima.  For a large enough threshold u , the distribution function 

of )( uX − conditional on uX > can be approximated by 

(6) ξ

σ
ξ /1)1(1)( −+−=

u

yyH  

where )( μξσσ −+= uu  

If 0<ξ (Weibull), the distribution of excesses has an upper bound; If 

0>ξ (Frechet), the distribution of excesses has no upper limit. If 0→ξ  (Gumbel), the 

distribution can be simplified. It is exactly an exponential distribution with 

parameter uσ/1 . 

Similar to the GEV distribution, maximum likelihood procedures can be utilized 

to estimate the GPD parameters given the threshold u.  

The determination of the threshold u is crucial to perform the POT method. There 

exists a tradeoff between bias and variance in determining the threshold. For example, 

too low a threshold is likely to violate the asymptotic basis of the model and may lead to 



 12

a bias; too high a threshold will generate too few observations left to estimate the 

parameters of the tail distribution function and may cause high variance. Coles (2001) 

suggests adopting as low a threshold as possible, subject to the limit model providing a 

reasonable approximation. Graphically, the mean residual life plot and Hill-plot (Coles, 

2001; Chen, 2002) can be performed to determine the crucial threshold u. The goodness-

of-fit test suggested by Gumble (1958), and the Bootstrap methods suggested by Dekkers 

and de Haan (1989) can also be used to approach this problem.  

Whether the fitted models are good enough to model the observed data is 

particularly important in statistical inference. Probability plots, quantile plots, and return 

level plots are often used to assess the quality of fitted GEV and GPD models. Details 

concerning the extreme value theory can be found in Coles (2001), and Embrechts, 

Kluppelburg and Mikosch (1997). 

Research Design 

This study provides an empirical analysis of modeling weather risk using 

alternative parametric distributions and extreme value theory. Premium rates of a 

hypothetical weather index with varying strikes are calculated and a statistical 

comparison is performed. 

Data 

Indian agriculture accounts for 24 percent of the GDP and provides work for 

almost 60 percent of the population. Monsoons in India can bring damaging cyclones and 

floods to the coastal plain. Heavy flooding in 2000 caused about 1,200 deaths in Southern 

India and Bangladesh (Swiss Re, 2001). Officials in Andhra Pradesh reported that by 

August 30, 2000 the floods had affected 3,080 villages and towns and submerged 
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177,987 hectares of farmland, causing damage officially estimated at 7.7 billion rupees. 

The real destruction far exceeded these figures.2 

Parchure (2002) estimates that about 90 percent of the variation in the crop 

production of India is due either to inadequate rainfall or to excess rainfall. Generally, 

excess rain is concentrated in the months of June to September. However, the 

performance of the current crop insurance program in India can be considered 

disappointing (Kalavakonda and Mahul, 2003; Mishra, 1996; Parchure, 2002; Skees and 

Hess, 2003), and developing rainfall-based insurance can be considered an economically 

viable instrument. For example, Veeramani, Maynard and Skees (2003) suggest rainfall- 

based indices and options as a replacement for the current expensive area crop-yield 

programs for Indian rice farmers.  

In this study, historic monthly rainfall from the months of June to September over 

1871 to 2000 period is used across fourteen different subdivisions. The data is collected 

from the Indian Institute of Tropical Meteorology.  

The use of time series data to estimate an underlying distribution needs the data to 

be identical and independent, thus a series of tests are necessary. 

1) Deterministic trend or stochastic trend 

The augmented Dickey Fuller (ADF) and Phillips-Perron (PP) tests were used to 

test for the existence of a stochastic trend on a region-by-region basis. All of the fourteen-

rainfall series were found to be trend stationary and the unit root tests were rejected in all 

cases. The results suggest that a deterministic trend might be appropriate for the rainfall 

series. 

2) Linear trend or higher order trend 
                                                 
2 Source: http://www.wsws.org/articles/2000/sep2000/ind-s06.shtml 
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The possible trend order was examined by regressing time series rainfall data 

against a possible time trend (e.g., linear, quadratic, cubic, or higher order) based on the 

significance of the F-test. Greene (2003) notes the conservative nature of this test in cases 

of non-normal errors. 

The results indicated that only two of the fourteen regions were found to have 

significant linear trends (Region COAPR with a 10% significant level and Region 

SASSM with a 5% significant level).  Region TELNG has a significant quadratic term 

and a fifth order term at the 10% level and the fourth term at the 5% level. Regions 

WMPRA and SHWBL have significant cubic terms at the 5% level and the 10% level, 

respectively. But none of them have significant lower order terms. 

