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Abstract

We propose a Bayesian implementation of the standard optimal hedging model

that effectively and practically accommodates estimation errors and subjective views

regarding both the expectation vector and the covariance matrix of asset returns. Nu-

merical examples show that subjective views have a substantial impact on a hedger’s

optimal position and that the impact of views regarding the direction of future price

changes far outweighs that of views regarding the standard deviation of future price

changes.

keywords: optimal hedging, parameter estimation risk, subjective views, Bayesian De-

cision Theory.



A Bayesian Implementation of the Standard Optimal Hedging Model:

Parameter Estimation Risk and Subjective Views

The standard optimal hedging model (Johnson, 1960; Stein, 1961; Anderson and Danthine,

1980) has been the preferred theoretical model of normative hedging behavior for some

time. In empirical applications, the model is often implemented with a Parameter Certainty

Equivalent (PCE) procedure, which directly substitutes sample estimates for the model’s

parameters in determining the optimal hedging position. However, the PCE procedure

completely ignores parameter estimation risk, i.e., the estimation errors in the expectation

vector and covariance matrix of returns on the assets involved in the hedging decision.

Furthermore, the PCE procedure cannot accommodate hedgers’ subjective views, which

refer to hedgers’ opinions (“views”) regarding the direction of market returns of the assets

involved in hedging decisions.

The problem of decision making in the presence of parameter uncertainty has long been

recognized and has been analyzed in a Bayesian decision theory framework. Within a port-

folio optimization context, the Bayesian framework has been used to accommodate para-

meter estimation risk and subjective views (e.g., Brown, 1979; Jorion, 1985, 1986; Frost

and Savarino, 1986; Black and Litterman, 1990, 1992; Polson and Tew, 2000; Pastor, 2000).

Since optimal hedging can be considered a special case of portfolio optimization, the Bayesian

framework can be applied to optimal hedging to accommodate the problems identified with

the PCE procedure. In the first formal hedging applications, Lence and Hayes (1994a,b)

develop a Bayesian optimal hedging model that can effectively accommodate parameter esti-

mation risk. However their model can only accommodate subjective views under restrictive

and unrealistic assumptions due to its underlying “pure” Bayesian approach. The pure

Bayesian approach requires hedgers to calibrate their prior distribution with non-sample in-

formation including subjective views. However, in practice most hedgers are unlikely to have

subjective views on more than one or two parameters of the prior distribution or only the

relative relation of the parameters of the prior distribution. Thus, it is unlikely that hedgers

can calibrate the entire prior distribution with only non-sample information.

Shi and Irwin (2005) argue that the Bayesian framework should be implemented with an

“empirical” Bayesian approach when applied to optimal hedging. The reason is that with

an empirical Bayesian approach hedgers calibrate the prior distribution with sample data,



which, compared with non-sample information, should contain enough information regard-

ing all the parameters of the prior distribution. Furthermore, with an empirical Bayesian

approach the number and type of subjective views that hedgers can express is quite flexible.

For example, hedgers can have one or more subjective views that may be in the form of

“absolute” or “relative” views regarding expected asset returns. However, Shi and Irwin

(2005) only consider estimation risk and subjective views regarding the expectation vector

of asset returns, ignoring those regarding the covariance matrix of asset returns.

Empirical work clearly indicates that time-varying volatility prevails in many economic

and financial time series, and conditional volatility models such as GARCH/ARCH-type

models have been widely used in estimating the volatilities and correlations of asset returns.

In addition, other methods such as implied volatility, factor models, exponential weight-

ing methods and Bayesian shrinkage estimators have also been developed to estimate the

covariance matrix. Given the large array of estimation methods and potentially different

data sets available, hedgers may obtain estimates of volatility and correlation quite different

from those obtained by most other market participants (market consensus). The differences

in covariance matrix estimates may have a significant impact on hedgers’ optimal hedging

positions. For example, Myers (1991), Lien and Luo (1994), and Kroner and Sultan (1993)

model the behavior of spot and futures prices with bivariate GARCH models and propose

various dynamic hedging strategies.

In this study, we propose a Bayesian implementation of the standard optimal hedging

model that accommodates estimation risk and subjective views regarding both the expecta-

tion vector and the covariance matrix of asset returns. The Bayesian framework is applied

to optimal hedging with an empirical Bayesian approach in order to accommodate subjec-

tive views in a practical and realistic manner. Compared with Bayesian models proposed

in previous studies, the new Bayesian model solves the problems identified with the PCE

procedure in a more satisfactory and complete manner.

