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Abstract 
 
Dynamic relationships between three classes of wheat are investigated using threshold 
VAR models incorporating the effects of protein availability.  Changes in the stock of 
protein are found to generate significant impulse responses in the price of hard red spring 
wheat and hard red winter wheat but not soft red wheat.  These impulse responses to 
identical changes in protein stocks are larger when the absolute deviation of protein 
stocks from normal levels are large.  Shocks to the prices of individual classes of wheat 
result in complex impulse responses in the prices of the other wheats.  Notably, however, 
a shock to the price of hard red winter weak appears to result in little or no impulse 
response in the price of hard spring wheat, though the opposite is not true.  

 



Harvest-Time Protein Shocks and 
Price Adjustment in U.S. Wheat Markets 

 
 

 Agricultural commodities such as wheat are typically heterogeneous, with quality 

characteristics that differ across space, time, and variety.  The extent to which market 

prices account for such quality differences has been an important issue to the overall 

efficiency of markets for agricultural commodities.  The benefits associated with accurate 

measurement of qualities by buyers and sellers in a market must be weighed against the 

potential costs associated with such an accurate quality assessment.  Some characteristics 

(foreign matter, shrunken and broken kernels, etc.) are easy to measure while others 

(valorimeter and farinograph measures) are much more difficult to uncover.   

 Protein content is one of the most basic quality characteristics shaping the 

potential utility of a particular class of wheat for various uses.  It plays such an important 

role in price interrelationships among different types and grades of wheat that it also 

forms the basis for U.S. standard variety grades.    For example, high protein wheat 

varieties such as dark northern spring and hard red winter typically command a price 

premium over wheat varieties with lower protein contents (for example, see Espinosa and 

Goodwin, 1991), and that the price premium varies over time almost surely in accord 

with shifts in supply and demand for that attribute (Parcell and Stiegert, 1998), as implied 

by the theoretical hedonic pricing framework developed by Rosen (1974).   

 Several studies have examined the dynamics of domestic and international wheat 

price relationships (see, for example, Goodwin and Schroeder, 1991; International Trade 

Commission, 1994; Mohanty, Meyers, and Smith,1999).  However, relatively little 

attention has been directed toward interrelationships among different types of wheat 



prices and quality shocks that may relate to the aggregate level of quality.  Failure to 

account for these shocks is likely to distort estimates of these relationships and provide 

misleading assessments of the extent to which prices of different types of wheat related to 

one another and the extent to which different types of wheat are substitutes for one 

another.1    

In this paper, we are primarily concerned with the aggregate market for protein 

(wheat gluten) and its effect of price relationships among different classes of wheat.  We 

consider multivariate time-series models containing three classes of wheat—hard red 

spring, hard red winter, and soft red winter.  We are interested in quantifying the 

relationships between the protein content associated with each year’s harvest for each 

type of wheat and the differentials (reflecting protein supply and demand effects) 

between various classes of wheat.  Monthly price data are used in conjunction new data 

constructed by the authors that reports the average (aggregate) protein content associated 

with each year’s harvest.  The relationships between wheat prices and protein content 

may vary substantially from year-to-year, depending on overall wheat yields and other 

quality factors.2  Further, protein content in one year may be affected by the 

characteristics of the market for protein in preceding years, since grain stocks are held 

from year to year and production practices and variety choices may be important 

considerations in the realized protein content of a wheat crop.   

                                            
1
 The issue of elasticities of substitution among wheat classes has been addressed by two 

recent studies by Marsh and Barnes and Shields using structural models of derived demand 

estimated with annual data.  Both studies, while providing different estimates, find that 

wheat is not just wheat, in the sense that Elasticities of substitution among different classes 

of wheat are by no means very large. 
2
 Parcell and Steigert (1998) and Stiegert and Blanc both report that the effect of a marginal 

increase in protein on protein premiums varies among different classes of wheat such as 

hard red spring, hard red winter and soft red winter. 