3) Autocorrelation and Normality 

Durbin-Watson tests are used to indicate the incidence of the first order 

autocorrelation for lag one series (monthly autocorrelation) and lag four series (yearly 

autocorrelation). The results showed that the DW test was only rejected in one region, 

SASSM, at a 5% significant level. A normality test3 failed to reject in only one region, 

NASSM, at a 5% significant level and in two regions, BHPLT and SASSM, at a 10% 

significant level. Since only two regions have a deterministic trend (CORPA and 

SASSM), a heteroscedasticity test is not performed in this study. 

Given the sporadic violations of the i.i.d. assumptions, a linear trend was imposed 

for regions COAPR and SASSM and the time series rainfall data were detrended by a 

linear term to a base year of 2001. The raw rainfall data were used for the twelve other 

regions. The summary statistics of rainfall data are shown in Table 1. 

                                                 
3 the Kolmogorov-Smirnov test. 
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The mean of monthly cumulative rainfall during the period from June to 

September across the fourteen regions average 2800mm, indicating that excess rainfall 

can be a significant risk. The sample means vary considerably ranging from a low of 

1784mm (TELNG) to a high of 5014mm (SHWBL). Sample medians are slightly smaller 

than sample means in all regions except EUPRA and NASSM, ranging from 1707mm 

(TELNG) to 4896mm (SHWBL) with an average of 2736mm. The variability of monthly 

rainfall is also different across the regions, with standard deviations ranging from 779 

(TELNG) to 1655 (SHWBL). The coefficients of skewness range from 0.139 (EMPRA) 

to 0.743 (TELNG), with an average of 0.41 across all regions. Positive skewness calls 

into question the use of symmetric distribution (e.g., normal distribution) to model 

rainfall. The coefficients of sample kurtosis range from -0.905 (WUPRL) to 0.783 

(TELNG), with an average of -0.089. Both negative kurtosis (sub-Gaussian) and positive 

kurtosis (super-Gaussian) appear across the different regions, showing the possibility of 

both “less peaked” and “more peaked” density functions. Monthly cumulative rainfall 

levels vary significantly across regions. For example, the maximum rainfall ranges from 

as low as 4894mm in COAPR to 10129mm in SHWBL; the minimum rainfall fluctuates 

from 4mm in WUPRL to 1531mm in SASSM. The summary statistics indicate that 

rainfall across regions displays significantly different distributions but predominantly 

positive skewness. 

Research Procedure 

Our interest is to provide evidence for the feasibility of applying the extreme 

value theory in modeling weather tail risk and to investigate its efficiency over other 

alternative distributions on economic importance of premium ratemaking and risk 



 16

assessment. Therefore, the focus is to compare the statistical estimation and premium 

ratemaking based on standard statistical methods and extreme value theory. In this study, 

four alternative distributions are selected as the parametric candidates and the GPD 

model is chosen as the extreme value candidate. Our research procedure includes the 

following five steps. 

Step 1. Estimate the rainfall series using parametric distributions 

Four parametric distributions, including the beta distribution, the gamma 

distribution, the lognormal distribution, and the Weibull distribution, are chosen as 

parametric candidates, and the maximum likelihood method is used to estimate the 

parameters. The actuarially fair premium rates were further calculated for a hypothetical 

weather-based contingent claim based on these four candidate distributions. 

Step 2. Rank parametric candidates 

For each of the fourteen rainfall series, four parametric candidates are ranked 

from the best to the worst based on several goodness of fit tests (e.g., the Kolmogorov-

Smirnov test, the Cramer-von Mises test, the Anderson-Darling test, and the Chi-Square 

test) and the visual QQ plot. The weighted rank for each candidate is further calculated. 

Step 3. Estimate the rainfall series using EVT model 

The GPD model is chosen to estimate the excess rainfall distribution for each 

region and an actuarially fair premium rate is calculated further for the weather-based 

contingent claim. 
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Step 4. Compare the economic importance of estimations based on two methods 

The calculated premium rates from the extreme value theory and the best 

candidate from the standard statistical distributions are tested for equality of mean using a 

couple of nonparametric paired tests, e.g., the sign test and the Wilcoxon signed rank test. 

Step 5. Sensitivity analysis of different strike levels 

Different feasible strikes are applied and the robustness of our results is then 

discussed through the sensitivity analysis. 

Fitting the Alternative Parametric Distributions 

Parametric techniques fit the observed data to one of the standard distributions 

(e.g., the beta distribution, the gamma distribution, etc) by some statistical methods (e.g., 

by the maximum likelihood method or the generalized moment method). In selecting the 

parameterization of rainfall distributions, several considerations were given to 1) Stylized 

features of cumulative rainfall (i.e., non-negativity, skewness); 2) Flexible parameters to 

adequately characterize cumulative precipitation over time periods across different 

regions; 3) Previous studies and empirical evidence from climatological, hydrological, 

and agronomical research (Barger and Thom, 1949; Thom, 1958; Ison, et al., 1971; 

McWhorter, et al., 1966). Four candidate distributions are considered in this study: the 

beta distribution4, gamma distribution, lognormal distribution, and weibull distribution. 

