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Abstract:

This article focuses on the modeling of agricultyrald data using hierarchical Bayesian
models. In recovering the generating process dfettdata, we consider the temporal,
spatial and spatio-temporal relationships pertinentthe prediction and pricing of
insurance contracts based on regional crop yidldsounty-average yield data set was
analyzed for the State of Parana, Brazil for theopeof 1990 through 2002. The choice
of the best model from among the several non-nestedels considered was based on
the posterior predictive criterion. The methodologged in this article proposes
improvements in the statistical and actuarial mashoften applied to the calculation of
insurance premium rates. These improvements greciedly relevant to situations of
limited data. These conditions are frequently entened, especially at the individual
level.
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SPATIO-TEMPORAL MODELING OF AGRICULTURAL YIELD DATAWITH
AN APPLICATION TO PRICING CROP INSURANCE CONTRACTS

INTRODUCTION

Historically, crop insurance in Brazil has beerecéd by the government at both the
federal and state levels. In spite of the governimezfforts, the experience with crop
insurance in Brazil has generally not been satisfgc The absence of a suitable
actuarial method to price crop insurance contrigctsie of the main reasons for the poor
performance and ultimate failure of this agricuddurisk management program. High
premium rates inhibited the demand for the inswdncproducers and, at the same time,
selected only those with higher probability of igg® the indemnity. This is the classic
problem of adverse selection, which characterizistbhcal efforts at developing crop
insurance in Brazil.

In recent years, efforts have been made to imptioe@gerformance of the programs
and to make crop insurance more popular among pesduln December/2003, the
federal government of Brazil approved Law No. 18,82vhich authorizes the
government to subsidize the crop insurance premidiimese premium subsidies will be
specified according to the sort of insurance, typerop and animal species, categories of
producers, and production regions. A priority &k tnew insurance is to provide
coverage to those engaged in activities considérelde risk-reducing or technology-
enhancing.

Beyond the federal government's efforts, state guwents have attempted to
stimulate producers’ demand for crop insurance. Sta¢e of Sdo Paulo, through a pilot
project initiated in 2003, subsidized the premiuandpby the producers by 50% for five
crops: banana, orange, grape, corn and beans irci2é9 of the State. In 2004, the
subsidy program was expanded to cover 14 more darop84 of the 645 cities of the
State. These crops included cotton, peanuts, ietheace, cassava, soybeans, sorghum,
wheat, pineapples, plums, kaki, guava, passion, fpeiaches, and cabbage. In the State
of Rio Grande do Sul, the state government beggulagng the crop insurance state
system through the Law No. 11,352 in 1999. The mwogis subsidized and operates



with three types of insurance which vary accordmghe producer and the total amount
of subsidy.

This article concentrates on statistical and a@banethods with the objective of
pricing an alternative crop insurance contract dase an index of regional yields. This
type of insurance is widely available in the Unit8thtes, India, Sweden and Canada
(Miranda, Skees and Hazel, 1999) and, currentlgffered in Brazil in the southern state
of Rio Grande Do Sul. It's important to point dbait such methods addressed in this
paper can also be applied to pricing others forinmsurance contracts, such as those
based on individual yields, as long as there aoaigim data to do the analysis.

In the analysis that follows, a number of altewmtparametric, statistical models
were applied to the data set with the objectivanafdeling the stochastic generating
process of yield data and, in particular, propedgognizing the temporal, spatial and
spatio-temporal dynamics underlying crop yields. Sabect among a large number of
potential candidate models, a minimum mean squaaigiion error criteria was used.

This article is arranged according to the followimggtline. In the next section, the
history of agricultural insurance in Brazil will lescribed briefly. Particular attention
will be given to the institutional, legal and opwaal aspects of crop insurance at both
the federal and state levels. In the next sectwea,review the literature that has
addressed statistical aspects of agricultural ydelih. To be precise, statistical modeling
of yield data will be considered. We also describmporal, spatial, spatio-temporal
Bayesian modeling methods. As we discuss in detikernative distributional
assumptions and techniques, including mixturesosfm@l distributions and the normal
distribution, are considered. We also considethods appropriate for choosing among
alternative candidate models. The next sectiothefpaper builds upon this discussion
by applying the empirical methods to an analysiB@zilian yield data for maize. In
particular, we describe our optimal model speciitca and pursue an analysis of the
problem of pricing a crop insurance contract ustogn yield data from the State of
Parana, Brazil between 1990 through 2002. It shdddnoted that, although our
application is to a case of regional yield insugraur methods are entirely applicable to
other types of contracts. We conclude the pap#r wibrief summary and concluding

comments.