 We use nonstructural time-series models that also allow for costly adjustment by 

incorporating threshold procedures to evaluate the effects of protein content shocks on 

the time paths of wheat prices.  We account for protein availability effects on price 

interrelationships from year to year and quantify the extent to which shocks in the levels 

of protein in a particular type of wheat affect the differentials in wheat prices among the 

individual wheat classes.  Our analysis uses dynamic impulse responses to track price 

responses to shocks in the protein market and other shocks to specifics wheat class prices.   

The analysis provides new insights about the substitutability of different classes 

of wheat among end uses, a critical issue in recent trade dispute cases.   For example, if 

hard red spring wheat and hard red winter wheat are perfect or very close substitutes, as 

suggested by Canadian Wheat Board expert witnesses in testimony before the 

International Trade Commission on behalf of the Canadian Wheat Board in September, 

2003, then hard red winter prices are likely to respond rapidly in similar ways to a shock 

in hard red spring prices, and vice versa.   This does not appear to be the case. 

The paper is organized as follows.  Empirical methods are discussed in the next 

section.  The data are then described and empirical results are presented and discussed.   

 

Empirical Methods 

 The primary objective of the empirical analysis is to evaluate the extent to which 

dynamic relationships among prices for different classes of wheat are affected by shocks 

to the quality of the overall U.S. wheat harvest.  In particular, we are interested in the role 

played by protein content—one of the major determinants of the quality and functionality 

of different wheats for different uses.  Certainly a wide variety of wheat characteristics 



may be pertinent to the quality of any given quantity of wheat.  These include factors 

such as variometer and farinograph measures, foreign materials, falling numbers, ash 

content and so forth3.  However, in terms of the aggregate wheat market and the price 

relationships between different types of wheats, both the results of several hedonic 

studies and industry pricing practices indicate that each wheat’s harvest protein content is 

likely to be the most relevant factor influencing dynamic relationships among the prices 

of different types of wheat.   

 In the spirit of the relatively extensive literature that has addressed these issues, 

we adopt a standard vector autoregression (VAR) model that includes prices of the three 

major wheats—Dark Northern Spring (DNS) in Minneapolis, Hard Red Winter (HRW) in 

Kansas City, and Soft Red Winter (SRW) in Chicago.  DNS and HRW wheats typically 

have much higher protein contents and are directed toward end-uses that require stronger 

gluten content (e.g., breads).  We also include a measure of the overall protein content 

implicit in stocks at any point in time.  Our specific measure of this protein content 

variable is described in detail below.   

 A standard VAR model can be written as: 

t t ty X e= Γ + , 

where ty  is a vector of endogenous variables for which dynamic adjustment paths are to 

be evaluated, Γ is a matrix of parameters to be estimated, te  is a vector of random error 

terms, and 1[1, ,..., , ]t t t j tX y y x− −=  where tx  is a vector of other exogenous factors.   

                                            
3
 See Espinosa and Goodwin for a detailed discussion of how different quality factors are related to wheat 
prices. 



 In addition to estimating a simple VAR model, we are interested in considering 

the potential for nonlinearities in the underlying relationships represented by the VAR 

model.  To this end, we appeal to recent developments in the time series literature that 

consider nonlinearities in the relationships inherent in nonstructural VAR type models.  

We hypothesize that adjustments to shocks in the inherent qualities of wheat by end-users 

(e.g., bakers, millers, and food processors) are costly.  In particular, most production 

processes are tightly calibrated and have specific quality requirements.  End-users may be 

able to make adjustments in production processes, though these adjustments are likely 

require significant technological modifications and to be costly.4   

To capture these effects, we utilize a threshold modification to the standard VAR 

modeling framework.  In particular, we allow the underlying structure of the model 

(represented by the nonstructural, reduced-form parameters of the VAR system of 

equations) to vary according to implied protein availability in the market.  In particular, 

we consider a threshold defined by deviations from normal levels of protein in the 

market.  The “normal” level of protein is defined by using a regression of protein 

availability on a third-order fourier series expansion, which is intended to capture the 

large degree of seasonality that accompanies the wheat harvests and subsequent 

adjustments to stocks.   