Maximum likelihood methods were applied to solve for the parameters of the four 

distributions for each region sample. The log-likelihood functions and MLEs for the 

gamma distribution are illustrated as follows. The likelihood function for the parameters 

of the gamma distribution can be specified as follows: 

                                                 
4 The upper bound parameter, to guarantee x to be between zero and one, was set to 5% above the 
maximum rainfall recorded in this study. 
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βα ,  can be obtained from the first derivative of the above equation and MLEs of 

βα ,  are unbiased, consistent and asymptotically efficient. 

If any of the cumulative precipitation observations in the historical data serials are 

equal to zero, a censoring estimation suggested by Wilks (1990), and Martin, Barnett and 

Coble (2001), could be applied. The log-likelihood function for the censoring function 

can be written as 
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Where C is the censoring point, for example, a small number C=0.01 inch; Nc 

denotes censored years in which cumulative precipitation over the contract time is 

recorded as zero; Nw denotes non-censoring years; and N = Nc + Nw. 

The parameters for all four distributions were estimated separately using the 

rainfall data from region a, and then for region b, and so on through each sample. The 

summary statistics of the four candidate distributions are provided in Table 2. The results 

further indicate that the distributions differ meaningfully across regions. 

Rank Alternative Distributions 

Each of the alternative distributions has two parameters to be estimated in this 

study and we thus have the same degrees of freedom when performing the maximum 

likelihood functions for the rainfall series.  
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Alternative distributions can be ranked for the goodness-of-fit according to some 

standard tests and visual QQ plot. SAS 8.2 provides several goodness-of-fit tests for the 

appropriateness of candidate distribution, such as the Kolmogorov-Smirnov test, the 

Cramer-von Mises test, the Anderson-Darling test, and the Chi-Square test. Under each 

test, the null hypothesis is set as: The empirical distribution is equal to the best candidate 

within the respective parametric family of distributions. A large p-value fails to reject the 

null hypothesis suggesting that the candidate distribution might be appropriate to fit the 

sample data. However, these goodness-of-fit tests are not optimal for comparing the tail 

behavior of the distributions. Therefore, also QQ plots have been generated. 

The QQ plot provides the visual evidence for the goodness-of-fit of the candidate 

distribution. If F̂ is a reasonable model for the population distribution, the quantile plot 

should be close to the unit diagonal. Since there is particular interest in the goodness-of-

fit of the tail part risk rather than the whole distribution, the QQ plots may be more 

appropriate than the standard tests when assessing the performance of the tail part 

estimation. 

Based on the standard goodness-of-fit tests and QQ plot, we can rank the 

appropriateness of the four distributions in fitting the rainfall series for each region. The 

following example illustrates how to rank alternative distributions for the rainfall series 

using the region of WMPRA. The plot of alternative distributions is shown in Figure 1. 

The statistics of standard goodness-of-fit tests are reported in Table 3.  QQ plots of 

alternative distributions are provided in Figure 2. 

Both the QQ plot and the standard goodness-of-fit tests suggest that the beta 

distribution should be the most appropriate candidate in modeling the rainfall series since 
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all four tests fail to reject the null hypothesis at a 10% significant level and the quantiles 

plot is almost an ideal unit diagonal. The Weibull distribution should be considered 

second after the beta distribution. From the goodness-of-fit tests and the QQ plots, the 

lognormal and the gamma distribution both appear to be poor candidates for fitting the 

rainfall series at the region of WMPRA. The tail behavior that we see in the QQ plot 

suggests however that the gamma distribution still provides a slightly better fit than the 

lognormal distribution. 

After we compare the standard goodness-of-fit tests and QQ plots of these 

alternative distributions on a region-by-region basis, the summary of the number of times 

each candidate ranked first through fourth in terms of goodness-of-fit tests and QQ plot, 

along with a weighted average rank and the rank of average, are shown at Table 4. 

The results confirm that the appropriate distribution differs across regions and the 

Weibull distributions fit overall the best in the majority of regions (5 in the first rank and 

9 in the second rank of 14 regions, the weighted average of rank is 2.3). The fitting 

performance is nearly the same for the gamma and beta distribution. The gamma ranks 

first in 6 regions and third in 8 regions while the beta has a diversified result, ranking first 

in 3 regions, second in 5 regions, third in 4 regions, and fourth in 2 regions. Generally, 

the gamma out-performs the beta distribution and takes the overall second position. The 

lognormal distribution is much inferior to the other three candidates and ranks only third 

in 2 regions and fourth in most regions with a weighted average of 5.4. 