A BRIEF HISTORY OF CROP INSURANCE IN BRAZIL

Agricultural insurance was introduced in Brazillii38. This early form of federal
crop insurance was specific peril—being directeda@ hail damages to cotton. Hail
insurance was later expanded to cover additionaps;rincluding grapes and other
horticulture crops. The early performance of thegpam was poor, with loss ratios (i.e.,
the ratio of indemnities paid out to premiums attkel) above 3.8 being observed in the
early years.

In January 1954, the federal government of Brasilalished the norms and
regulations for crop insurance in Brazil throughM Bo. 2,168. This legislative action
established the Agrarian Insurance Stability Funduarantee insurance market stability,
allow the gradual adjustment of premium rates, ceaastrophic risks, and to provide a
number of other initiatives to improve crop inswanThe Institute of Reinsurance of
Brazil (IRB), through its Technical Board, was respible for the administration of the
Fund’s resources. The law created the National famy of Crop Insurance (CNSA)
with the objective of gradually developing the aemal aspects of agricultural
insurance. All responsibilities not assumed by itteirance companies or the CNSA
were reinsured in the IRB. If these companiesndidfind reinsurance within the country
they could, through the IRB, seek reinsurance tierirational markets.

The company functioned between 1954 and 1966, lag forced to interrupt its
activities in November 1966 because of a legalek¢taw No. 73) which closed down
the CNSA. One of the main causes of the failurdhef company was the extreme
centralization of the program’s administration Ire tcity of Rio de Janeiro. Even with
branch offices spread in many regions in the céatrd south of the country, the central
administration was thought to monopolize the deasnaking process. Thus, important
programmatic aspects that should have been takenaiccount were ignored. For
example, the construction of regional plans thaisaered the features and peculiarities
of local environments should have been considelékkwise, the area to be insured and

selection of the producers should have been sulpetighter constraints. These are



crucial program design issues that one must congiden dealing with crop insurance in
a large country like Brazil with so many differerfimates and types of soil.

In contrast to such a reasoned approach, the fedenapany applied generically-
designed plans throughout the entire country. lheee due to the fact that CNSA was
not allowed to operate in other types of more pabfe insurance lines, their exposure to
risk was concentrated on agricultural risks in alémolume of business. Further, the
operational resources available to the company werdest and the company ran large
deficits.

After the dissolution of the CNSA (through Law Nt8/66), the government did not
provide any risk management or protection mecharisithe agricultural sector until
1973. In December 1973, the Farming Activity GuésanProgram, called PROAGRO
was created by Law No. 5,969. The federal goveniniecause of a need to offer risk
protection to producers due to the increasing supplrural credit, implemented the
PROAGRO program to protect the capacity of therfaial system in case of large-scale
defaults on loan obligations by producers. From beginnings through 1993, the
program accumulated large deficits ($1.6 billidviany problems were raised during this
period; including delays and non-payment of inddi@sj technical and operational
deficiencies and concerns regarding the presentawd and abuse in the program.

The results in the first five years of the prograsre disastrous. The loss ratios for
the years between 1975 and 1979 were 84.8, 8.2, 9@ and 16.5, respectivélyThe
period corresponding to the beginning of the PROAGENtII August of 1991, was
characterized by unsatisfactory results. The aweilags ratio in the period of 1980
through 1991 was 2.4. In 1991, a number of impontaodifications to the program were
announced, though these modifications did notthalgrowing deficit of the fund, which
reached $264.6 million by May of 1994. ConsequeritiyAugust of 1994, there were
additional operational modifications to the prograatthough some deficiencies still
persisted. Program shortcomings included an absehcmonitoring, multiple risks
covered by the program, and a substantial del@yeippayment of indemnities.

In October of 1995, the Ministry of Agriculture aslipply, in partnership with the
Foundation of Technological and Scientific Entesps (FINATEC) and the University of

! The loss ratio is the total amount of indemnity paiddivided by the total amount of premium collected.



Brasilia, implemented the “Project to Reduce ClimaRisk in Agriculture.” The
objective of this project was to develop a methodplto reduce losses in agricultural
production and to induce the adoption of techniqtied the producer could use to
manage climatic risk, specifically rainfall risk¥.he project was concluded in August of
1996 and the National Monetary Council in acceptimg recommendations, redefined
the objectives of the PROAGRO program.