Theoretical Model

To begin, we assume that (1) the hedger has no other investment opportunities and does

not borrow or lend, (2) markets are frictionless, which means no commissions, no margin

requirements and no lumpiness due to standardization of futures contracts, (3) asset price

changes follow a multivariate normal distribution, (4) the hedger has a long position in the
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spot (“cash”) market and hedges the spot position with a futures contract matching the

hedging horizon, and (5) the hedger’s objective is to maximize a mean-variance function of

his/her end-period profit/loss.1 These simplifying assumptions are made here for ease of

exposition and explicitness of results when these assumptions do not impair the features of

the model that we seek to emphasize.

The multivariate normality assumption for spot and futures price changes is denoted as:

µ =


 µs

µf


 and Σ =


 σ2

s σsf

σfs σ2
f


 (1)

where µ and Σ are the expectation vector and the covariance matrix of price changes,

respectively. Subscripts s and f denote spot and futures, respectively. Then, the mean-

variance maximization of the hedger’s end-period profit/loss is:

max
Yf

[
Ys Yf

]

 µs

µf


− τa

2


 σ2

s σsf

σfs σ2
f


 (2)

where τa is the absolute Arrow-Pratt risk aversion coefficient and Ys and Yf are the hedger’s

spot and futures positions, respectively. The optimal hedging position is determined via the

first order condition (FOC) of the mean-variance maximization:

Y ∗
f =

µf

τaσ2
f

− Ys
σsf

σ2
f

(3)

where the first and second terms are the speculative and the pure hedging components of

the optimal hedging position, respectively.

In practice, the standard optimal hedging model is often implemented with the Parameter

Certainty Equivalence (PCE) procedure, which directly substitutes sample estimates for the

true but unknown parameters. Thus, the optimal hedging position according to the PCE

procedure is:

Y ∗
f =

µ̂f

τa σ̂2
f

− Ys
σ̂sf

σ̂2
f

(4)

1Myers and Thompson (1989) show that optimal hedging positions (ratios) can be determined via mean-
variance maximization of the end-period wealth, profit/loss (price change in units of the underlying asset),
and portfolio rate of return. They argue that the difference in maximization objectives depends on different
underlying assumptions of the model concerning the stochastic process of asset prices.
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where µ̂f ,σ̂
2
f and σ̂sf are respectively, the sample estimates of µf , σ2

f and σsf .

The Bayesian Implementation

The Bayesian portfolio optimization framework only requires that optimal hedging positions

be determined via mean-variance optimization conditioned on the predictive expectation

vector and covariance matrix of asset returns. When it is implemented, the framework

can be customized to fit specific problems and goals. For example, researchers may choose

different prior distributions and/or implement the framework with either a pure Bayesian

or empirical Bayesian approach depending on their goals. To accommodate the problems

identified with the PCE procedure, we implement the Bayesian framework with an empirical

Bayesian approach and consider estimation risk and subjective views regarding both the

expectation vector and covariance matrix of asset returns.

To incorporate estimation errors regarding both the expectation vector and covariance

matrix of asset returns, the prior is specified as a normal-inverse-Wishart distribution, which

is conveniently parameterized in terms of hyperparameters

µ|Σ ∼ N(µ0, κ
−1
0 Σ), where Σ ∼ W−1

ν0
(Σ0) (5)

where µ follows a multivariate normal distribution conditional on Σ, which follows an inverse-

Wishart distribution denoted by W−1. Notice that κ0 measures the confidence level asso-

ciated with the expectation µ0, with a larger κ0 implying a higher confidence level, and ν0

measures the confidence level associated with the covariance matrix Σ0, with again a larger

ν0 implying a higher confidence regarding the covariance matrix estimate. The prior distrib-

ution is a hierarchical and conjugate distribution because the probability distribution of µ is

conditioned on Σ and the posterior distribution is also a normal-inverse-Wishart distribution

(Gelman et al., 2004, p.87-88)

The hedger’s possible subjective views regarding expected asset returns are specified as

in Black and Litterman (1990, 1992) and Shi and Irwin (2005). Since the number of the

views must be equal to or smaller than the number of assets, the maximum number of views

allowed is two within the context of the standard optimal hedging model because only two

assets are considered. In practice hedgers often have just one view regarding the expectation
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vector. The view is denoted by:

Pµ ∼ N1(q, κ−1
1 PΣP

′
) (6)

where P is a 1× n “weight” matrix, each row of which designates the weights of the assets

in the “view” portfolio and q is a quantity that specifies the expected return of the “view”

portfolio. The term κ−1
1 PΣP

′
measures the confidence level of the subjective view. The

scalar κ1 calibrates the confidence level of the subjective view against the matrix PΣP
′
.