The results are not surprising considering the microclimate pattern across regions. 

Actually, Sherrick, et al. (2004) also find similar results when using alternative 

distributions in modeling corn and soybeans in the United States. Their results suggest 
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that the Weibull and beta distributions are overall ranked first and second in fitting corn 

yield and the logistic and Weibull distributions perform first and second in modeling 

soybean yield for selected farms at the University of Illinois. 

Distributional choice has a tremendous impact on the risk assessment and the 

selection of an appropriate underlying distribution can directly determine the economic 

effectiveness of risk hedging. Since the appropriate distribution differs across regions due 

to microclimate patterns, it might be best to find an appropriate candidate for each region 

based on the specification tests. However, such a method is time-consuming and costly 

for a large area. For example, crop-yield distributional modeling involves thousands of 

counties in the United States and rainfall series estimation includes hundreds of regions 

in most developing countries. Therefore, it is common to adopt the overall best 

distribution used in current crop insurance programs and weather index design. 

Unfortunately, even the overall best distribution can lead to misleading risk assessments 

and inaccurate premium ratemakings in some regions. For example, the Weibull 

distribution ranked best overall but only fitted best in 5 regions. We might lose some 

efficiency in the other 9 regions when applying the Weibull distribution to model the 

rainfall series across regions. 

Fitting the POT Model 

The EVT model is considered a promising alternative when modeling tail risk and 

can be applied in weather risk modeling when designing a weather-based contingent 

claim. In this part, the POT model is used to model the excess rainfall risk and the GPD is 

chosen as the candidate distribution.  
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First, the threshold (u) is decided, based on the mean residual plot on a region-by-

region basis. As discussed earlier, an ideal mean excess plot should be approximately a 

straight line against the threshold. Next, the scale and shape parameters are estimated by 

the maximum likelihood method, based on the procedures provided above. Finally, a 

variety of statistical techniques, such as the PP plot, the QQ plot, the return level, and the 

density function, are plotted to check the appropriateness of the GPD in modeling excess 

rainfall. The parameters of GPD across regions are provided in Table 5. 

Since the estimated shape parameter is 0ˆ <ξ for all regions, the excess monthly 

rainfall follows the type III class of extreme value distribution, that is, the Weibull 

distribution. The various diagnostic plots for assessing the appropriateness of the GPD 

model fitted to the rainfall data across regions. None of these plots calls into question the 

validity of the fitted models. 

Weather Index Design and Premiums Ratemaking 

A weather derivative is a contract between two parties that stipulates how 

payment will be exchanged between the parties depending on certain meteorological 

conditions during the contract period. Zeng (2000) suggested that seven parameters 

should be specified for a weather derivative contract: 1) Contract type (call or put); 2) 

Contract period; 3) An official weather station from which the meteorological record is 

obtained; 4) Definition of the weather index underlying the contract; 5) Strike; 6) Tick or 

constant payment for a linear or binary payment scheme; 7) Premium. 

Weather-based contingent claims provide a cross-hedging mechanism against the 

variability of a firm’s revenue or costs. For example, extreme heat or excess humidity can 

cause increased death for livestock and/or higher cooling costs. Therefore, a contingent 
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claim based on THI (temperature-humidity-index) can provide a viable, though not 

perfect, cross-hedging mechanism for livestock producers. 

The contract should have a relatively simple structure but be flexible enough to 

capture adequate coverage and protection. In this study, the design of the weather index 

follows the European precipitation options proposed by Skees and Zeuli (1999) but it is 

in the form of call options, that is, indemnity payments are triggered when the actual 

monthly precipitation is above the pre-specified strike. The indemnity function is given 

by  

(9) )0),(()~(
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where cx is the the predetermined trigger for obtaining the indemnity. and θ  is the 

the liability, that is, the maximum possible indemnity. 

To formalize this study, the strike cx is defined as a fraction of the proven 

precipitation level, x 5, that is,  
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The available fractions of proven precipitation vary from 1.2 to 1.5 in this study. 

The pure premium rate is the standard basis for establishing insurance actuarial policy 

and can be calculated based on the expected loss cost using a time series of historical 

data. Here, the break-even premium rate can be calculated as the average of the 

percentage shortfalls above the strike following Skees, Barnett and Black (1997) and Ker 

and Coble (2003). 
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5 In this study, the mean of monthly rainfall during 1871 to 2001 is chosen as the proven precipitation level. 
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where the expectation operator and probability measure are taken with respect to 

the underlying distribution (i=1 means the beta distribution, i=2 means the gamma 

distribution, i=3 means the lognormal distribution, i=4 denotes the Weibull distribution, 

and i=5 denotes GPD).  

