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Abstract 
 
The purpose of this paper is to study the empirical strength of the bi-directional linkages 
between environmental standards and performance, on the one hand, and environmental 
innovation, on the other and, hence, the role of policy in spurring environmental R&D 
and, in turn, ultimate environmental performance. We study these links using an 
alternative measure of policy stringency, namely, pollutant emissions themselves. 
Specifically, we examine 107 manufacturing industries at the three-digit SIC code for the 
period 1989 - 2002. In view of the joint determination of research and pollution 
outcomes, we estimate a system of simultaneous equations, using appropriate instruments 
to identify each endogenous variable. Our empirical results reveal that there is a negative 
and significant relationship between emissions and environmental patents, in both 
directions. Thus, environmental R&D both spurs the tightening of government 
environmental standards and is spurred by the anticipation of such tightening, suggesting 
that U.S. environmental policy (at least in the context of the manufacturing industries that 
we study) has been responsive to innovation and effective in inducing innovation. 
Preliminary results also suggest that a linear feedback model is appropriate in order to 
capture the dynamic nature of the links between environmental policy and environmental 
innovation. 
  
Keywords: Environmental Innovation and Pollution; Dynamic panel data; Count Panel 
data models 
  
JEL Classification: Q20; Q23; O30 
                                                 
1 Department of Economics and Department of Agricultural and Resource Economics, 
University of Arizona, Tucson, carmencf@email.arizona.edu, and Department of 
Agricultural and Resource Economics, Tucson, innes@ag.arizona.edu. We thank Price 
Fishback, Ron Oaxaca, Kei Hirano for useful comments and discussions, as well as the 
workshop participants at the University of Arizona. Research support was provided by 
the Cardon Endowment for Agricultural and Resource Economics. Comments and 
inquiries can be directed to carmencf@email.arizona.edu. All Remaining errors are our 
own. 
 
 



 3

 

Introduction 
 
 Innovation in environmental technologies has long been considered the driving 

force behind pollution reduction (Kneese and Schultze, 1975; Jaffe, et al., 2002).  Like 

R&D in other areas, environmental R&D is driven by the prospective economic gains 

that new technologies can deliver in cost savings or revenue generation.  Unlike many 

other realms of innovative investment, however, the economic gains from new 

environmental technologies are largely determined by government environmental policy.  

For example, if government standards for allowable pollutant emissions are tightened, 

costs of meeting these standards rise (ceteris paribus) and the prospective cost savings 

from new environmental technologies rise in tandem, spurring new innovation.   

 In a growing literature, economists have studied the links between different 

environmental policy instruments and innovation incentives on a theoretical level, 

comparing emission taxes, marketable permits, technology mandates and performance 

standards, with and without technology spillovers and patent protections (see Fischer, et 

al., 2003).  In this literature, the government is typically modeled as a first-mover, 

committing to a given setting of a given regulatory instrument and allowing innovation to 

respond accordingly.  The government may consider the effect of its policy standard on 

innovation; for example, it may set a seemingly ambitious pollutant standard in order to 

spur environmental R&D.  Alternately, there is considerable anecdotal evidence that 

government environmental policy responds to environmental innovation, often with 

requirements for adoption of the “best available control technology” (Jaffe, et al., 2002).  

Such responsive policies also provide strong incentives for environmental innovation, as 

they offer successful innovators a “ready market” for their products (Jaffe, et al., 2002).  

Innes and Bial (2002) study such responsive policies in an imperfectly competitive 

market setting, showing how flexible emission taxes and standards can be combined to 

elicit both optimal pollution levels and optimal environmental R&D. 

 With responsive policies, there are bi-directional links between environmental 

standards and performance, on the one hand, and environmental innovation, on the other.  

Pollutant emissions and environmental R&D are jointly determined as successful R&D 
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prompts policy change and attendant pollution reductions, and as anticipated policy 

change (and attendant tightening of pollution standards) spurs new R&D.   

