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Abstract

Conservation technology adoption behavior is frequently analyzed at the smallest unit of
production to capture important heterogeneity among adopters. Conclusions about firm-
level decisions are drawn from these microunit outcomes. However, there may be significant
intrafirm interactions that create a dependence among the microunits. This paper tests and
quantifies these effects. Using a unique dataset of agricultural water use in California, this
paper finds significant differences in water price elasticities of conservation technology adop-
tion between the standard model and models that accounts for the intrafirm interactions.
Keywords: conservation, technology adoption, agriculture, water resources, irrigation in-
trafirm behavior (JEL:Q16 Q25 Q28 Q55 L23)



1 Introduction

Because water resources are usually not allocated through markets, policy makers must de-

cide how to manage these resources. Conservation is an important part of water management

policy and can be achieved through adoption of water-conserving technologies. Although

profitable technologies are available, slow or incomplete adoption of these technologies is

often observed. One explanation for this gap in agriculture is that adopters are hetero-

geneous and face specific adoption constraints. To capture this heterogeneity and better

understand adoption, the literature models adoption at the microunit, the smallest unit of

production such as field or parcel on a farm. However, when adoption decisions are made

over many microunits, there may be important interactions among the microunit-level deci-

sions. In particular, decisions about technology adoption on one field may be influenced by

decisions made on all fields within a farm. This paper explores whether and to what extent

such intrafirm interactions impact of the adoption decision at the microunit and how these

interactions affect water conservation policy in agriculture.

Failing to account for interactions may bias estimates of the effect of policy incentives.

For example, suppose that a farmer has many fields and has an expertise in the water-

conserving technology. This expertise lowers the farm’s cost of adoption on the next field.

This farm may be more likely to adopt a water-conserving technology independent of policy

incentives, such as an increase in the cost of water or an adoption subsidy. Ignoring these

interactions may overstate the policy’s effect on conservation incentives because the observed

effect is confounded by microunit interactions.

The importance of social interactions in technology adoption has been widely documented

in the literature, particularly the effect of geographic neighbors on technology adoption.

However, the literature on conservation technology adoption has largely ignored intrafirm

interactions in adoption and often interprets microunit decisions as farm-level decisions.
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Whereas the more general literature on technology adoption has found significant intrafirm

interactions. Significant intrafirm effects may suggest economies of scale in conservation

technology adoption across fields, thus aggregating microunit response to changes in policy

incentives may mislead policy evaluation.

Intrafirm interaction in technology adoption has largely been ignored by the literature

because data linking microunits to firms is difficult to obtain. The dataset for this study

includes limited information about landowners and parcel-level land use. Interactions among

microunits are multidimensional, giving these interactions a spatial characteristic. By apply-

ing the tools of spatial econometrics, this paper is able to test and measure the effect intrafirm

interactions with limited information on land ownership across agricultural parcels.

Unlike much of the previous work, the dataset used in this paper identifies new technology

adoptions rather than technology utilization and links farms to microunits. Preliminary

estimates show that spatial interactions are significant and price elasticity of adoption is

0.94 in the standard model and only 0.67 in the spatial interactions model.

In the next section we review the literature on technology adoption in agriculture and

spatial and economic interactions. Section 3 decribes the study dataset and estimates spatial

autocorrelation models of technology adoption. Section 4 concludes to paper.

2 Literature Review

The importance of geography in technology adoption has a long history the social sciences

literature.(Sunding and Zilberman 2001) As geographic data has become more accessible,

geographic characteristics continue to be important factors in understanding adoption. How-

ever, interactions in technology adoption may also occur through more generally defined

economic proximity. (Hussler 2004; Moretti 2004)

Case 1992 develops a model that allows for spatial effects in farm technology adoption,
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specifically the sickle for harvesting rice. Using data from Indonesian farm households, neigh-

bors are specified as other farm households within the same district, thus defining related

units in terms of geographic proximity.1 She finds that neighbors, defined as geographically

contiguous units, have an important influence on farmer’s decisions to adopt new technologies

and notes that ignoring this influence can bias the estimated influence of policy instruments

adoption behavior.

Foster and Rosenzweig 1995 explore the influence of neighbors on learning of a new tech-

nology, high-yielding variety rice and wheat seeds. While the theoretical model presented in

Foster and Rosenzweig does not limit “neighbor” to geographic neighbors, in the empirical

application, neighbor effects are given by village experience, a geographic measure of prox-

imity. They find evidence of learning spillovers among neighbors, where more experienced

neighbors increase a farmer’s profitability. They also find that farmer’s tend to free-ride off

neighbor’s experimentation and learning.