                                            
4
 This is widely recognized by the milling industry.  In the September 2003 International 

Trade Commission (ITC) antidumping hearings with respect to Canadian dumping of hard 

red spring wheat and durum wheat, in oral testimony before the ITC U.S. milling industry 

executives indicated that they tended to determine blends of different wheat at the beginning 

of each marketing year just after harvest once the quality characteristics of different wheat 

classes were known. Thereafter, they were generally reluctant to change those blends. 



We define the “normal” level of protein (given by a function f(t) consisting of a 

fourier series expansion) by ˆ ( )p f t= .  Departures from normal levels are therefore 

determined as: 

    Pt -   f(t)  =  vt  

The explicit definition of the threshold is given by c, where the switch in regimes is 

triggered when the departures from normal levels of protein exceed c in absolute value.  

In other words, two alternative regimes are defined by the absolute value of tv .  The 

regime switching model is thus given by: 

(1)

(2)

| |

| |
t t

t

t t

X if c
y

X if c

ν
ν

Γ ≤= 
Γ >

, 

where ( )iΓ  represents the parameter estimates associated with the ith regime and c is the 

unknown threshold parameter.  An alternative representation of this model is as follows: 

(1) (2)(1 ) ,ty δ δ= − Γ + Γ  

where δ =1 if | |t cν ≤  and is zero otherwise.   

 Several alternative threshold modeling procedures have been developed.  Here we 

utilize grid search procedures to find the threshold value, c, that minimizes the log of the 

determinant of the residual covariance matrix, which is equivalent to maximizing a 

normal likelihood function.  We constrain the grid search procedures to require each 

regime to have at least twenty-five observations.  The parameters describing the two 

alternative regimes are estimated conditional on the optimal threshold values.   

 Once the parameters of the standard and regime switching VAR models have 

been estimated, standard methods of inference can be used to evaluate the relationships 

among the prices and protein variable.  Here we utilize standard impulse response 



functions to evaluate the dynamic relationships among wheat class prices implied by the 

alternative parameters.  In threshold models, several alternative versions of the impulse 

responses could be evaluated because in those models, impulse responses may not be 

unique for alternative observations or sizes of shocks.  Potter’s nonlinear impulse 

response analysis procedures of Potter can be used to evaluate the responses at a 

particular observation and allow for switching among regimes over the period of the 

response.  Alternatively, impulses could be calculated at every observation and then mean 

responses or some other summary measure could be reported.  Finally, the responses 

could be evaluated at each alternative regime with no shifting between regimes allowed 

during the response.  We adopt the latter approach in that it yields the clearest inferences 

regarding the differences in regimes.   

 

Data and Empirical Results 

 We use monthly averages of daily cash prices for three alternative classes of 

wheat—DNS in Minneapolis, HRW in Kansas City, and SRW in Chicago.  The price 

data were collected from the Bridge database.  Average protein content for all classes of 

U.S. wheat (HRW, DNS, SRW, durum, and white wheats) for each crop year were 

provided by U.S. Wheat Associates Grain Quality Reports, published annually.  

Quarterly stocks data were obtained from unpublished NASS data.   

We calculated an aggregate weighted average protein content for the aggregate 

U.S. wheat harvest each crop year using USDA statistics on production for each class in 

each year to form weights.  The quarterly stocks data were multiplied by the protein 

content of the crop to obtain “protein stocks” for each quarter of the year.  We then 



regressed this protein stocks variable on the terms of a third order Fourier series 

expansion.  The data cover the 1989-2003 crop years.   

The implied pattern of seasonality in protein is illustrated in Figure 1.  Note the 

presence of a large increase with the winter wheat harvest in June and July and then a 

second smaller increase that occurs with the spring wheat harvest in the late fall.  