The purpose of this paper is to study the empirical strength of these bi-directional 

linkages and, hence, the role of policy in spurring environmental R&D and, in turn, 

ultimate environmental performance.  We study these links using an alternative measure 

of policy stringency, namely, pollutant emissions themselves2.  Specifically, we examine 

107 manufacturing industries at the three-digit SIC code for the period 1989 - 2002. The 

change in environmental technology, as measured by the number of patents, is assumed 

to drive changes in effective environmental standards, which in turn drive observed 

emissions. On the other hand, emissions proxy for the changes in standards that drive 

environmental R&D and, hence, resulting patents. In view of the joint determination of 

research and pollution outcomes, we estimate a system of simultaneous equations, using 

appropriate instruments to identify each endogenous variable. Our empirical results 

reveal that there is a negative and significant relationship between emissions and 

environmental patents, in both directions. Thus, environmental R&D both spurs the 

tightening of government environmental standards and is spurred by the anticipation of 

such tightening, suggesting that U.S. environmental policy (at least in the context of the 

manufacturing industries that we study) has been responsive to innovation and effective 

in inducing innovation.  Preliminary results also suggest that a linear feedback model is 

appropriate in order to capture the dynamic nature of the links between environmental 

policy and environmental innovation. 

This paper contributes to a surprisingly small empirical literature on 

environmental innovation.  This literature focuses on the effects of pollution abatement 

expenditures (PAE) on innovative activity.  In doing so, scholars have sought to test the 

“induced innovation” hypothesis.  The latter hypothesis posits that higher pollution 

abatement costs, costs that can be reduced by innovative success, spur more innovative 

activity (ceteris paribus).   Jaffe and Palmer (1997) find evidence for this hypothesis in 

using U.S. industry-level panel data on total (environmental and non-environmental) 

R&D expenditures and patent counts.  Lanjouw and Mody (1993) also find informal 

evidence that environmental innovation is induced by higher PAE, presenting tabular data 

                                                 
2 Implicitly we are assuming that pollutant emissions are always at the maximum permissible level.  
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on environmental patents and control costs from the U.S., Germany and Japan.  

Brunnermeir and Cohen (2003) are the first to estimate a model that links PAE to U.S. 

environmental patent counts, again finding evidence in support of the induced innovation 

hypothesis. 

Our work differs from previous studies primarily because we study a model of bi-

directional links between environmental policy and environmental R&D that explicitly 

accounts for the joint determination of these outcomes.  In doing so, we use what we 

consider to be a more direct measure of policy stringency, emissions as opposed to PAE.  

This focus permits us to infer interactions between policy, innovation, and pollution that 

are not possible in the existing uni-directional studies of PAE effects on patent counts 

The remainder of the paper is organized as follows. In the next section, we present 

the conceptual framework relating emissions and number of patents. Section 3 details 

data and variables used in our analysis. Section 4 highlights some estimation issues that 

need to be considered. Our empirical findings are discussed in Section 5. Finally, Section 

6 concludes and provides viable suggestions for future research. 

 
Empirical Model 

 
Our objective is to study empirical linkages between environmental research and 

development, on the one hand, and environmental policy on the other.  In our data, 

observable outcomes of environmental R&D are environmental patents, and observable 

outcomes of environmental policy are emissions per-unit-output (as measured by the ratio 

of emissions to the real value of sales).  Specifically, we envision an underlying structural 

model that determines four outcomes, our two observables (emissions and patents) and 

two unobservables (effective environmental standards and environmental R&D).  Let us 

suppose that this model takes the following simple form: 

-1

1

 (t)

(1)               

(2)              

(3)              
(4)        E  ( )    

it ip p it p pit pit

it iq q it q qit qit

it is s it s sit s t sit

it ir r it r rit r i t rit

P a b RD c X e

Q a b S c X e

S a b P c X d S e
RD a b S c X d S e

?

? ? ? ?

? ? ? ?