The most obvious non-geographic source of interaction among microunits is belonging to

a common farming operation or firm. The literature on technology adoption has found that

firm-level effects have a strong influence on adoption of technology. A farmer’s decisions

on a particular field may be correlated with decision across the entire farming operation.

In making technology adoption and utilization decisions, human capital or specialized skills

available to the entire farm may affect the productivity of a particular production choice. For

example, McWilliams and Zilberman 1996 show that firm size and education are significant

factors in timing of technology adoption.

Other factors in the adoption and technology utilization decision, include how firms

handle uncertainty (Just and Zilberman 1983) or competition (Audretsch and Feldman 1996).

Costs of adoption and economies of scale across the entire operation may also affect the

1It may be argued that geographic proximity in the rural districts of Indonesia are also likely to exhibit
economic proximity. Case does not rule this out, she notes, “If information were available about the amount
of influence each household wields, this could be incorporated into the W [spatial weights] matrix.”
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choice of production technologies. Furthermore, the farmer’s personal characteristics may

be correlated across microunits owned by a particular farmer, and thus affect conservation

choices (Ise and Sunding 1998) If farm-level factors create significant correlation across micro-

units, care must be taken when interpreting outcomes from micro-level analysis.

3 Empirical Analysis

Following the literature on technology adoption in agriculture, I control for four types of

variables in our estimations of technology adoption: Profitability of adoption (P), capacity

for conservation (C), location quality (L), and owner characteristics (O).

I begin with the base model (Model 1) of technology adoption at the microunit-level,

ignoring owner and spatial interactions. The base model is

Y = XPβ +XCβ +XLβ + ε (1)

where the subscripts P, C, L indicate the matrix of independent variables in each of the four

categories given above. The errors in ε are random, homoscedastic, normally distributed

errors with E(ε) = 0, V ar(ε) = σ2
ε , and E(X ′ε) = 0. The dependent variable, Y is measured

as the percent of acreage in a parcel that has a new water conserving technology.

To control for owner-level characteristics that may produce interactions among microunits,

I add owner characteristics to Model 1 and estimate Model 2:

Y = XPβ +XCβ +XLβ +X0β + ε. (2)

To allow for spatial correlations, I follow Case 1991 and specify the following spatial autore-
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gressive model:

Y = ρWY +Xβ + u

= (I − ρW )−1XB + (I − ρW )−1)u

(3)

where W is the spatial weights matrix and ρ represents the extent of influence neighbors

have on one another. The errors u are given by

u = λWu+ ψ + ε

= (I − λW )−1ψ + (I − λW )−1)ε,

(4)

where λ is the extent of unobserved spatial correlation. The term ψ are farm-specific errors,

which I assume to be random.

The spatial weights matrix, W , is a formal representation of the spatial relationship of

all units to all other units. Each element in the spatial weights matrix (henceforth SWM) is

given by wij, where i and j indicate the microunits. Tests of spatial relationships compare

outcomes at each unit and relate these to every other unit according to the relationship

specified in the spatial weights matrix.

I test for interactions among the microunits by specifying three specification for W :

intrafirm interaction through common ownership, interaction from geographic proximity and

a combination of intrafirm and geographic proximity. In the first case, I construct a binary,

contiguity matrix based on ownership. In this spatial weights matrix, which I denote as

W1, wij is equal to 1 if microunits i and j have the same land owner, 0 otherwise. In the

distance spatial weights matrix (W2), wij is the inverse of the distance, measured in miles,

between each microunit i and j. I use inverse distance between the pair of microunits to

reflect that the influence between microunits declines as they become further apart. Finally

the elements of the owner-geography spatial weights matrix are equal to the inverse distance
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between i and j if they have the same owner, 0 otherwise. Similarly as in W2, I use inverse

distance in W3 to capture that the influence between commonly owned parcels may decline

as the geographic distance grows. In all three cases, I assume that wij = 0 if i = j.