New legislation in 1996 stipulated that producehsittadhered to agricultural
production recommendations would be charged diftteated insurance premium rates.
Moreover, the project determined the proper seegmgod for each city and for the
following crops: rice, cotton, soybeans, corn anédlbeans for the entire country and
for wheat in the central and southern regions. Asult, there was a significant
improvement in the performance of the program. [be ratio over the period of August
of 1991 to 1997 was 0.94. At the state level, somteatives were introduced though
these were initially restricted to only a few crops

Several private insurance companies currently offesp insurance in Brazil.
Although the amount of business is still small, sorilot projects have been
implemented throughout the country. For examplerigate company implemented an
insurance plan based on county yield (that is,raa-aide insurance plan) in the State of
Rio Grande do Sul. In this type of insurance, gheducer will be indemnified only on
the basis of a large area’s yield experience. drigqular, the level of protection and
indemnities are based upon the difference betweearea-wide guaranteed yield and the
observed county yield. Indemnities are paid ohiheé observed yield is lower than the
county-level guarantee, regardless of an individaainer's experience. Other private
insurance companies are offering contracts covsfiglgs at the individual farm level.

Other types of crop insurance can also be fourndarcountry. A mutual, cooperative
form of insurance is the oldest type of insurantdrazil. Through a formal contract,
individuals get together and agree to divide darmagdosses that individual producers
might experience due to certain unexpected evénstead of paying premiums, the

insured growers contribute according to a quotassary to cover administrative costs.



The responsibility for risk is shared by everyoBeme examples of mutual insurance can
be found in the southern regions of Brazil.

STATISTICAL MODELING FRAMEWORK

A fundamental parameter of any insurance contracthe premium rate. An
actuarially fair premium rate is a rate that isseth that premiums collected are equal to
expected indemnities. An inaccurate premium rasellts in distortions to the insurance
pool and thus may result in losses as agents alyesglect against the insurance
provider. In particular, low risk agents may besmharged and high risk agents may be
undercharged. This will distort participation iavbr of the higher risks and thus
premiums will not be sufficient to cover indemnggyments. This condition of adverse
selection has been well documented for a numbensfrance plans. The eventual
failure of an insurance program as a result of sselkction is often called the “death
spiral of adverse selection.” Optimally, an insu& provider would prefer to calculate
individual premium rates for each farmer on thedaéthat farmer’s risks and expected
yields. However, individual data are rare at l@ast thus crop insurance plans are often
based upon more aggregate data—such as data ebuhgy level. Such index-based
crop insurance plans were developed to overcomeithielem of short or nonexistent
individual crop yield series.

Another important aspect of insurance contract gitegpertains to the actuarial
procedures used in the calculation of insurancenpm@a rates. In particular, the
derivation of such rates generally requires a stesl analysis of crop yields. A wide
variety of statistical methods are often adopteth& estimation of crop insurance rates
and a number of issues relating to the modelingrop yields are pertinent to these
methods. For example, one often must addresssissisged to the fact that yields tend
to have substantial trends over time and tend tsigigficantly correlated over space due
to the systemic nature of weather. One subtleéignobverlooked in crop insurance yield

models pertains to the fact that a degree of uaicgytalso applies to the parameters of

2 This includes the Cooperativa Agropecuéria Batavo, the Caidpe Agraria Mista Entre Rios, and
Associagdo dos Fumicultores do Brasil (Afubra).



any model used to describe the uncertainty of gieldFor example, it is common to
detrend yields using standard regression modelgl@mto use the detrended yields to
measure yield uncertainty. However, a certain elegf uncertainty is also inherent in
the models used to detrend vyields. In this anslysie adopt a Bayesian inferential
framework that accounts for all such sources ofeuanty while estimating the
appropriate premium rate.

Over many years, the statistical issues underlgggcultural yields have been a
controversial point in the crop insurance literatuBeveral statistical approaches have
been considered, including parametric yield modsdsniparametric methods (Ker and
Coble, 2003), nonparametric models (Goodwin and K898; Turvey and Zhao, 1999)
and empirical Bayes nonparametric approaches (KeiGoodwin, 2000).