? ? ? ? ?
? ? ? ? ?
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where Pit is time t environmental patents in industry i, RDit-1 is lagged environmental 

R&D in industry i, Qit is the time t change in emissions (per unit sales) in industry i, Sit 

are environmental standards for industry i, the X’s represent exogenous observable 

variables, the eit’s represent random errors, and E represents an expectation operator.  Eq. 

(1) indicates that patent numbers are determined by lagged industry R&D (among other 

variables).  Eq. (2) indicates that emissions reflect changes in environmental standards.  

Eq. (3) indicates that environmental standards are determined (in part) by improvements 

in environmental technology as measured by the number of environmental patents.  

Finally, Eq. (4) indicates that R&D expenditures are determined (in part) by anticipated 

changes in environmental standards.   

Lagging (2) and (3) and then substituting (3) into (2), gives the following 

structural form for emissions: 
* * * * * * *

1 ( 1)(5)     t q q t q t q qt q q t q st q tQ a b Q c P d X e X f X ?? ?? ? ? ? ? ? ?  

Intuitively, the change in environmental technology, as measured by the number 

of patents, drives changes in effective environmental standards, which in turn drive 

observed emissions.  The key parameter of interest in the resulting Eq. (5) is bq
*, which 

incorporates the effects of patents on standards (bs).   

Similarly, solving (1), (2) and (4) gives the structural form for the determination 

of patents: 

* * * * *
( 1) ( 1) 1 ( 1)

* * *
( 1)

(6)     ( ) ( )

           
t p p t t p t qt p t p q t

p r t p pt p t

P a b E Q c E X d Q e X

f X g X ?
? ? ? ?

?

? ? ? ? ?

? ? ?
 

Intuitively, emissions proxy for the changes in standards that drive environmental 

R&D and, hence, resulting patents. The key parameter of interest in equation (6) is bp
*, 

which incorporates the effects of policy changes (Sit) on environmental R&D (br).  In 

sum, estimating Eq. (5) tests for effects of R&D on environmental policy, and estimating 

Eq. (6) tests for effects of environmental policy on environmental R&D.  Note that Eq. 

(5) is identified by Xit, which incorporates determinants of changes in “effective 

standards,” Sit.  As discussed below, key among such determinants are government 

enforcement activity that increases the stringency of environmental regulations.  Eq. (6), 
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in turn, is identified by Xpt and Xr(t-1), those variables that drive research and patent 

outcomes. 

 
Data and Summary Statistics 
 

We construct a panel of 107 manufacturing industries (SIC codes 20-39) for the 

period 1989 - 2002. Our data comes from a number of sources. Emissions data are 

available from two sources, the EPA's Toxic Release Inventory (TRI) and the EPA's Air 

Office. Using the TRI, we construct industry level total toxic releases (by aggregated 

weight) by year from 1989 to 2002. Facility releases reported in the TRI are assigned to 

the primary industry of the parent company. Data from the EPA's Air Office gives us 

industry level releases of criteria air pollutants from 1995 to 2001. We perform 

estimations using appropriate panels for both sets of emissions data. 

Using a dataset from the U.S. Patent and Trademark Office, we construct 

successful patent application counts by year, by industry, environmental and non-

environmental, for U.S. and foreign companies3. Environmental patents are determined 

by patent classifications that relate to air or water pollution, hazardous waste prevention, 

disposal and control, recycling and alternative energy. We determined the SIC industry to 

which each of these patents belonged to using the primary line of business of the 

organization that is named first on the patent application4. 

Financial data is obtained from Compustat and the U.S. Department of 

Commerce. Deflators are obtained using producer price indexes reported in the Economic 

Report of the President (2004). Compustat is composed of three datasets, which contains 

information on about 1500 of the largest industrial companies, 2500 smaller industrial 

companies, and companies dropped after major events, such as bankruptcies, mergers and 

                                                 
3 The literature suggests that it is preferable to count them by date of application rather than by date of 
grant, because that is the time at which the inventor perceives that he or she has made a potentially valuable 
invention, and the lag between application and grant is somewhat variable and affected by the vagaries of 
the patent office operations. The average lag between application and grant was 2 years. 
4 It is important to clarify that there will be some misclassification if an organization is granted a patent for 
a product or process different from its primary line of business. Unfortunately for our case, the patent 
Office does not ask applicants to identify themselves by industry, and there is no documentation to 
aggregate patent data to the industry level in a better way. Also, note that this classification has been used 
by previous studies, such as Brunnermeier and Cohen (2003), Jaffe and Palmer (1997). 
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liquidators. 