Therefore, given a risk distribution and strike level, the pure premium rates can be 

easily obtained from Eqn (11). Table 6 reports actuarially fair premium rates estimated 

for each region across five rainfall distributions with varying strike levels. The paired t-

tests for equality of means of alternative parametric distributions and GPD are also 

provided in this table.  

Among the four alternative distributions, the Weibull distribution, the overall best 

fitting candidate, tends to have lower pure premium rates while the lognormal 

distribution, the overall worst fitting candidate, tends to have higher premium rates. Due 

to the diversified performance of the beta and gamma distribution, the pure premium 

rates obtained from these two candidates are generally between the lowest level obtained 

from the Weibull distribution and the highest level obtained from the lognormal 

distribution. The results suggest that some parametric distributions might underestimate 

the tail risk (i.e., the Weibull distribution) while other might overestimate it (i.e., the 

lognormal distribution). On the other hand, the pure premium rates obtained from the 

GPD lie in-between those from the Weibull distribution and those from the beta and 

gamma distributions, suggesting that the GPD might be more appropriate in modeling tail 

part risk. However, further statistical tests are needed. 

The strike levels that trigger the indemnity payment vary when h equals 1.2, 1.3, 

1.4, and 1.5, respectively. The premium rates tend to be lower with a higher strike and 
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higher with a lower strike level. Furthermore, paired t-tests are performed where the GPD 

is chosen as the reference sample. The results show that the premium rates obtained from 

the Weibull distribution at h =1.5 and h=1.2, and the beta distribution at h=1.2 are 

insignificant from those obtained from the GPD. Others are all significant different than 

those obtained from the GPD. The results suggest that alternative candidates have 

significantly different performances in economic implications. 

Next, we compare the premium rates from the GPD and those from the first 

ranked candidate based on the goodness-of-fit test and the Q-Q plot. For each region, the 

pure premium rate based on the best candidate among the beta distribution, the gamma 

distribution, or the Weibull distribution, is chosen as the base case and compared with the 

performance of the GPD in modeling the tail risk. Nonparametric sign test and Wilcoxon 

signed rank test are applied to test the equality of means and Table 7 shows the results.  

The means and variability of pure premium rates from the GPD are very close to 

those from the best candidate across different strike levels. Furthermore, all of these tests 

fail to reject the null hypothesis of the equality of pure premium rates based on the GPD 

and the best candidate with a high p value, demonstrating that the GPD performs as good 

as the best standard parametric method, and it is effective and robust in modeling and 

assessing tail risk, and premium ratemaking  

Conclusion 

Accurate estimation of tail events may be of particular interest to decision makers. 

The EVT can be considered the-state-of-the-art procedure for estimating the downside 

risk of a distribution and provides promising potential for risk assessment and premium 

ratemaking of weather-based contingent claims. 
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The results also demonstrate that large differences in actuarially fair premium 

rates for a rainfall-based contingent claim can arise solely from the parameterization 

chosen to represent the underlying risk distributions and misspecification in the risk 

distribution (e.g., the lognormal distribution) may lead to economically significant errors 

in weather index premium ratemaking and assessment of expected risks.  

Furthermore, when modeling the tail risk, the GPD model is promising since it 

performs close to the best candidate chosen by different parametric distributions. What is 

evident from this study is that the distributional choice has a significant impact on rating 

and assessing weather-based contingent claims, and so the GPD model might be effective 

in modeling the tail risk. 

However, this study addresses a limited set of parametric distributions and only 

one potential weather-based contingent claim (the rainfall index). Future work could 

consider a wide set of distributional choices, especially nonparametric techniques, and 

demonstrate the effectiveness of the GPD in a general case. 
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 Table 1. Summary Statistics of Rainfall in Selected Regions of India 

  
N Mean Median Standard 

Deviation
Skewness Kurtosis Maximum Minimum

BHPLN 524 2592 2457 1098 0.440 -0.193 5949 355 
BHPLT 524 2750 2725 1051 0.340 0.273 7309 340 
COAPR 524 1905 1827 818 0.678 0.395 4894 382 
EMPRA 524 2983 2961 1325 0.139 -0.753 6780 177 
EUPRA 524 2269 2298 1151 0.271 -0.414 5845 109 
GNWBL 524 2887 2775 987 0.573 0.135 6158 700 
NASSM 524 3628 3648 1038 0.212 0.040 7307 845 
ORISS 524 2916 2842 1084 0.368 -0.218 6038 552 
SASSM 524 3919 3749 1107 0.591 0.393 7892 1531 
SHWBL 524 5014 4896 1655 0.444 -0.065 10129 1241 
TELNG 524 1784 1707 779 0.743 0.783 5107 255 
VDPBH 524 2357 2225 1068 0.388 -0.224 5969 170 
WMPRA 524 2283 2277 1175 0.307 -0.496 5824 108 
WUPPL 524 1915 1912 1142 0.244 -0.905 4949 4 
Average  2800 2736 1106 0.410 -0.089 6439 484 