Within the parametric modeling approach, some reseas have concluded that crop
yields tend to follow a normal distribution (Justdaweninger, 1999). However, a large
number of other researchers including Day (196a)ldr (1990), Ramirez (1997), and
Ramirez et al. (2003) have found evidence agaimshality. Other suggestions included
the use of a Beta distribution (Nelson and Preck&B9), inverse hyperbolic sine
transformations (Moss and Shonkwiler, 1993), andhma distributions (Gallagher,
1987). Sherrick et al. (2004) used several paraméistributions including the normal,
lognormal, Beta, Weibull and logistic distributiots model individual yield data. Of
course, the characteristics of crop yields maydi@syncratic and may vary by location,
crop, and production practice. Thus, it is unlkéiat any single parametric approach
will be universally supported across different agadions.

As we have pointed out, a related problem perttnthe limited number of yield
observations typically available for empirical mtsdeThis is true even when aggregated
data are considered. This limitation typically gueles the use of individual farm-level
data for the purposes of modeling yields and raitisgrance contracts. The choice of a
statistical model that adequately reflects the dadhl density of yields is an important
consideration in the actuarial calculation of anumate premium rate. In doing this, one
must try to recover the probability generating @sx of the yield data. Agricultural
yields follow a spatio-temporal process, in thesgethat if we take the average in a
region conditional on the underlying temporal psseone can recover the conditional



density yieldf(y |Q,) at a certain moment in time and point in spadegr& Q, is the

minimum o -algebra generated by the information known at nmante (Ker and
Goodwin, 2000).

In most empirical work, the only information knowvan timet is the time index and
previously realized yields. Thus, in these anaysige conditional density is based only
on the temporal generating process of the datawouk addresses this temporal aspect
of the data generating process, but we also giemtain to the spatial dimension of the
data generating process. In particular, we explioecognize the fact that the events that
underlie yield realizations (e.g., weather, diseasel pest damages) tend to affect large
areas at any single time. Thus, adjacent regicns experience substantial correlations
of yields over time. Thus, our models combinettive aspects of space and time in order
to construct a spatio-temporal model of crop yields

The fact that our data set is not large in the tidmmension creates additional
difficulties regarding the forecast or predictioh aop yields in future years.In the
construction of crop insurance contracts, it isidgjy the case that the terms and
parameters of the contract must be available on&do/ears prior to the insurance cycle.
This reflects the fundamental fact that an insueapcovider will not want to offer
coverage after the insurance buyers already haleemation about their yields. In
addition, administrative issues relating to therapen of any program require substantial
lead time in providing the parameters of the canmtiaffering. In our case, the last
observation recorded was for the year 2002. Wekasgume that there is a two year lag
between the receipt of historical yield data and tieadline required for filing new
contract terms. Such a two year lag is inhererllitJ.S. crop insurance programs. In
this context, we must attempt to choose the basisstal model to predict yields for the
following 2 years. In light of this objective, weodel the structure of the yield mean and
assume that the precision of our models is contitlp constant throughout the analysis.
Gelfand et al. (1998), point out that modeling tihean component rather than the

precision in forecasting models results in moredaffe results.

% In this article, forecast and prediction and density asalidiition will be used interchangeably.
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Under this approach, we consider the mggras being identical to (), wherei

represents the space variable index tatid temporal index. Thuyy is the agricultural
yield in countyi and in timet, wherei =1, 2, ... Sandt=1, 2, ... T. The objective of

this portion of the analysis is to model the statizamean component, so that reflects

the covariates, the temporal effects, spatial tianaand the spatio-temporal relationships
relevant to agricultural yields.

In some applications, statistical models may be prised of a large number of
parameters. This is especially true in analysedatd that have been pooled over time
and cross-sections. In such cases, a naturabivanodeling the parameters is through
hierarchical models. Under such an approach, thpertience structure between the
parameters can be represented by the joint pratyadbistribution. Consequently, we can
define a prior distribution for these parametesuasng that they can be considered as a
sample from a common population distribution.

Hierarchical models are usually specified in selvestages, thus suggesting a
conventional notation. If the model hksstages, the joint distribution of the observed
variabley and parameteré's, can be written in a multiplicative form, such as:

flyl 61 f(61] 02) F(02] O3) ... f (Bia| Oi) F(O1).