Equation (6) denoting the subjective view can be interpreted as a regression model, where

the dependent variable is q, the explanatory variable is P and u is the slope coefficient.

Since the regression model is under-determined due to 1 < n, the least square solution of the

regression model is µ1 = P
′
(PP

′
)−1q and its volatility as κ1P

′
(PΣP′)−1P. This alternative

interpretation of the view is implied in Black and Litterman (1990, 1992).

The hedger’s possible subjective views regarding the covariance matrix of asset returns

are denoted by:

Σ ∼ W−1
ν1

(Σ1) (7)

where Σ1 is the view and ν1 measures the confidence level of the view. We assume that Σ1 is

in the form of DΩD
′
, where D is the diagonal matrix of standard deviations of asset returns

and Ω is the correlation matrix of asset returns. This decomposition of the covariance matrix

makes it possible for hedgers to express their views separately on the standard deviations of

asset returns and correlations across the returns yet preserve the positive semi-definitiveness

of the covariance matrix (Litterman, 2003).

We combine the prior distribution with subjective views using the Bayesian updating

method outlined in Gelman et al. (2004, p.87-88). Because an empirical Bayesian approach

is adopted, the prior distribution is calibrated with sample data while subjective views are

treated as new information. The Bayesian updating combines the two sources of information

into the posterior distribution, which is also a normal-inverse-Wishart distribution due to the

conjugateness of the prior distribution. The resulting posterior distribution is parameterized
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in terms of hyperparameters as

κ2µ2 = κ0µ0 + κ1µ1

κ2 = κ0 + κ1

ν2Σ2 = ν0Σ0 + ν1Σ1 +
κ0κ1

κ0 + κ1

(µ1 − µ0)(µ1 − µ0)
′

ν2 = ν0 + ν1

(8)

where µ2 and κ2 are, respectively, the posterior expectation vector conditioned on the covari-

ance matrix Σ and the confidence level attached to it, and Σ2 and ν2 are, respectively, the

posterior covariance matrix and the associated confidence level. Finally, the predictive prob-

ability distribution is computed as the integration of the product of the likelihood function

of asset returns (equation 1) and the posterior distribution (equation 5) over the uncertain

parameters ( µ and Σ). The predictive distribution is a Student-t distribution specified as:

rt+1|It,Xt ∼ tν2−d+1

(
µ2,

(κ2 + 1)ν2Σ2

κ2(ν2 − d + 1)

)
(9)

with the following predictive expectation vector and the predictive covariance matrix:2

E(rt+1|It,Xt) = µ2

Cov[rt+1|It,Xt] =
(κ2 + 1)ν2

κ2(ν2 − d− 1)
Σ2

(10)

and It and Xt denoting, respectively, the prior and the views (new information). We can then

substitute the elements of the predictive expectation vector and the predictive covariance

matrix for the model’s parameters and determine the optimal hedging position.

Optimal Hedging Applications

In the first scenario, we analyze the impact on the optimal hedging position of a single

directional view regarding the expected change of the futures price. The single directional

view regarding the expected change of the futures price is expressed with equation (6),

where P =
[

0 1
]

and q = [q]. In addition, we assume that there is no view regarding the

covariance matrix, i.e., ν1 = 0.

2Gelman et al. (2004, p.576-577) provide an account of the expectation vector and covariance matrix of
the multivariate Student-t distribution.
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With the view input into the Bayesian model above, we obtain the predictive expectation

vector and the predictive covariance matrix as

E [rt+1|It,Xt] =
κ0

κ0 + κ1

µ0 +
κ1

κ0 + κ1

µ1 =




κ0

κ0+κ1
µs0 + κ1

κ0+κ1
· 0

κ0

κ0+κ1
µf0 + κ1

κ0+κ1
· q




Cov [rt+1|It,Xt] =

(
ν0

ν0 − 3
· κ0 + κ1 + 1

κ0 + κ1

)

×
(

Σ0 +
κ0κ1

(κ0 + κ1)ν0


 µ2

s0 −µs0(q − µf0)

−µs0(q − µf0) (q − µf0)
2




)
(11)

where the predictive expectation vector is an average of the prior (µ0) and subjective view

(µ1) weighted by their corresponding precisions (κ0 and κ1) and the predictive covariance

matrix is the sum of the prior information (Σ0) and a correction term measuring the differ-

ence between the subjective view and the prior regarding the expectation vector(µ1 − µ0).