Deviations from normal protein levels are then given by the deviations from the seasonal 

patterns indicated in Figure 1.  We then utilize cubic spline smoothing to interpolate the 

quarterly protein stock measures to monthly data.  Such interpolation is most likely to 

adequately represent data at a higher frequency in cases where movements in the variable 

between observations are likely to be smooth and gradual.  This is certainly the case for a 

highly aggregated variable such as the total protein stocks implied for the aggregate U.S. 

market.  The observed and interpolated protein stocks series are illustrated in Figure 2.  

The blocks represent observed data while the line represents the interpolated data used to 

covert from quarterly to monthly frequencies.   

Table 1 presents parameter estimates for a standard VAR model.  Parameter 

estimates for nonstructural models of this form are usually of limited interest and 

inferences are more efficiently extracted from impulse responses.  However, the 

coefficients on the protein stocks variable are certainly of interest in their own right.  The 

coefficients are negative in every case, suggesting that above-normal stocks of protein are 

likely to have a depressing effect on prices for each class of wheat.  The coefficient is 

largest in the case of the Kansas City hard red winter price.  The negative effect is also 

large for the Minneapolis hard red spring price.  The effect for soft wheat prices in 

Chicago is much smaller and is not statistically significant.  These results are consistent 



with a priori expectations.  They imply that positive shocks to the aggregate protein 

content of wheat in the U.S. market have negative effects on hard red winter and hard red 

spring wheat prices—high protein wheats generally directed to uses demanding a high 

gluten content.  In contrast, the effect is not statistically significant in the case of soft red 

winter wheat in Chicago.  Soft wheats are typically much lower in protein content and are 

directed toward uses that call for lower gluten wheats (e.g., cakes and crackers rather than 

bread).   

Impulse responses for the standard VAR model are presented in Figures 3-6.  

Figure 3 illustrates the dynamic paths of adjustment in prices to a positive one-unit shock 

to the protein stocks variable.  The largest impact is realized by the Kansas City price—a 

result entirely consistent with a simple consideration of the VAR model protein 

coefficients reported in Table 1.  The impulse indicates that a one unit increase in protein 

generates a response of a 42 cent decrease in the Kansas City per bushel price and a 42 

cent decrease in the Minneapolis per bushel price.  In contrast, the soft wheat price in 

Chicago shows only a small negative response to the same protein shock.  In every case, 

the largest response occurs two months after the shock, and that responses take ten or 

more months to die out.  This suggests that end users are likely to be somewhat slow to 

adjust to protein shocks and that market effects from such shocks persist for several 

months.  This finding seems to be consistent with statements by U.S. millers at the 2003 

ITC hearings on CWB dumping that they tend to determine blends of different wheats for 

milling on an annual marketing year basis after harvest and to be relatively unresponsive 

to price changes.   



Adjustments to price shocks are modest once protein shocks are accounted for.  

Minneapolis and Kansas City prices appear to be more closely linked that either market is 

with Chicago.  The results appear to imply a price leadership role for the Minneapolis 

market in the Kansas City-Minneapolis relationships.  An innovation in the Kansas City 

price results in almost no impulse response in the Minneapolis price while an innovation 

the Minneapolis price results in a similar though smaller adjustment in the Kansas City 

price that peters out after about 6 months. 

As we have noted, price adjustment patterns may reflect adjustment costs 

associated with changes in production technologies that may be needed to respond to 

substantial changes in wheat protein availability.  Table 2 reports estimates from a 

threshold VAR model that allows shifting between regimes according to the size of 

shocks (in absolute value) to the overall protein stocks available in the market.  The 

optimal threshold has a value of 0.1659.  The band implied by this threshold that defines 

alternative regimes is illustrated in Figure 2.  As one would expect, switching among 

regimes is infrequent, reflecting the fact that the overall availability of protein in the 

market is a slowly adjusting variable.  This implies that the market tends to remain in a 

regime for an extended period of time rather than jumping back and forth on a month to 

month basis between the alternative regimes.   