The next subsection describes the data I use to estimate Models 1 and 2 and test these

models for spatial interactions. The subsequent subsections, I show that there are significant

spatial interactions in conservation technology adoption in our study area. I then estimate

the models and test the coefficients ρ and λ for significance. If ρ is significantly different

from zero, our model exhibits lagged spatial effects. If λ is significantly different from zero,

our model exhibits spatial error correlation. The model may also exhibit both types of

interactions. I estimate the appropriate models to allow for either lag effects, spatial errors

or both.

3.1 Data

The primary source of data on technology use come from annual land use surveys conducted

by the Arvin-Edison Water Storage District (Arvin-Edison) in Kern County, California.

These data provide observations of technology use on fields in the district. The observations

are taken and recorded by district technicians on an annual basis. The district provided

the data as ArcMap shapefiles for 1999-2002, thus facilitating computation of geographic

distances. I limit the data set to owners with at least two parcels. Our data set includes 531

observations in 2000, 2001 and 2002.

Although the data are collected at the field level, using the field as a unit of observation

is problematic in defining adoptions. Fields within parcels are often reconfigured and crop

and technology use shifted around the parcel, without behavioral changes in technology use.

To work around this problem, I aggregate technology use to the tax parcel. The size and

shape of the parcel is fixed.

Adoption of a conservation technology is an increase in the percent of land in a parcel that
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utilizes high-efficiency technology. I define water use efficiency as the percentage of applied

water that is effectively utilized by the crop. Irrigation technology is generally categorized

as drip, sprinkler and gravity. Drip includes all low-pressure irrigation technologies, includ-

ing drip and micro-sprinkler, sprinkler includes all high-pressure sprinkler technologies, and

gravity includes furrow and flood irrigation technologies. For most applications drip and

sprinkler technologies are generally considered water-conserving technologies.

This paper considers several measures of the profitability of the technology: the price of

water, the reliability of water supplies, crop revenue, and the cost of adoption. Arvin-Edison

also provided data on water price. The district’s endowment of a high-quality ground water

aquifer has allowed it to successfully implement conjunctive water management practices

and divides customers into a surface water service area and a ground water service area. IN

the surface water service area, growers receive surface water provided by the district from a

combination of federal supplies and district-operated wells. Rates in the surface water service

area are a combination of a relatively low per-acre assessment and a volumetric charge.

Growers in the ground water service area receive recharge from the district’s provision of

surface water to growers in the other service area, but pump from their own wells exclusively.

Growers in the ground water service area of Arvin-Edison pay a flat per-acre fee to the district

and their marginal costs of water are determined by the cost of pumping. The cost of water

for surface water users is the unit charge plus the fixed fee per acre-foot of water using water

rates from Arvin-Edison. For ground water users, the cost of water is based on the depth-to-

ground water from annual ground water maps also provided by Arvin-Edison. Descriptive

statistics for service area and cost of water are also reported in Table 1.

By design, the price of water for fields in the surface water areas is relatively stable.

However, the price of ground water is determined by both the price of fuel (i.e., electricity

and diesel) and the depth from which the water must be pumped. The changing ground

water table and fuel prices introduce variability in the price of water for ground water users,
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whereas the district stabilizes surface water prices. Interestingly, the water district sets rates

so that the expected cost of water is the same for surface and ground water users. Because

the marginal cost of ground water is the product of two random variables (pumping depth

and energy cost), the price of water in the ground water service area can be considered as

a mean-preserving spread of the price in the surface water service area where prices do not

change much over time. Thus, the service area variable helps to gauge the influence of water

price risk on crop and technology choice.

Another important factor in conservation technology adoption is long-term reliability of

water supply (Moreno and Sunding). To test for the effect of water supply reliability on

technology adoption, I compute the percent of acres that are in the surface water area. I

take advantage of the fact that the district has two service areas with different levels of water

supply reliability.

Crop revenue is the annual acreage-weighted average of the output value per acre. I

obtained data on the crop values from Kern County Commissioner’s Reports for the years

1999-2002. The cost of adoption is taken from the UC Extension Crop Production Studies

for the relevant technologies and crops on each parcel. Descriptive statistics for crop revenue

and adoption costs are reported in Table 1.

Each parcel’s capacity for absorbing conservation technology may also have large effect

on adoption (Hollenstein 2002). In particular, new technology adoptions are often associated

with a new crop production. Crop data are included in the crop surveys provided by Arvin-

Edison, described above. The crop surveys categorized crop production at a disaggregated

level. However, I aggregate the crop categories to the five major crop groups produced in the

study area: citrus, deciduous, vines, truck and field crops. I identify a microunit switching

to a new crop if that crop was not produced on the field in the previous year.