Minimum  1784 1707 779 0.139 -0.905 4894 4 
Maximum   5014 4896 1655 0.743 0.783 10129 1531 

 
Table 2. Summary Statistics of Alternative Distributions in Selected Regions of 

India 

  Beta Distribution Gamma Distribution Lognormal Dist Weibull Distribution

  θ  α  β  α  β  μ  σ  α  β  
BHPLN 6246 2.87 3.99 5.07 511.11 7.76 0.48 2.54 2924.20 
BHPLT 7674 3.88 6.94 5.96 461.55 7.83 0.45 2.81 3085.90 
COAPR 5139 3.11 5.20 5.26 362.11 7.45 0.46 2.49 2151.00 
EMPRA 7119 2.55 3.55 4.13 721.74 7.87 0.55 2.42 3365.20 
EUPRA 6137 2.00 3.43 2.97 764.00 7.55 0.68 2.05 2554.80 
GNWBL 6466 4.26 5.21 8.44 341.93 7.91 0.36 3.12 3227.50 
NASSM 7672 5.84 6.48 11.33 320.09 8.15 0.31 3.80 4010.00 
ORISS 6340 3.41 3.95 6.64 439.44 7.90 0.41 2.91 3272.00 
SASSM 8287 5.92 6.53 12.67 309.41 8.23 0.29 3.72 4332.30 
SHWBL 10635 4.32 4.79 8.85 566.69 8.46 0.35 3.26 5592.90 
TELNG 5362 3.22 6.38 5.07 351.60 7.39 0.47 2.44 2015.00 
VDPBH 6267 2.64 4.36 4.15 567.72 7.64 0.54 2.35 2660.10 
WMPRA 6115 1.97 3.30 2.97 767.93 7.56 0.67 2.02 2573.10 
WUPPL 5196 1.38 2.40 1.96 979.06 7.28 0.89 1.64 2127.90 
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Table 3. Goodness-of-Fit Tests for Alternative Distributions in WMPRA 

 

  Tests Statistics P-Value 
Beta Kolmogorov-Smirnov D 0.0314 Pr>D >0.250 

 Cramer-von Mises W-Sq 0.0780 Pr>W-Sq 0.242 
 Anderson-Darling A-Sq 0.5204 Pr>A-Sq 0.2 
  Chi-Square Chi-Sq 12.5061 Pr>Chi-Sq 0.253 

Gamma Kolmogorov-Smirnov D 0.0771 Pr>D <0.001 
 Cramer-von Mises W-Sq 0.7494 Pr>W-Sq <0.001 
 Anderson-Darling A-Sq 4.4289 Pr>A-Sq <0.001 
  Chi-Square Chi-Sq 45.0614 Pr>Chi-Sq <0.001 

Lognormal Kolmogorov-Smirnov D 0.1012 Pr>D <0.010 
 Cramer-von Mises W-Sq 1.8238 Pr>W-Sq <0.005 
 Anderson-Darling A-Sq 10.8661 Pr>A-Sq <0.005 
  Chi-Square Chi-Sq 133.2238 Pr>Chi-Sq <0.001 

Weibull Cramer-von Mises W-Sq 0.2435 Pr>W-Sq <0.010 
 Anderson-Darling A-Sq 1.5594 Pr>A-Sq <0.010 
  Chi-Square Chi-Sq 18.0760 Pr>Chi-Sq 0.054 

 

Table 4. Rankings of Alternative Distributions 

  Alternative Distributions 
  Beta Gamma Lognormal Weibull 

1st 3 6 0 5 
2nd 5 0 0 9 
3rd 4 8 2 0 
4th 2 0 12 0 

Weighted 
Average 3.3 3 5.4 2.3 

Rank of 
Average 3 2 4 1 
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Table 5. The Parameter of GPD in Modeling Excess Rainfall across the Fourteen 

Regions 

 Generalized Pareto Distribution 
  u σ  ξ  

BHPLN 2500 1329.21 -0.3376 
BHPLT 3000 914.53 -0.1517 
COAPR 1800 885.10 -0.2080 
EMPRA 3000 1519.32 -0.3853 
EUPRA 2000 1383.37 -0.3278 
GNWBL 2500 1207.12 -0.2689 
NASSM 4000 747.14 -0.1106 
ORISS 2000 1800.78 -0.4205 
SASSM 3500 1348.45 -0.2461 
SHWBL 4000 2421.84 -0.3654 
TELNG 2000 683.34 -0.1092 
VDPBH 2000 1339.04 -0.3050 
WMPRA 2000 1539.36 -0.3774 
WUPPL 2000 1292.68 -0.4154 
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Table 6. Pure Premium Rate of Weather Index across Regions under Alternative 
Distributions at Varying Strikes 