Protein stocks generally have larger (more negative) effects on prices in the 

“outside” regime, which corresponds to periods of large deviations from normal levels of 

protein.  This is to be expected in that, to the extent that costly adjustments underlie the 

price relationships, such adjustments are more likely to be undertaken and are likely to be 

more extreme when deviations from normal protein levels are large.  Again, the largest 



effects are implied for Kansas City (hard red winter) wheat prices.  Large responses are 

also implied for Minneapolis prices, although the adjustments are somewhat smaller than 

those implied for the hard red winter prices.  This is not surprising in that the quantity of 

hard red winter wheat produced in the U.S. is usually about twice as large as the quantity 

of hard red spring wheat and that hard red winter is therefore a more prominent source of 

aggregate protein.   

Impulse responses for the alternative regimes are presented in Figures 7-11.  

Figures 7 and 8, which illustrate price responses to protein shocks in the alternative 

regimes, are especially striking.  A much large response to a one unit shock to protein is 

implied by the outside regime parameters.  When deviations from normal protein levels 

are more modest, prices scarcely react at all.  However, significant adjustments occur 

when deviations from normal protein levels are large.  This result is consistent with our 

hypothesis that large changes in protein may have more significant effects on prices than 

when protein shocks are small.5   

Price adjustments are similar to those found for the standard VAR model, though 

again a much larger degree of price responsiveness is implied in the outside regime.  This 

suggests that wheat prices are more responsive to shocks in other markets when protein 

content is above- or below-normal.  However, the impulse responses to do imply that 

when the price of one class of wheat is shocked the prices of other wheat classes adjust in 

very similar ways.  This suggests that wheat is not just wheat and that soft red winter is 

                                            
5
 Note that our terminology may be somewhat confusing here.  All impulse response 

diagrams illustrate responses to equivalent one-unit shocks.  However, the regimes are 

defined by the size of the protein shock.  We could have presented shocks that differed in 

terms of the size of the shocks in alternative regimes.  In such a case, the differences in 

impulse responses would be exaggerated.  Comparing the impulses at a common level of 

shock allows a clearer view of how the underlying structures of the models differ across 

regimes.   



by no means a perfect substitute for hard red winter or hard red spring.  Similarly, the 

threshold model results also suggest that cross market linkages between hard red spring 

wheat and hard red winter wheat are complex. 

 

Conclusion 

This study has utilized new data and innovative econometric techniques to address a 

longstanding issue -  the dynamic relationship between the prices of different classes of 

wheat.  A key data innovation was the development and utilization of a measure of the 

aggregate stock of protein in the U.S. wheat crop.  Data on average protein content by 

class of wheat was combined with USDA statistics on production by class and quarterly 

stock data to obtain protein stocks for each quarter of the year.  A third order Fourier 

expansion was then utilized to obtain estimates of normal protein levels that accounted 

for quarterly seasonal effects.  The quarterly data were then interpolated using cubic 

splines to obtain month-by-month estimates of protein stocks.  

A key econometric and modeling innovation with respect to wheat price dynamics 

has been the utilization of a threshold modification of the VAR  model to account for 

potential adjustment costs associated with changing use patterns of different classes of 

wheat.   The results from the estimated threshold variant of the VAR model were also 

compared with those from a standard VAR model in which adjustment costs are ignored. 

The major findings of the research are as follows.  In the standard VAR model, 

positive one unit shocks to protein stocks has the largest and statistically significant 

negative effect on the Kansas City hard red winter price and a  still large, but smaller, 



effect on the Minneapolis hard red spring price, as measured by impulse responses.  The 

impulse response of the Chicago soft red price was not statistically significant and small.  