Environmental inspection, compliance and enforcement data is culled from the 

EPA's IDEA dataset. The IDEA dataset is a facility level data that incorporates data from 

the Aerometric Information Retrieval System (AIRS) Facility Subsystem (AFS), the 

National Pollutant Discharge Elimination System (NPDES) and the National program 

management and inventory system of RCRA hazardous waste handlers. AFS contains 

compliance and enforcement data on stationary sources of air pollution. Regulated 

sources cover a wide spectrum; from large industrial facilities to relative small 

operations. IDEA includes data on non-federally reportable facilities, including facilities 

that operate seasonally, temporally shut down, and shut down. However, IDEA does not 

include facilities that are solely asbestos demolition and/or renovation contractors, or 

landfills. 

In our emissions equation (5), the dependent variable is the industry emission 

level (as a ratio of real sales). Emission level consists of toxic releases reported at the 

facility level in the TRI. Total emissions are reported in pounds for all chemicals released 

in the air, water, landfills and waste5. 

Exogenous regressors are lagged U.S. environmental patents; measures of 

industry concentration (such as the Herfindahl index6 ) at the 3-digit SIC code, capital 

intensity is calculated dividing new capital expenditures by real sales, age of capital is 

calculated dividing total assets by gross assets. Age of capital should be between zero and 

one, a higher ratio means (closer to one) newer assets. Export intensity (the ratio of 

export-related sales to real sales); scope (equals to one if the industry has R&D programs 

over 500,000) and measures of regulatory scrutiny (lagged U.S. industry environmental 

inspections, number of visits with sampling and the number of enforcement actions over 

the prior year). Environmental enforcement activity is widely cited as a stimulus to 

pollution abatement (e.g., Magat and Viscusi (1990), Gray and Deily (1996), Laplante 

and Rilstone (1996), Nadeau (1997)). However, there is no evidence, in theory or 

                                                 
5 Note the TRI des not have some SIC codes that are present in the patent dataset. These observations 
should be considered as missing observations since it is not feasible that these SIC have zero emissions. 
The emission sample includes 0.03 % of observations that are in patent but not in emissions. These 
observations are deleted form the sample. Therefore we should expect biased estimates but the percentage 
is so small that we should not be concerned. 
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empirical work, that enforcement activity affects innovative activity; indeed, in testing 

for such effects, Brunnermeier and Cohen (2003) find none of significance. We therefore 

use measures of enforcement activity as identifying instruments in our emission 

equation7. 

In our patent equation (6), the dependent variable is the number of U.S. successful 

environmental patents applications by U.S. companies by industry (as defined by three-

digit SIC class)8. Patents were classified environmental or non-environmental by year 

granted by industry. This classification of environmental and non-environmental is 

according to the list constructed using patent class. Exogenous regressors are measures of 

industry concentration, capital intensity, export intensity, scope, foreign patents (the 

number of U.S. patents by foreign companies), and U.S. non-environmental patents (the 

number of U.S. non-environmental patents by U.S. companies). There is debate in the 

literature on potential effects of industry concentration, size and capital intensity on 

innovative activity. Industries more sensitive to exports may also be more sensitive to 

green consumerism abroad; including the export intensity regressor controls for such 

effects on environmental R&D. The last two patent variables provide useful instruments 

for our patent equation; U.S. environmental patent activity for a given industry is likely to 

be correlated with corresponding foreign patent activity (see Jaffe and Palmer (1997), for 

example) and innovative activity in non-environmental technologies, while the latter 

instruments are unlikely to be driven by U.S. environmental policy or performance . 