Location quality includes soil quality as well as proximity to markets. An interesting

outcome of many econometric studies of irrigation technology adoption is the important,
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Table 1: Summary Statistics for Regression Variables

Standard
Variable Mean Deviation Minimum Maximum

Average Cost of Water ($/AF) 231.83 39.58 168.00 394.53
Percent of Parcel in SWSA 0.48 0.49 0.00 1.00
Field Slope (gradient) 1.28 0.93 0.50 8.75
Soil Permeability 2.51 2.40 0.13 13.00
Value per Acre ($1,000s) 3.67 2.12 0.00 11.61
Percent Farm in Drip 0.18 0.23 0.00 1.00
Farm Crop Diversity 1.00 0.25 0.40 1.97
Percent Farm in Citrus 0.08 0.15 0.00 1.00
Percent Farm in Deciduous 0.06 0.15 0.00 0.99
Percent Farm in Vines 0.14 0.25 0.00 1.00
Percent Farm in Truck 0.39 0.28 0.00 1.00
Percent Farm in Field 0.23 0.24 0.00 1.00

N = 531

even dominant, role of environmental conditions (Green and Sunding 1997). Therefore, I

control for field slope and soil permeability using data from the Kern County office of the

Natural Resource Conservation Service. Field slope is defined as the gradient of the field,

measured as a percentage. Drip technologies may be more suitable on steep slopes than

gravity or sprinkler technologies because they allow gradual distribution of irrigation water

and reduce runoff. Accordingly, I expect slope to have a positive effect on the probability

of adopting drip technology. Soil permeability measures the rate at which water percolates

into the soil. This variable is measured in inches per minute. High-efficiency technologies

distribute water more evenly and more gradually than low-efficiency technologies and are

thus more suitable for crops grown on sandy, highly permeable soils.

Data used in the literature on irrigation technology adoption frequently do not include

sufficient information to associate microunit outcomes with specific farming operations, mak-

ing it difficult to control for firm-level effects. However, I take advantage of parcel-level data

and link land owner information from the Kern County property tax roll data to the adoption

data. Using this link, I construct the owner contiguity matrix and associate farm character-
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istics to microunit outcomes.

While a landowner is not necessarily the same entity as a farming operation, I assume that

landowner characteristics closely reflect farming operation characteristics. This assumption

is reasonable for the farms in our study area. First, landowners in the study area, even if

leasing their land, are “hands-on” managers of the land and are known take an active role in

the farming community in Arvin-Edison.2 Second, I expect profit-maximizing land owners

to provide the incentive to the farmer or land manager to optimize the value of the land, thus

landowner behavior should reflect farmer behavior, assuming perfect information between

the farmer and the landowner.

To control for the source of spatial interactions, I also collect data for farm-level charac-

teristics of each microunit. Since firm experience has been found to be a dominant factor

in technology adoption, I include two measures of experience: I measure experience with

the conservation technology as the rate of utilization of that particular technology on the

landowner’s all other parcels. I also include experience in production of each of the five crop

categories, also measured as a percent of the owner’s all other land in a particular crop.

Finally, to assess the effect of the farm’s diversification, I include a measure of farm-level

diversification, which is the number of different crops grown by the landowner divided by

the average number of crops produced by landowners in the district.

3.2 Tests for Spatial Interactions

I explore two types of global spatial relationships in adoption of conservation technology

among microunits. In particular I are interested in how adoption of conservation technology

co-varies among microunits that are close, either through common ownership or geographi-

2Personal communication with Steve Lewis, engineer at Arvin-Edison, November 2005.
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cally. To test global covariation, I compute Moran’s I statistic, which is given by

I =
N

∑N
i=1

∑N
j=1wijYiYj∑N

i=1

∑N
j=1wij

∑N
i Y

2
i

(5)

where wij are the individual cells in the spatial weight matrix W . Each wij represents the

relationship between microunit i and j, as described above. Let Xi be the adoption rate at

microunit i. To test covariation of adoption rates between microunits, I specify Yi = (Xi−µ)

and Yj = (Xj − µ), where µ is the mean of the outcome variable X. N is the number of

observations.