Similar effects were identified in the threshold model in which two regimes were 

identified.  The first “inside” regime is one in which protein levels did not deviate very 

much in absolute terms (either up or down) from normal seasonal levels.  The second 

“outside” regime is one in which protein levels did deviate substantially.  The range 

within which protein levels were deemed to be normal was computed in the econometric 

estimation procedure.  In the threshold models, the effects of a unit change in the protein 

stock level were qualitatively similar to those reported for the standard VAR model. 

When the absolute deviation of protein levels was small (the “inside” regime), price 

impulse responses were also small, and when the absolute deviation of protein levels was 

large (the “outside” regime) the impulse responses were much larger.  In the outside 

regime, the impulse response of the Kansas City hard red winter price was much larger 

than the impulse response of the Minneapolis hard red spring price.  These results are 

consistent with the hypothesis that adjustment costs associated with buyers (millers, etc) 

of different wheats changing their patterns of use are relatively large.   

In the threshold models, the effects of price shocks for a specific class of wheat 

also depend on the regime.  However, one interesting result is that shocks to the Kansas 

City hard red winter price result in almost no impulse responses on the part of 

Minneapolis Hard red spring prices, although shocks to the Minneapolis price do 

generate a somewhat similar impulse response on the part of the Kansas City price.  In 

addition, an exogenous shock to the Chicago soft red price generates very weak impulse 



responses in the Minneapolis price, although somewhat stronger impulse responses in the 

Kansas City price. 

These results also provide some further insights about a long-standing argument 

between the Canadian Wheat Board and U.S. wheat producers.  Fairly consistently, in a 

variety of wheat trade cases brought before the U.S. ITC between 1992 and 2004, the 

CWB has claimed that wheat is just wheat and, in particular, hard red winter and hard red 

spring are almost perfect substitutes for one another.  The evidence from this study tends 

to suggest that such is not the case.  The markets may be related but an exogenous shock 

in the price of hard red winter wheat does not generally result in a similar impulse 

response in the price of hard spring wheat.   

  

 

 



Table 1.  Standard VAR Model of Wheat Prices:  Parameter Estimates 

Dependent Explanatory  Parameter Standard t 
Variable Variable Estimate Error Ratio 

Chicago Price Constant 37.3687 17.1231 2.18 
 Protein Stocks (t) -20.7671 13.1919 -1.57 
 Chicago Price (t-1) 0.7734 0.1183 6.54 
 Kansas City Price (t-1) 0.2567 0.1234 2.08 
 Minneapolis Price (t-1) -0.0638 0.0922 -0.69 
 Chicago Price (t-2) 0.0341 0.1184 0.29 
 Kansas City Price (t-2) -0.1826 0.1220 -1.50 
 Minneapolis Price (t-2) 0.0585 0.0912 0.64 
Kansas City Price Constant 67.6815 17.8796 3.79 
 Protein Stocks (t) -41.1863 13.7747 -2.99 
 Chicago Price (t-1) -0.0504 0.1235 -0.41 
 Kansas City Price (t-1) 1.0444 0.1288 8.11 
 Minneapolis Price (t-1) 0.0112 0.0962 0.12 
 Chicago Price (t-2) 0.0891 0.1237 0.72 
 Kansas City Price (t-2) -0.2491 0.1274 -1.96 
 Minneapolis Price (t-2) -0.0217 0.0952 -0.23 
Minneapolis Price  Constant 65.5465 19.3841 3.38 
 Protein Stocks (t) -33.5678 14.9338 -2.25 
 Chicago Price (t-1) -0.2288 0.1339 -1.71 
 Kansas City Price (t-1) 0.5022 0.1397 3.60 
 Minneapolis Price (t-1) 0.6614 0.1043 6.34 
 Chicago Price (t-2) 0.2000 0.1341 1.49 
 Kansas City Price (t-2) -0.4948 0.1381 -3.58 
  Minneapolis Price (t-2) 0.1993 0.1032 1.93 

 



Table 2.  Threshold Switching Regime Model Parameter Estimates 

  Outside Regime Inside Regime 
Dependent Explanatory  Parameter Standard t Parameter Standard t 
Variable Variable Estimate Error Ratio Estimate Error Ratio 