  GPD Gamma Dist Beta Dist Lognormal Dist Weibull Dist 
BHPLN. h=1.2 0.0824 0.0862 0.0804 0.1067 0.0777 

h=1.3 0.0566 0.0595 0.0522 0.0791 0.0501 
h=1.4 0.0362 0.0409 0.0325 0.0592 0.0320 
h=1.5 0.0212 0.0285 0.0192 0.0447 0.0199 

BHPLT. h=1.2 0.0659 0.0748 0.0683 0.0961 0.0647 
h=1.3 0.0429 0.0503 0.0429 0.0697 0.0397 
h=1.4 0.0260 0.0335 0.0259 0.0511 0.0236 
h=1.5 0.0164 0.0225 0.0151 0.0377 0.0135 

COAPR. h=1.2 0.0818 0.0825 0.0829 0.0990 0.0807 
h=1.3 0.0546 0.0573 0.0542 0.0728 0.0530 
h=1.4 0.0384 0.0393 0.0346 0.0535 0.0340 
h=1.5 0.0232 0.0268 0.0213 0.0397 0.0213 

EMPRA. h=1.2 0.0918 0.0997 0.0839 0.1359 0.0829 
h=1.3 0.0625 0.0722 0.0550 0.1051 0.0553 
h=1.4 0.0387 0.0516 0.0350 0.0820 0.0359 
h=1.5 0.0228 0.0375 0.0210 0.0646 0.0230 

EUPRA. h=1.2 0.1090 0.1269 0.1089 0.1916 0.1059 
h=1.3 0.0763 0.0960 0.0770 0.1553 0.0753 
h=1.4 0.0533 0.0736 0.0533 0.1276 0.0532 
h=1.5 0.0359 0.0553 0.0360 0.1045 0.0375 

GNWBL. h=1.2 0.0564 0.0554 0.0544 0.0635 0.0537 
h=1.3 0.0349 0.0342 0.0310 0.0418 0.0308 
h=1.4 0.0200 0.0209 0.0164 0.0277 0.0167 
h=1.5 0.0114 0.0128 0.0079 0.0188 0.0087 

NASSM. h=1.2 0.0341 0.0413 0.0367 0.0492 0.0355 
h=1.3 0.0170 0.0236 0.0180 0.0304 0.0172 
h=1.4 0.0087 0.0131 0.0079 0.0188 0.0075 
h=1.5 0.0039 0.0071 0.0030 0.0115 0.0029 

ORISS. h=1.2 0.0669 0.0684 0.0636 0.0837 0.0614 
h=1.3 0.0416 0.0452 0.0381 0.0591 0.0370 
h=1.4 0.0259 0.0292 0.0212 0.0419 0.0214 
h=1.5 0.0133 0.0190 0.0111 0.0302 0.0117 

SASSM. h=1.2 0.0380 0.0368 0.0371 0.0414 0.0372 
h=1.3 0.0221 0.0203 0.0181 0.0242 0.0183 
h=1.4 0.0113 0.0106 0.0078 0.0142 0.0081 
h=1.5 0.0054 0.0055 0.0029 0.0082 0.0032 

SHWBL. h=1.2 0.0505 0.0527 0.0504 0.0611 0.0495 
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h=1.3 0.0303 0.0321 0.0276 0.0406 0.0275 
h=1.4 0.0189 0.0196 0.0138 0.0267 0.0144 
h=1.5 0.0084 0.0116 0.0062 0.0175 0.0070 

TELNG. h=1.2 0.0800 0.0853 0.0854 0.1033 0.0829 
h=1.3 0.0563 0.0595 0.0570 0.0759 0.0548 
h=1.4 0.0394 0.0412 0.0369 0.0567 0.0359 
h=1.5 0.0255 0.0284 0.0234 0.0422 0.0228 

VDPBH. h=1.2 0.0921 0.0994 0.0903 0.1345 0.0870 
h=1.3 0.0668 0.0718 0.0608 0.1027 0.0586 
h=1.4 0.0435 0.0519 0.0397 0.0800 0.0388 
h=1.5 0.0299 0.0372 0.0256 0.0632 0.0254 

WMPRA. h=1.2 0.1205 0.1275 0.1114 0.1866 0.1082 
h=1.3 0.0839 0.0964 0.0786 0.1513 0.0776 
h=1.4 0.0590 0.0723 0.0548 0.1222 0.0550 
h=1.5 0.0385 0.0553 0.0370 0.1010 0.0389 