Under the null hypothesis of no systematic spatial interactions among the microunits,

the expected value of I is given by

E(I) = − 1

N − 1
. (6)

If the observed I is larger than the expected value, the global distribution of the outcomeX is

characterized by positive spatial autocorrelation, that is, high levels of adoption by microunit

i are associated with high levels of adoption of close by microunits. If the observed I is lower

than E(I), then X is characterized by negative spatial autocorrelation, that is high levels of

adoption at i are associated with low levels of adoption among units close to it.

I are also interested in the extent of global heterogeneity in adoption rates among the

microunits and compute Geary’s c statistic to measure heterogeneity. Geary’s c tests for

differences in outcomes among microunits. Define Y = (Xi −Xj). Geary’s c is given by

c =
N

∑N
i=1

∑N
j=1wij(Yi − Yj)

2

2N
∑N

i=1

∑N
j=1wij

∑N
i Y

2
i

. (7)

Under the null hypothesis of no spatial autocorrelation, the expected value of c is 1. If the

observed c is greater than the expected value, X is characterized as having negative spatial
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Table 2: Tests of Spatial Autocorrelation, W1

Variables I E(I) sd(I) z p-value

Moran’s I
New Drip 0.284 -0.002 0.029 10.008 0.000
New Sprinkler 0.287 -0.002 0.029 10.059 0.000
Geary’s c

New Drip 0.714 1.000 0.029 -10.008 0.000
New Sprinkler 0.712 1.000 0.029 -10.059 0.000

Table 3: Tests of Spatial Autocorrelation, W2

Variables I E(I) sd(I) z p-value

Moran’s I
New Drip 0.112 -0.002 0.005 22.910 0.000
New Sprinkler 0.080 -0.002 0.005 16.374 0.000
Geary’s c

New Drip 0.872 1.000 0.007 -18.347 0.000
New Sprinkler 0.918 1.000 0.005 -16.071 0.000

autocorrelation. If it is less than the expected value, it is characterized has having positive

autocorrelation.

Tables 2-4 report Moran’s I and Geary’s c statistics for drip and sprinkler adoption for

each of the three specification of the spatial weights matrices. In each of these tables I

report the observed value of I and c, the expected value and standard deviation. The fourth

column in the tables reports the z-statistics for a test that I (the test statistic) is greater

than expected for Moran’s I and smaller than expected for Geary’s c.

Table 4: Tests of Spatial Autocorrelation, W3

Variables I E(I) sd(I) z p-value

Moran’s I
New Drip 0.409 -0.002 0.033 12.472 0.000
New Sprinkler 0.417 -0.002 0.033 12.664 0.000
Geary’s c

New Drip 0.584 1.000 0.035 -11.998 0.000
New Sprinkler 0.582 1.000 0.033 -12.625 0.000
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In all cases, the null hypotheses that there are no systematic spatial interactions in

adoption is rejected at least at the 1 percent level. Both Moran’s I and Geary’s c indicate

that the distribution of adoption exhibit positive global spatial autocorrelation. This suggests

that over the district, adoption of water conserving technology on a parcel is influenced by

adoptions on nearby parcels, either near in terms of common ownership or in terms of

miles. These results are not surprising since the literature has shown that adopters in close

geographic proximity tend to influence each other. It is also not surprising that the impact

of common ownership has a systematic influence on adoption. One thing to note is that

the z-statistics associated with the distance spatial weights matrix, W2, in Table 3 are quite

large relative to the z-statistics for the two other specifications of the spatial weights matrix.

This reiterates the relevance of geographic neighbors’ in adoption decisions.

I have shown that there are significant spatial interactions. There may be important fac-

tors contributing to the systematic interactions of adoption of water-conserving technology.

In the next section I explore these spatial interactions using spatial error and spatial lag

regressions and control for observable factors that may contribute to interactions among the

microunits.

3.3 Estimation Results

Table 5 reports the linear regression estimates for Model 1 (equation 1) and Model 2 (equa-

tion 2). Both models produce similar results. Cost of water is not significant in either model.