Table 1 presents the mean, standard deviation, minimum and maximum value 

across all industries and years, for each variable used in the analysis. 

 

                                                                                                                                                 
6 Other indicators such as the 4-firm concentration ratio and the number of small firms in the industry were 
also considered. 
7 The simple correlation coefficients between emission per output and the number of actions, inspections 
and visits are 0.27, 0.34 and 0.22 respectively. 
8 In this case we also have a mismatch between emissions and patents, specifically there are some SIC 
codes present in the emission dataset but missing from the patent dataset. In this case, it is reasonable to 
believe that the SIC code missing from the patent dataset refers to zero patents. Another potential problem 
we face when dividing the patent sample is that there might be some patents that are counted as non-
environmental when in reality they might be. This is a risk we will have to take because it is not possible to 
examine each patent individually. We have to believe that out environmental patent classification is 
exhaustive. 
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Table1. Summary Statistics 

 
 Regression Sample, N= 103 T=14 

Variables Measurement Mean Std. Dev. Min Max 

VISISTS Number 34.40 113.05 0 1655 
INSP Number 29.65 41.03 0 332 
ACTIONS Number 27.65 63.89 0 793 
R&D EXP Million Dollars 2.638 5.709 0 54.12 
REEXPORT Percent 0.34 1.85 0 30.72596 
REKAPINT Percent 0.80 3.97 0.066 120.40 
SIZE Dummy 0.43 0.50 0 1 
SCOPE Dummy 0.50 0.27 0 1 
HHI4 Ratio 0.11 0.25 0 0.98 
USENV Number 104.11 274.15 0 2657 
EMISSION Ratio 76.19 159.19 0.0003 1743.52 
AGE Ratio 1.31 0.81 0.4828 27.86 
USNON Number 114.72 285.35 0 2281 
4EINGENV Number 92.62 229.24 0 1362 

 
 

 
Empirical Model and Moment Conditions 
 

Because patents take a count form, we should use an econometric model that 

takes in account the nature of patents. In addition, since equations (5) and (6) are 

simultaneous equations, the estimation method must also account for endogeneity. We 

apply the generalized method of moments (GMM) estimator developed by Windmeijer 

and Santos-Silva (1997) for count data models with endogenous regressors. 

From our previous notation, Pit denotes the count of patents for which the 

conditional mean is specified as9: 

? ? ? ?(7)     | | ix
i i i i iE p x Var p x e ??

?

? ? ?  

where Xi, is a k-dimensional vector of explanatory variables and ?  is a k-dimensional 

vector of parameters. If a probability density function like Poisson or a negative binomial 

distribution is assumed, the coefficients can be estimated by maximum likelihood. 

The conditional mean specification of (7) implicitly defines a regression model: 

? ? ? ?(8)     exp expi i i i i i i i i ip x x? ? ? ? ? ? ? ? ?? ?? ? ? ? ? ? ?  

where  ? i ? exp⋎?i⋎  and  ?i   are multiplicative and additive error terms, reflecting 
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unobserved heterogeneity between industries. If some of the elements of  x i   are 

endogenous, the Poisson model will be inconsistent because either  E⋎? i |x i⋎ − 1   or  

E⋎?i |x i⋎ − 0  . Windmeijer and Santos-Silva (1997) derive GMM estimators for both 

specifications of endogeneity. The model with multiplicative error term  ? i   is motivated 

by treating the observables  x i   and unobservables  ?i   symmetrically. In principle, both 

models are observationally equivalent when only the conditional mean is specified. 

GMM techniques are applicable if instruments  zi   are available, such that  E⋎? i |zi⋎ ? 1   

or  E⋎?i |zi⋎ ? 0  . Windmeijer and Santos Silva (1997) indicate that a set of instruments 

can only be orthogonal to either multiplicative or additive errors. This paper only displays 

results from the multiplicative specification, as tests for the over-identifying restrictions 

support this specification. The GMM estimator is based on the residual  ? i − 1   which is 

equal to  ⋎pi − ? i⋎/? i  . The estimator proposed by Windmeijer and Santos-Silva (1997) 

minimizes the objective function 

? ? ? ? ? ?
11 1(9)     p M Z Z Z Z M p? ?