WUPPL. h=1.2 0.1323 0.1691 0.1368 0.3047 0.1409 
h=1.3 0.0973 0.1341 0.1010 0.2597 0.1079 
h=1.4 0.0751 0.1066 0.0744 0.2224 0.0822 
h=1.5 0.0541 0.0852 0.0534 0.1904 0.0623 

h=1.2. Mean 0.0787 0.0861 0.0779 0.1184 0.0763 
Std. Dev. 0.0293 0.0368 0.0288 0.0706 0.0292 

Min 0.0341 0.0368 0.0367 0.0414 0.0355 
Max 0.1323 0.1691 0.1368 0.3047 0.1409 

h=1.3. Mean 0.0531 0.0609 0.0508 0.0906 0.0502 
Std. Dev. 0.0234 0.0317 0.0239 0.0631 0.0250 

Min 0.0170 0.0203 0.0180 0.0242 0.0172 
Max 0.0973 0.1341 0.1010 0.2597 0.1079 

h=1.4. Mean 0.0353 0.0432 0.0324 0.0703 0.0328 
Std. Dev. 0.0187 0.0267 0.0191 0.0559 0.0205 

Min 0.0087 0.0106 0.0078 0.0142 0.0075 
Max 0.0751 0.1066 0.0744 0.2224 0.0822 

h=1.5. Mean 0.0221 0.0309 0.0202 0.0553 0.0213 
Std. Dev. 0.0141 0.0222 0.0145 0.0490 0.0163 

Min 0.0039 0.0055 0.0029 0.0082 0.0029 
Max 0.0541 0.0852 0.0534 0.1904 0.0623 

Paired t-test      
h=1.2  2.8438** -0.7391 3.3454*** -1.7576 
h=1.3  2.9118** -2.6339 3.3207*** -2.3237 
h=1.4  3.2401 -6.2201 3.3816*** -3.1136 
h=1.5   3.7676*** -6.4180 3.4638*** -1.0549 

*: Significant at 10% level;  **: Significant at 5% level;  ***: Significant at 1% level 
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Table 7. The Actuarial Performance of the GPD and the Best Candidate 

 h=1.2 h=1.3 h=1.4 h=1.5 
  Best GPD Best GPD Best GPD Best GPD 

BHPLN 0.0777 0.0824 0.0501 0.0566 0.0320 0.0362 0.0199 0.0212 
BHPLT 0.0647 0.0659 0.0397 0.0429 0.0236 0.0260 0.0135 0.0164 
COAPR 0.0825 0.0818 0.0573 0.0546 0.0393 0.0384 0.0268 0.0232 
EMPRA 0.0829 0.0918 0.0553 0.0625 0.0359 0.0387 0.0230 0.0228 
EUPRA 0.1089 0.1090 0.0770 0.0763 0.0533 0.0533 0.0360 0.0359 
GNWBL 0.0554 0.0564 0.0342 0.0349 0.0209 0.0200 0.0128 0.0114 
NASSM 0.0355 0.0341 0.0172 0.0170 0.0075 0.0087 0.0029 0.0039 
ORISS 0.0684 0.0669 0.0452 0.0416 0.0292 0.0259 0.0190 0.0133 
SASSM 0.0368 0.0380 0.0203 0.0221 0.0106 0.0113 0.0055 0.0054 
SHWBL 0.0527 0.0505 0.0321 0.0303 0.0196 0.0189 0.0116 0.0084 
TELNG 0.0853 0.0800 0.0595 0.0563 0.0412 0.0394 0.0284 0.0255 
VDPBH 0.0870 0.0921 0.0586 0.0668 0.0388 0.0435 0.0254 0.0299 
WMPRA 0.1114 0.1205 0.0786 0.0839 0.0548 0.0590 0.0370 0.0385 
WUPPL 0.1368 0.1323 0.1010 0.0973 0.0744 0.0751 0.0534 0.0541 

Mean 0.0776 0.0787 0.0519 0.0531 0.0344 0.0353 0.0225 0.0221 
Std. Dev. 0.0286 0.0293 0.0232 0.0234 0.0182 0.0187 0.0136 0.0141 

Min 0.0355 0.0341 0.0172 0.0170 0.0075 0.0087 0.0029 0.0039 
Max 0.1368 0.1323 0.1010 0.0973 0.0744 0.0751 0.0534 0.0541 

Paired Sign Test P-value 0.7905 P-value 0.7905 P-value 0.7905 P-value 0.4240 
Wixcoxon Test   0.6257   0.4631   0.2412   0.6698 
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Figure 1. Fitting Rainfall at WUPPL by Alternative Distributions in WMPRA 
 
 

 
 

Figure 2. QQ-plots of Alternative Distributions for Rainfall in WMPRA 

 