However, having a larger percentage of the parcel in the surface water service area increases

the percent of land in converted to a water conserving technology. This supports previous

theoretical and empirical findings that more reliable water supplies increase the incentive to

adopt a drip technology. Having switched to a new permanent crop (citrus, grapes or decid-

uous) significantly increases the intensity of use of conservation technology. In Model 2, the

farm’s experience with the conservation technology is large and statistically significant. This
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suggests that intrafarm experience with the technology has a strong influence on microunit

adoption of the technology.3

Following Anselin et al. 1996, I compute a robust Lagrange multiplier test of spatial lag

and spatial error in Models 1 and 2. The results of this test are reported in Table 6 for each

of the three spatial weights matrix specifications. The table reports the LM test statistic

and its p-value in parenthesis. In the test for spatial errors, I reject the null hypothesis of

no spatial error for Model 1. However, including the farm/owner variables in the estimation,

I cannot reject the null. This suggests that including farm-level variables may address the

source of spatial correlations. For the spatial weights matrix, W1 andW3, there is no evidence

of a spatial lag for Model 1. However, the test for Model 2 indicates that for the spatial

weights matrix that include distance, the null hypothesis of no spatial lag cannot be rejected

at the 1 percent level for W2 and at the 5 percent level for W3. Moulton 1990 shows that

including aggregated owner variables to the regression creates to correlations across within

the microunit groups. This may explain the results of the spatial lag tests.

Based on the results presented in Table 6, I estimate a spatial error model for Model 1 for

each of the three specifications of the spatial weights matrix. These estimates are reported

in Table 7. I estimate a spatial lag model of Model 2 for the distance spatial weights matrix

(W2) and the owner-distance spatial weights matrix (W3). I present these estimates in Table

8.

First I compare Model 1 estimates from Table 5 to the estimates of the spatial error

models in Table 7. Variables that are positive and significant in the uncorrected model, have

smaller coefficients in the corrected model for all specifications of the spatial weights matrix.

This may indicate that without this correction, I may over-estimate the positive influence

of such as water supply reliability (SWSA), slope and crop switch variables, on adoption.

3I estimate the Model 2 with farm-level shares in the five crop categories to control for farm-level pro-
duction, not of these variables are significant and coefficient estimates are excluded from the table.
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Table 5: OLS Estimates of Models 1 and 2
Model 1 Model 2

Cost of Water ($/AF) 0.0006 0.0004
(0.0004) (0.0003)

SWSA (%) 0.1102*** 0.0908**
(0.0312) (0.0293)

Slope (%) 0.0810*** 0.0403
(0.0144) (0.0253)

Soil Permeability 0.0059 0.0056
(0.0054) (0.0051)

Crop Revenue/AC 0.0000*** 0.0000***
(0.0000) (0.0000)

New Citrus (0/1) 0.6104*** 0.5314***
(0.0617) (0.1195)

New Grapes (0/1) 0.2878*** 0.3968***
(0.0475) (0.0938)

New Deciduous (0/1) 0.2820*** 0.3243**
(0.0654) (0.1166)

New Truck (0/1) -0.0597* -0.0681
(0.0294) (0.0498)

New Field (0/1) -0.0148 0.0161
(0.0344) (0.0419)

Farm Drip(%) 0.4930***
(0.1285)

Farm Crop Diversity (%) -0.1082
(0.0635)

Year = 2001 0.0665* 0.0475
(0.0290) (0.0274)

Year = 2002 0.0366 0.0123
(0.0383) (0.0350)

Constant -0.3291** -0.3282*
(0.1110) (0.1546)

R-squared 0.4363 0.4490
N 531 531
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001
Coefficients reported; standard errors in parenthesis.
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Table 6: Robust LaGrange Multiplier Test

Spatial Error Spatial Lag
H0 : λ = 0 H0 : ρ = 0

SWM Model 1 Model 2 Model 1 Model 2

W1 14.857 2.540 0.005 0.038
(0.000) (0.111) (0.945) (0.846)

W2 8.65 0.356 13.151 11.057
(0.003) (0.551) (0.000) (0.001)

W3 6.858 0.149 1.054 3.058
(0.009) (0.699) (0.305) (0.080)

Also note that the estimate of the spatial error coefficient is positive and significant under

all three specifications of W , providing additional evidence of positive spatially correlated

errors. The estimate of λ assuming W2 is significantly larger than the estimates of λ under

the owner-based specifications. This again suggests that geographic relationships among the

adopters produces significant unobserved correlations, raising concern about the extent of

bias in the estimated standard errors and the reliability of inference based on these correlated

standard errors.