With the elements of the predictive expectation vector and the predictive covariance

matrix plugged into the standard optimal hedging model (equation 3), we obtain the optimal

hedging position according to the Bayesian procedure as:

Ŷ ∗
f =

κ0

κ0+κ1
µ̂f0 + κ1

κ0+κ1
q

τa

[
ν0

ν0−3
· κ0+κ1+1

κ0+κ1

] [
σ̂2

f0 + κ0κ1

(κ0+κ1)ν0
(q − µ̂f0)2

] − Ys

σ̂sf0 − κ0κ1

(κ0+κ1)ν0
µ̂s0(q − µ̂f0)

σ̂2
f0 + κ0κ1

(κ0+κ1)ν0
(q − µ̂f0)2 (12)

This result shows that the single directional view has an impact not only on the speculative

component but also on the pure hedging component of the optimal hedging position. In Shi

and Irwin’s (2005, equation 23) the directional view only has an impact on the speculative

component. The reason for the difference is that the changes in the elements of the covariance

matrix due to the single view are no longer proportional as in Shi and Irwin’s model.

In the second scenario, we analyze the impact on the optimal hedging position of a single

view regarding the standard deviation of futures price changes. The hedger expresses this

single view using equation (7). We assume the hedger’s view can be a decreasing (increasing)

view, which means decreasing (increasing) the standard deviation. We further assume no

view regarding the expectation vector.

With the view input into the Bayesian model, we then obtain the predictive expectation
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vector and the predictive covariance matrix as:

E(rt+1|It,Xt) = µ0

Cov[rt+1|It,Xt] =

(
ν0 + ν1

ν0 + ν1 − 3
· κ0 + 1

κ0

)(
ν0

ν0 + ν1

Σ0 +
ν1

ν0 + ν1

Σ1

) (13)

where the predictive covariance matrix is an average of the prior information and the view

weighted by their respective confidence levels. Similar to the first example, with the elements

of the predictive expectation vector and the predictive covariance matrix plugged into the

standard optimal hedging model (3), we obtain the optimal hedging position according to

the Bayesian procedure as:

Ŷ ∗
f =

µ̂f0

τa

(
ν0+ν1

ν0+ν1−3
· κ0+1

κ0

)(
ν0

ν0+ν1
σ̂2

f0 + ν1

ν0+ν1
σ̂2

f1

) − Ys

ν0

ν0+ν1
σ̂sf0

ν0

ν0+ν1
σ̂2

f0 + ν1

ν0+ν1
σ̂2

f1

(14)

where σ̂2
f0 and σ̂2

f1 are, respectively, the sample estimate of the volatility of futures price

changes and the hedger’s view on volatility. The equation (13) shows that the standard

deviation view enters the optimal hedging position through the predictive covariance matrix

and has an impact on both the speculative component and the pure hedging component of

the optimal position.

In the third scenario, we combine together the view scenarios analyzed in the previous

two scenarios and consider how a hedger’s optimal position should vary when he/she has a

directional view as well as a view regarding the standard deviation of futures price changes.

In this scenario, we investigate the interplay of those two views in determining a hedger’s

optimal position.3

With the view input into the Bayesian model, we then obtain the predictive expectation

3It is possible that a hedger may have other types of views, for example, the hedger may have a directional
view regarding the expected change of futures price, or a view regarding the correlation between the futures
price change and spot price change. The impact of those views on optimal hedging position can also be
analyzed within the theoretical framework proposed in this paper, however is not presented for the sake of
brevity.
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vector and the predictive covariance matrix as:

E [rt+1|It,Xt] =




κ0

κ0+κ1
µs0

κ0

κ0+κ1
µf0 + κ1

κ0+κ1
q




Cov [rt+1|It,Xt] =

(
ν0 + ν1

ν0 + ν1 − 3
· κ0 + κ1 + 1

κ0 + κ1

)

×
(

nu0

nu0 + nu1

Σ0 +
nu1

nu0 + nu1

Σ1

+
κ0κ1

(κ0 + κ1)
· 1

ν0 + ν1


 µ2

s0 −µs0(q − µf0)

−µs0(q − µf0) (q − µf0)
2




)

(15)

Similarly, with the elements of the predictive expectation vector and the predictive covariance

matrix plugged into the standard optimal hedging model (3), we obtain the optimal hedging

position according to the Bayesian procedure as:

Ŷ ∗
f =

κ0

κ0+κ1
µ̂f0 + κ1

κ0+κ1
q

τa · ν0+ν1

ν0+ν1−3
· κ0+κ1+1

κ0+κ1

[
ν0

ν0+ν1
σ̂2

f0 + ν1

ν0+ν1
σ̂2

f1 + κ0κ1

(κ0+κ1)
· 1

ν0+ν1
(q − µ̂f0)2

]

− Ys

ν0

ν0+ν1
σ̂sf0 + ν1

ν0+ν1
σ̂sf1 − κ0κ1

(κ0+κ1)
· 1

ν0+ν1
µ̂s0(q − µ̂f0)

ν0

ν0+ν1
σ̂2

f0 + ν1

ν0+ν1
σ̂2

f1 + κ0κ1

(κ0+κ1)
· 1

ν0+ν1
(q − µ̂f0)2

(16)

where σ̂sf1 is the estimated covariance of price changes of futures and spot and is computed

with equation (7). Notice that the formula above is a combination of the results of the

previous two scenarios.

Numerical Examples

We illustrate the impact of the views on optimal hedging positions using numerical examples.

The hedging setup is adopted from Shi and Irwin (2005). Specifically, on February 19, 2004

in the North Central region of Illinois, a farmer hedger has a long spot position in corn and

expects to offset the position on July 8, 2004, 20 weeks later. To reduce price risk exposure,

the farmer wants to hedge the spot position with Chicago Board of Trade (CBOT) July 2004

corn futures. We also assume that: (1) the hedger is a farmer who produces corn on 500

acres of land and has a net wealth of $662,752, (2) his/her relative risk-aversion coefficient

is 4,4 and (3) the yield is assumed to be 150 bushels/acre, thus the hedger has a long spot

4We also compute the optimal hedging positions for the case where the hedger’s relative risk aversion
coefficient is either 2 or 6. The results suggest that when the hedger is less (more) risk-averse, his/her
speculative component becomes bigger (smaller) correspondlinly, nevertheless, the hedger still should adjust
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position of 75,000 bushels of corn.

The expectation vector and covariance matrix of the spot and futures price changes (in

dollar per bushel) over the 20-week holding periods are estimated using historical data5,


 µs

µf


 =


 0.1089

0.0005


 and


 σ2

s σsf

σfs σ2
f


 =


 0.1792 0.1751

0.1751 0.1948


 . (17)

With these parameter estimates, we calibrate the prior distribution (equation 5) and assign

κ0 and ν0 equal to 10 similar to that in Shi and Irwin (2005).

We assume that the hedger may have a single directional view and/or a single standard

deviation view regarding the futures price change (µf ). The single direction view is either

a bullish view (+0.10$/bushel) or a bearish view (-0.10$/bushel) and is coupled with either

a high confidence level (κ1 = 8) or a low confidence level (κ1 = 2).6 The case of no view

regarding expectation vector is considered for comparison. Similarly, the single standard

deviation view is either a deceasing or increasing view, which means decreasing the standard

deviation of futures price change by 50% or increasing it by 100%, and is coupled with

either a high confidence level (ν1 = 8) or a low confidence level (κ1 = 2). The case of

no view regarding the covariance matrix is considered for comparison. Consequently, the

different combinations of directional view and standard deviation view yield 25 different

view scenarios.

The results (table 1) shows that subjective views have a substantial impact on a hedger’s

optimal position and that the impact of a directional view far outweighes that of a standard

deviation view because the directional view can substantially alter the speculative compo-

nent and thus a hedger’s overall optimal position. For example, if the hedger has a bullish

(bearish) directional view coupled with a high confidence level and has no view regarding

the covariance matrix, the the speculative component of the hedger’s optimal position is

his/her optimal hedging position according his/her subjective view. Theses results are available from the
authors upon request.

5The historical dataset consists of weekly spot corn prices (Thursdays) for the North Central region of
Illinois during the post-harvest periods from 1976 to 2003 and corresponding settlement prices of CBOT July
corn futures. The data are obtained from the AgMAS Project at University of Illinois at Urbana-Champaign.
For illustration purposes, we estimate the means and covariance matrix using standard sample estimation
methods, even though more sophisticated econometric methods could be implemented. For each year during
1976 through 2003, we observe a pair of spot and futures price changes over the 20-week hedging period,
thus the sample size is 28.