Chicago Price Constant 22.7792 19.0585 1.20 85.9199 36.7720 2.34 
 Protein Stocks (t) -11.4098 14.6109 -0.78 -13.1946 37.1174 -0.36 
 Chicago Price (t-1) 0.5035 0.1448 3.48 1.3042 0.2093 6.23 
 Kansas City Price (t-1) 0.6560 0.1614 4.07 -0.3652 0.2183 -1.67 
 Minneapolis Price (t-1) -0.1935 0.1357 -1.43 -0.0265 0.1213 -0.22 
 Chicago Price (t-2) 0.2188 0.1459 1.50 -0.2871 0.1926 -1.49 
 Kansas City Price (t-2) -0.4298 0.1633 -2.63 0.1911 0.1905 1.00 
 Minneapolis Price (t-2) 0.1451 0.1309 1.11 -0.0358 0.1229 -0.29 
Kansas City Price Constant 58.2909 19.5316 2.98 144.7974 37.6848 3.84 
 Protein Stocks (t) -37.0815 14.9736 -2.48 -20.1873 38.0387 -0.53 
 Chicago Price (t-1) -0.2723 0.1484 -1.84 0.6244 0.2145 2.91 
 Kansas City Price (t-1) 1.3526 0.1654 8.18 0.1662 0.2237 0.74 
 Minneapolis Price (t-1) -0.0438 0.1390 -0.31 0.0378 0.1243 0.30 
 Chicago Price (t-2) 0.2971 0.1496 1.99 -0.0868 0.1974 -0.44 
 Kansas City Price (t-2) -0.5197 0.1673 -3.11 -0.0640 0.1952 -0.33 
 Minneapolis Price (t-2) 0.0367 0.1341 0.27 -0.0371 0.1260 -0.29 
Minneapolis Price  Constant 57.6586 21.6677 2.66 106.6062 41.8062 2.55 
 Protein Stocks (t) -24.4373 16.6112 -1.47 -22.7985 42.1989 -0.54 
 Chicago Price (t-1) -0.4385 0.1646 -2.66 0.2421 0.2380 1.02 
 Kansas City Price (t-1) 0.8157 0.1835 4.45 -0.1928 0.2482 -0.78 
 Minneapolis Price (t-1) 0.6917 0.1542 4.48 0.5412 0.1379 3.92 
 Chicago Price (t-2) 0.3664 0.1659 2.21 0.0131 0.2190 0.06 
 Kansas City Price (t-2) -0.6722 0.1856 -3.62 -0.2158 0.2166 -1.00 
  Minneapolis Price (t-2) 0.0958 0.1488 0.64 0.3566 0.1398 2.55 

Threshold Parameter 0.1659     
Proportion of Observations 0.6278   0.3722   



Figure 1.  Estimated Seasonality in Protein Stocks Variable 
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Figure 2.  Actual and Interpolated Protein Stocks Variable 
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Figure 3.  Standard Impulse Responses to Protein Shocks 
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Figure 4.  Standard Impulse Responses to Chicago Price Shocks 
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Figure 5.  Standard Impulse Responses to Kansas City Price Shocks 
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Figure 6.  Standard Impulse Responses to Minneapolis Price Shocks 
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Figure 7.  Outside Regime Impulse Responses to Protein Shock 
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Figure 8.  Inside Regime Impulse Responses to Protein Shock 
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Figure 9.A.  Outside Regime Price Responses to Chicago Price Shocks 
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Figure 9.B. Inside Regime Price Responses to Chicago Price Shocks 
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Figure 10.A. Outside Impulse Responses to Kansas City Price Shocks 
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Figure 10.A. Inside Impulse Responses to Kansas City Price Shocks 
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Figure 11.A.  Outside Impulse Response to Minneapolis Price Shocks 
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Figure 11.B.  Inside Impulse Response to Minneapolis Price Shocks 
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