Now I turn to comparing the spacial lag estimates of Model 2 with the uncorrected

estimates in Table 5. Estimates of the effect of water supply reliability and slope are smaller

in the lag models, however the differences are not as large as in the case for Model 1. This

may be due to the farm-level variables accounting for some of the interaction among the

microunits. Under both specifications of the spatial weights matrix, the estimated ρ is

positive and significant. This suggests that adoption by a neighbor, geographic or economic,

has a direct and positive influence on adoption of a water conserving technology. As in the

case for Model 1, ρ is significantly larger when I assume the interaction is due to geographic

interactions.
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Table 7: Spatial Error Model Estimates, Model 1

W1 W2 W3

Cost of Water ($/AF) 0.0009** 0.0004 0.0008*
(0.0003) (0.0003) (0.0003)

SWSA (%) 0.0900** 0.0643 0.0911*
(0.0324) (0.0346) (0.0357)

Slope (%) 0.0649** 0.0642*** 0.0566*
(0.0203) (0.0187) (0.0251)

Soil Permeability 0.0086 0.0065 0.0074
(0.0056) (0.0064) (0.0066)

Crop Revenue/AC 0.0000*** 0.0000*** 0.0000***
(0.0000) (0.0000) (0.0000)

New Citrus (0/1) 0.5541*** 0.5477*** 0.5456***
(0.0853) (0.0821) (0.0900)

New Grapes (0/1) 0.3599*** 0.3332*** 0.3494***
(0.0804) (0.0786) (0.0833)

New Deciduous (0/1) 0.3189** 0.2378* 0.2780**
(0.0986) (0.1041) (0.1073)

New Truck (0/1) -0.0692* -0.0720* -0.0654
(0.0334) (0.0324) (0.0349)

New Field (0/1) 0.0015 -0.0131 0.0059
(0.0386) (0.0357) (0.0396)

Year = 2001 0.0684* 0.0537 0.0624*
(0.0304) (0.0291) (0.0315)

Year = 2002 0.0379 0.0271 0.0360
(0.0358) (0.0345) (0.0377)

Constant -0.4100*** -0.1679 -0.3937***
(0.0931) (0.2073) (0.0993)

λ 0.3773*** 0.9338*** 0.3977***
(0.0597) (0.0676) (0.0993)

∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001
Coefficients reported; standard errors in parenthesis.
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Table 8: Spatial Lag Model Estimates, Model 2

W2 W3

Cost of Water ($/AF) 0.0004 0.0004
(0.0002) (0.0002)

SWSA (%) 0.0708** 0.0739**
(0.0259) (0.0258)

Slope (%) 0.0271 0.0280
(0.0192) (0.0194)

Soil Permeability 0.0061 0.0073
(0.0049) (0.0048)

Crop Revenue/AC 0.0000*** 0.0000***
(0.0000) (0.0000)

New Citrus (0/1) 0.5019*** 0.5053***
(0.0835) (0.0839)

New Grapes (0/1) 0.3844*** 0.3691***
(0.0681) (0.0674)

New Deciduous (0/1) 0.2642** 0.2851**
(0.0972) (0.0938)

New Truck (0/1) -0.0681* -0.0604
(0.0311) (0.0313)

New Field (0/1) 0.0079 0.0156
(0.0356) (0.0347)

Farm Drip(%) 0.4740*** 0.3715***
(0.0981) (0.0988)

Farm Crop Diversity (%) -0.0779 -0.0888
(0.0541) (0.0543)

Year = 2001 0.0449 0.0437
(0.0269) (0.0268)

Year = 2002 0.0188 0.0152
(0.0315) (0.0318)

Constant -0.4474*** -0.3589**
(0.1164) (0.1140)

ρ 0.6635*** 0.2295***
(0.1782) (0.0532)

∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001
Coefficients reported; standard errors in parenthesis.

19



Table 9: Comparison of Elasticities

Linear Model Spatial Model

Water Supply Water Supply
Price Reliabiltiy Price Reliabiltiy

Model 1 0.94 0.24 1.16 0.26
Model 2 0.67 0.21 0.69 0.27

4 Conclusions

This paper applies basic tools of spatial statistics to show that spatial interactions among

microunits are significant. Our estimates are consistent with finding in the literature that

geographic neighbors can have a strong influence on adoption of new technology. We also

find that intrafirm interactions are important. If these interactions are ignored, the effect of

a policy to promote adoption of water-conserving technology may be estimated with bias.

Furthermore, the presence of unobserved spatial correlation biases the inference about the

effects of policy, such as water pricing, supply reliability, or adoption cost subsidization, may

be over-optimistic.
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