??? ? ? ??? ? ??  

where  M ? diag⋎? i⋎ ,  Z   is an  N ? g   matrix of instruments10. 

This is equivalent to a heteroscedasticity corrected objective function, which 

allows for over-dispersion and its minimization will not yield Poisson ML results. 

We treat innovators  ⋎p i − 0⋎  and non-innovators  ⋎p i ? 0⋎  identically. 

Therefore, we make the implicit assumption that the observed over-dispersion and excess 

zeros are solely caused by unobserved heterogeneity, and not by separate probability 

models for zero and non-zero models. Vuong tests of a standard negative binomial model 

versus zero-inflated ones for the number of successful patents applications did not 

support the zero-inflated model. Even though the standard negative binomial model is not 

identical to the multiplicative Poisson model applied in this study, both are similar, in as 

                                                                                                                                                 

9 The primary equation of the model is ? ?Prob |
!

i ip
i

i i i
i

e
P p x

p

? ??

? ? .  

10 For Eq. (5), we will use measures of enforcement activity as instruments. These instruments are valid due 
to previous empirical evidence that found no relation between enforcement and innovation activities. For 
Eq.(6), we use US non-environmental patents and foreign patents as identifying instruments. Empirical 
evidence suggests that foreign patent activity is correlated with domestic environmental patent activity but 
it will not be driven by US environmental policy. 
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much as both allow for over-dispersion caused by unobserved heterogeneity. Therefore, 

the result of the Vuong test supports the chosen multiplicative Poisson GMM approach11. 

As explained before the count of successful patent applications and the emission 

level are modeled with a simultaneous equation approach. The number of successful 

patent applications  p i   depends on the level of emissions  ei   and covariates  X i.   

The emission equation (5) will be estimated using a fixed effects panel data 

model12. Implicitly, we are assuming that our specification is correct, where the observed 

differences must be due to the zero-correlation between the error and the exogenous 

regressors. 

 
Results 
 
Our analysis provides evidence that environmental R&D both spurs the tightening of 

government environmental standards and is spurred by the anticipation of such 

tightening.  

 

Figure 1 describes US environmental patent applications and emission level for the 

period 1989 - 2002. This figure indicates the negative relationship between patents and 

emission level. 

 

                                                 
11 Vuong Test of Zero- Inflated Negative Binomial vs. Neg. Bin: Std. Normal = -5.36 
12 We performed the Breusch Pagan Lagrangian multiplier test for random effects along with a Hausmann 
specification test. From the B-P LM test we concluded that the classical regression model with a single constant term is 
innappropriate for our data. Moreover, we reject the hypothesis that the individual effects are uncorrelated with other 
regressors in the model. Combining results from both tests make FE a better choice. 
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The number of successful U.S. environmental patent is specified to be conditional 

on industry size, age, capital and export intensity, real R&D expenditures, scope and 

emission level. In the following paragraphs, the results of the patent estimations are 

discussed. In addition to the test for over-identifying restrictions, a test for serial 

correlation is carried out. Table 3 portrays the estimation results for number of patents 

and the emission level as a potential endogenous regressor. The first two columns 

correspond to the Multiplicative Poisson Model (Model 1) where we don't control for 

endogeneity of the variable emission per unit output. Model 2 corresponds to the GMM 

estimation described above. In this case we correct for endogeneity using the lagged 

enforcement measures as instruments. Finally, we consider model 3 where we have a 

linear feedback model. The sign the coefficients remain stable when comparing the 

results from the multiplicative Poisson and the GMM estimation. 