We consider hierarchical models to be more nafieraincorporating the correlation

structure. Thus, in our model, the first hierarahgtage assumes thgt is conditionally

independent, given, . In other words, any parameters added to ouesentation ofu,
will be random. If z, includes a random effect indexed bthen, marginallyy;: will

reflect the temporal dependence in a given yeanil&ily if we include an effect indexed
by i, marginally,y;: will reflect the spatial dependence within certeggion. In such a
case, a spatial effect can be introduced into thelakh thus allowing for spatial
dependence among the observed variaples Modeling the structure underlying the
mean Yield realization by adopting hierarchical eledis intuitive and facilitates the
visualization of each component in the analysigemd of modeling such structure

directly through they; .*

* For this alternative version, Anselin (1988) shows se\apatial and spatial-temporal models, such as,
SUR (seemingly unrelated regression), where the Beta coefficeatallowed to vary in one of the two
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In many applications, the observed variable is rrembleconditional on a given
number of parameters that receive a prior prolghdiistribution, which in turn receive
other parameters, called hyper-parameters. Oneassign probability distributions to
these parameters (hyper-prior distributions). Bricain then be chosen to reflect prior
knowledge of these hyper-parameters. In situatrdmsre relatively little is known about
the hyper-parameters, diffuse prior distributioas ®e adopted. However, we must be
careful to recognize that improper priors may yieigroper posterior distributiors.

Consider, for example, the following prior distrilmin for the parameterd -~
N(u,o?). If we assign a hyper-prior distribution for’, such asf(o) = 1/(o ?)* where
a=0, 0.5, 1, it may happen that the joint postetligtribution is improper, although the
final results based on numerical output seem redderand the analyst may not realize
the problem. In such a case, an analyst will b&imgainferences about a non-existent
posterior distribution. In a practical sense, aswshin Gelfand and Smith (1990), this
problem can be prevented by considering proper @igtributions that assure that the
Gibbs sampling process will be well-behaved, whgreorance can be represented as
values for the precision parameter close to 2ero.

Initially, extending the work of Ker and GoodwinO@0), we modelequ, as coming

from two subpopulations or groups, a catastrophocig and a non-catastrophic group. A
catastrophic event can be defined by an adverseatit event that occurs in a
determined period of time (such as drought, h&il)e Consequently, if such an adverse
event occurs, the agricultural yield will be dravirom the catastrophic group.
Alternatively, yields are considered to be drawonfrthe non-catastrophic group when
normal weather events are realized. In this marorex can think of yield realizations as
being drawn from a finite mixture of two distriboiis.

Under this approach, we fit a mixture of two Gaassdistributions, where the
density of the first (catastrophic) group livestire inferior tail of the second group.

Because catastrophic events are, by definition,hnhegs frequent and the observed yield

dimensions and the error term is correlated in the otheerdiion. In those models the dependence
structure is modeled through the error teygawhere ¥ = X St + €.

® In this context, Hobert and Casella (1996), estimategaremeters of a hierarchical linear mixed model
using the Gibbs sampler and warned about using a nom¥iafive prior distribution that can lead us to an
improper posterior distribution.

® However, even in this case Gelman (2004) raises some tatiopal and numerical issues.
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in such years is inferior relative to yields in uéy years, one can expect a smaller mass
in the first group and that such concentration ireghe left tail of the non-catastrophic
distribution. If we had information about suchastophic events for each region and
each year, we could use it as an indicator varialilein a regression model. However,
in most cases, such information is not observahi® thus must be considered to be
represented by latent variables.

The general mixture model can be written as:
F(Y16,8, oy F O 0T 0 B (1)

where 8; is the parameter vector, J is the number of comptsn such thgt=1, 2, ... J

andy; >0 is a weighting parameter representing the ratib@fpopulation attributed to

the component andZyj =1. If the distributiorf (y |8, , ), ) is represented by a
i

Gaussian distribution, then we ha#g= (4; ,01.2). Thus, eq. (1) can be written as

P16 Wivdy FO VNG B #)
The previous model can be specified in an altereathanner by introducing an
unobserved (latent) indicator variable that ideesifthe component from which the
observation is drawn. This indicator varialbleeceives values equpwheny is drawn
from thejth component. Equivalently, thus the mixture made(l) can be represented
as:
yll, 8 ~f(y| 6)
||y ~DCat ()), 3)
WhereDCat () is the categorical distribution andI®{j] = y; ,j = 1,...J. We assume

that we do not know from which component each olsem is drawn. In this case, if
we consider that the parametétsand y are independent, then the prior distribution can
be considered as the product of the two distrilmsticAs we assign a categorical prior
distribution forl, the conjugate prior for will be the Dirichlet distribution with hyper-

parametemn :



13

r a,
— (ZJaJ)n a;-1

f(y) = mra) 1q;

: 3)

where 0 gy < 1 andzjqj =1, a,>0,j=1,..J.