6The directional view is not extreme given the fact that the magnitude of the bullish (bearish) view is
about one quarter of the estimated standard deviation of the futures price changes.
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24, 668 (−24, 351) bushels and the pure hedging component is −64, 113 (-67,727) bushels.

In contrast, if the hedger has no view regarding the expectation vector but has a decreasing

(increasing) view regarding the standard deviation of futures price change and coupled with

a high confidence level, then the speculative component of the hedger’s position is 384 (297)

bushels and the pure hedging component is −73, 122 (−61, 401) bushel. In another example,

when the directional view is bullish with a high confidence level, the optimal hedging posi-

tions are −39, 445 bushels when there is no view regarding the covariance matrix, and the

optimal hedging position is −35, 613 (−35, 053) when there is a decreasing (increasing) view

regarding the standard deviation of the futures price change that is associated with a high

confidence level. In contrast, when the directional view is bearish with a high confidence

level, the optimal hedging positions are −92, 078 bushels when there is no view regarding the

covariance matrix, and the optimal hedging position is −108, 020 (−86, 155) when there is

a decreasing (increasing) view regarding the standard deviation of the futures price change

that is associated with a high confidence level.

Conclusions

In this study, we propose a Bayesian implementation of the standard optimal hedging model

that can effectively and practically accommodate subjective views and estimation risk re-

garding both the expectation vector and the covariance matrix of asset returns. The new

model is based on an empirical implementation of the Bayesian portfolio optimization frame-

work. We apply the model to analysis of the impact of subjective views on a hedger’s optimal

position and consider the optimal hedging positions under three types of view scenarios: a

single view regarding the expected change of the futures price, a single view regarding the

standard deviation of futures price change, and a combination of the two. Numerical ex-

amples show that subjective views have a substantial impact on a hedger’s optimal position

and that the impact of views regarding the direction of future price changes far outweighs

that of views regarding the standard deviation of future price changes. This study provides

further evidence on the influence of subjective views on hedging behavior and contributes

to explaining the large cross-sectional and time series variation of hedging positions often

observed in practice.
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Directional 
View

Confidence 
Level

Standard 
Deviation View

Confidence 
Level

Speculative 
Component

Hedging  
Component

Optimal 
Position

no view NA 271 -67,415 -67,145
high 483 -78,651 -78,168
low 331 -70,626 -70,294
high 138 -41,733 -41,595
low 193 -52,434 -52,241

no view NA 24,668 -64,113 -39,445
high 44,214 -75,682 -31,468
low 30,238 -67,410 -37,172
high 12,801 -41,071 -28,270
low 17,795 -50,767 -32,972

no view NA 9,310 -66,160 -56,850
high 16,648 -77,525 -60,876
low 11,405 -69,403 -57,999
high 4,781 -41,484 -36,703
low 6,675 -51,804 -45,129

no view NA -24,351 -67,727 -92,078
high -43,648 -78,700 -122,350
low -29,850 -70,854 -100,700
high -12,641 -41,949 -54,590
low -17,570 -52,799 -70,368

no view NA -8,854 -67,534 -76,388
high -15,834 -78,670 -94,504
low -10,846 -70,712 -81,559
high -4,547 -41,814 -46,362
low -6,349 -52,572 -58,921

Table 1. Optimal Hedging Positions under Different Subjective View Scenarios

Scenario of Subjective Views Optimal Hedging Position

no view
decreasing

increasing

bullish

high
decreasing

increasing

low
decreasing

increasing

Note: We assume that the hedger could have a bullish, bearish or no view regarding the expected futures price change. 
The bullish (bearish) view means that the hedger  expects the futures change to be 0.10$/bushel (−0.10$/bushel) instead 
of 0.0005$/bushel assumed by the market consensus. We assume that the hedger's confidence level of the prior is ten 
(κ0=10), and the hedger could possibly have a high confidence level (κ1=8) or a low confidence level (κ1=2) associated 
with the subjective view. We also assume that the hedger could have a decreasing, increasing or no view regarding the 
standard deviation of the change of futures price. The decreasing (increasing) view means that the hedger  projects the 
standard deviation to be 50% smaller (100% larger) compared with the market consensus. We assume that the hedger's 
confidence level of the prior is ten (ν0=10), and the hedger could possibly have a high confidence level (ν1=8) or a low 
confidence level (ν1=2) associated with the subjective view. We assume that the relative risk-averse coefficient equals 4 
for this example.

NA

bearish

high
decreasing

increasing

low
decreasing

increasing
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