For the Herfindahl index, we find that its coefficient is negative and significant in 

models (2) and (3), suggesting that innovation is positively related to domestic 

competitiveness. The coefficient in the lagged R&D expenditure is positive and 

significant in model (2) and (3). We expect that under model 2 there is an increase of 2% 

in patents when R&D expenditures increase by $1 million (and other variables are held 

constant). Thus, we can say that the magnitude of the R&D impact on environmental 
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innovation is economically and statistically significant. 

Scope has a negative and significant coefficient for models (2) and (3). This is 

somewhat counter-intuitive because we would expect that those industries with large 

R&D programs would be the most innovative. The coefficient of age is negative and 

significant which means that industries with older capital have an incentive to innovate. 

This consistent with the innovation and pollution abatement costs literature, where we 

find that as pollution abatement cost rises, innovation is a solution to lower costs. 

The positive and significant coefficient in export intensity in models (2) and (3) is 

consistent with previous literature, where it indicates that greener products spur 

environmental innovation. Model (2) shows that an increase of 1% in export intensity 

leads to an increase of 5% in the number of patents. 

As a test for over-identifying restrictions is not rejected the instruments seem to 

be valid. In other words, the restrictions implied by the instruments are accepted. M2 

tests for the second order serial correlation based on the first difference equation, in other 

words, M2 tests for lack of second order serial correlation in the 1st difference residuals. 

Thus, GMM will be consistent because the assumption of no serial correlation in the error 

is satisfied. 

Emission per unit output is significant only in model (2). This is consistent with 

the idea that tighter standards spur innovation. In the linear feedback model, the negative 

effect of emissions per output has a greater impact than in model (2). This leaves open 

lines of research and explore the dynamic nature of environmental policy and innovation 
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Table 2. Patent Equation 

Variables 
Model  1 

Multiplicative Poisson 

Model 2  

Multiplicative GMM 

Model 3 

Dynamic GMM 

 
Coefficient 

(Robust SE) 
 

t-ratio 
Coefficient  

(Robust SE) 
 

t- ratio 
Coefficient 

(Robust SE) 
 

t-ratio 

HHI4 
-0.4094 
(0.6500) 

 
-0.6298 

-1.4827 
(0.0539) 

 
-27.5232 

-3.0239 
(0.3713) 

 
-8.145 

R&D EXPT-1 

0.0017 
(0.0024) 

 
0.6869 

0.0205 
(0.0010) 

 
20.0641 

0.0356 
(0.0056) 

 
6.3551 

SCOPE 
-0.2033 
(0.1275) 

 
-1.5949 

-0.4226 
(0.0356) 

 
-11.8857 

-1.4712 
(0.2825) 

 
-5.2082 

SIZE 
0.361 

(0.2281) 
 

1.5827 
0.1472 

(0.0303) 
 

4.858 
3.2929 

(0.7264) 
 

4.5329 

AGE 
-0.0001 
(0.0016) 

 
-0.042 

-0.0073 
(0.0008) 

 
-8.622 

-0.0059 
(0.0014) 

 
-4.2274 

REKAPINT 
0.0012 

(0.0017) 
 

0.6764 
0.1135 

(0.0070) 
 

16.122 
0.0141 

(0.0169) 
 

0.8331 

REEXPINT 
0.0001 

(0.0006) 
 

0.112 
0.0055 

(0.0002) 
 

31.7101 
0.0041 

(0.0004) 
 

9.5287 

EMISSION 
-0.0009 
(0.0006) 

-1.4264 -0.0004 
(0.0000) -30.9215 

-0.0011 
(0.0006) 

 
-1.7018 

ENVPATT-1 
* * * * 

-1.1224 
(0.0855) 

 

-13.1294 
 

   Statistic p-value Statistic p-value 

SARGAN TEST * * 29.8669 0.2293 20.4322 0.4941 

M1 * 1.0686 0.2853 -0.9682 0.3330 SERIAL 

CORRELATION M2 * 1.0671 0.2859 1.0660 0.2864 

 

 
 
Now, we discuss the results for the emission equation where emission level per output 

unit is explained by lagged number of visits, inspections and actions. Moreover, the 

number of US environmental successful patent applications, export intensity, capital 

intensity, size and scope and the additional instruments discussed above. Table 3 displays 

the estimation results of the emission equation, where Model 4 refers to a simple fixed 

effects model that ignores the problem of endogeneity. Model 5 instruments for 

environmental patents. Finally Model 6 introduces a lagged value of emission per unit 

output but is not controlling for the endogeneity problem between emissions and patents. 

The enforcement variables are negative and highly significant. This is the expected result 
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because we can expect that an increase in enforcement activity is related to a decrease in 

emission per level output. The patent coefficient is model (5) is negative and significant, 

this implies that an increase in innovative activity reduces the levels of emissions. Note 

that in model 6 there is positive relationship between lagged emission per unit output and 

current emissions per output. 

 

Table 3. Emission Equation 

Variables 
Model 4 

Fixed Effects 

Model 5 

IV Fixed Effects 

Model 6 

Dynamic Panel 

Model 

 

Coefficient 
(Robust 

SE) 
 

t-ratio 

Coefficient 
(Robust 

SE) 
 

t-ratio 

Coefficient 
(Robust 

SE) 
 

t- ratio 

VISISTS  t-1 
-1.0244 
(0.1976) 

 
-5.18 

-1.0180 
(0.2002) 

 
-5.08 

-0.2036 
(0.0752) 

 
-2.71 

INSP t-1 
-0.0028 
(0.0003) 

 
-7.30 

-0.0028 
(0.0003) 

 
-7.16 

-0.0002 
(0.0001) 

 
-1.47 

ACTIONS t-1 

-2.8575 
(0.3372) 

 
-8.47 

-2.8700 
(0.3430) 

 
-8.37 

-0.7302 
(0.1620) 

 
4.51 

R&D EXP 
-0.4368 
(0.1624) 

 
-2.69 

-0.4375 
(0.1625) 

 
-2.69 

-0.8693 
(0.3833) 

 
-2.27 

REEXPORT 
0.2990 

(0.0636) 
 

4.70 
0.2958 

(0.0656) 
 

4.51 
0.1068 

(0.0751) 
 

1.42 

REKAPEXP 
2.0482 

(0.6315) 
 

3.24 
2.0472 

(0.6316) 
 

3.24 
0.4112 

(0.8384) 
 

0.49 

SIZE 
88.713 

(21.438) 
 

4.14 
88.7328 
(21.440) 

 
4.14 

14.247 
(13.588) 

 
1.05 

SCOPE 
-76.4157 
(33.241) 

 
-2.30 

-76.6742 
(33.270) 

 
-2.30 

-5.1244 
(15.967) 

 
-0.32 

CONS 
117.311 
(30.827) 

 
3.81 

119.875 
(33.418) 

 
3.59 

-4.0933 
(1.551) 

 
-2.64 

USENVPAT 
-0.1289 
(0.0567) 

 
-2.27 

-0.1029 
(0428) 

 
-2.40 

0.0654 
(0.0305) 

 
2.14 

EMISSION t-1 
* * * * 0.4975 

(0.0321) 
 

15.49 

     Statistic p-value 

SARGAN TEST * * * * 49.33 0.6901 

M1 * * * -3.62 0.0003 SERIAL 

CORRELATION M2 * * * 0.34 0.7327 
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Conclusions 
 
This paper investigates the relationship between environmental policy and 

environmental innovation. A model was estimated using panel dataset of 103 US 

manufacturing industries at the three digit level from 1989 to 2002. We find that, other 

things held constant, that environmental R&D both spurs the tightening of government 

environmental standards and is spurred by the anticipation of such tightening. Although 

we can speculate the economic magnitude of this relationship, this results should be 

considered as preliminary. Nevertheless, our findings suggest the need for further 

research in understanding the relationship between the environmental innovation process 

and environmental policy. The immediate step is to improve the estimation in the 

emission equation using a more flexible program, such as the one developed by Arellano 

and Bond. Using this program will allow us to control for endogeneity in model (6). 
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