Gelman et al. (2003) suggest that the ratio betwtbentwo variances should be
considered as fixed or, alternatively, one shoskign a proper prior distribution. In this
analysis, we assign an Inverse Gamma distributgorb) to assure that the posterior

distribution is proper (assuminh= 2), and adopt normal priors for the terms and a

Dirichlet distribution for they, terms.

TEMPORAL MODELING

Considering the temporal component as an integaal ofz,,, we will model it

initially by assuming thatV, = 8 +u,, where ¥, is a constant mean for all regions plus

iid
an error term, where, ~ N(O, g?). This model, though initially lacking in realism

provides a convenient benchmark which will be exjgmhin a fashion that allows
subsequent models to incorporate time as a coeandhe analysis. In this deterministic
trend model, time may be represented by a polynamisaccording to'¥, :Zp:ﬁlt' +U,.

1=1
For this type of deterministic trend model, we eerthe variable in order to improve the
speed of convergence of our Markov Chain Monte C@CMC) algorithm. Thus, we
havet* = (t - (N+1)*0.5). We consider p = 1, 2 in the model estioratand use the
normal distribution to form prior distributions féhne intercept and trend parameters of
the deterministic trend models.

As an initial data exploration technique, we useieical plots to evaluate the type of
trend that might be present in the data. This etedo indicated that a quadratic trend
was sufficient to capture deterministic trend effem the yield data. Beyond the
deterministic trend models, one can also analyze somplementary fashion stochastic
trend models and the interactions between stochasti deterministic models. In this

paper, we modeled the stochastic trend componeaffiast-order auto-regressive model
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AR(1), where,W, = pu.1 + w, where -1< p < 1.” Note that this specification includes

a standard random walk model as a special case.aMe adopt two assumptions

regarding the exact specification of the modelisti-the correlation parametgr in the

stochastic trend models is allowed to vary accgdino the region. Second, an
exchangeable normal prior was assigned to the peesn with normal and inverse
gamma hyper-distributions for the mean and varigazameters, respectivefy.

The interaction between the deterministic and ststib trend was analyzed initially
by considering a first-order polynomial functiontiadded to the stochastic component.
This implies a subsequent model which emerges ifuwe the second order term, which
yields W, = pyu1 + Bo+ Bat* + Bot*% + u. In a similar way, the correlation coefficient
was reparameterized as in the previous case amgahgrior distributions were assigned
for Soand Biand S , with a prior precision parameter - 0.

If we consider a random effects model, then alltlid S parameters will be
exchangeable. Such a result is convenient and iteasonable to assume that the
parameters may be different from one another, aghothey arise from the same
population distribution.

One can then consider the preceding model as drapgeable model that takes the
form B ~ Ns(b, ), where the hyper-prior distributions for the \@db and the matrix

will be, respectively, b ~ Ny, ,Z,), wherey, = 0 andZ, is the diagonal covariance

matrix with diagonal elements that approaeland ¥ ~ W(R, k), whereX is a p xp

symmetric positive definite matrix, with a dengityoportional to:

" In light of the small sample size, a more sophisticateghdeah model was not possible. For example, Ker
and Goodwin (2000 p. 465) proposed an IMA(1,1) procegsesented by, ¥ yi.1 + o9 + 861 + 6. The
number of observations used in their article was small ak thelugh larger than in our case. Thus
modeling an IMA(1,1) process can become a troublesomeregird to the stability and convergence of
the parameters. In this manner, because we can express an MA{@3spes an AR{) process, they
modeled the temporal process as a AR(4), such thaty + Bo+ B1(Ye1 - Vi2) + Bo(Yez - ¥i3) + B3(Ve
3-Yea) + Ba(Yea - Yis) +&.

8 We can also reparameterize the paramgteso that a prior distribution could be assigmtcsuch thatp
=21 -1, 0< g < 1. Naturally, the Betec(d) distribution emerges as a prior for the paramgtevherec

=fwandd=(1-¢&) ¢,0<¢é <1,y >0 and hyper-prior distributions f@ and¢ .
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IR[* |2 [*P™exp [-1/2(Tr(RE))), (4)
where k= p yields the Wishart distribution (Anderson, 1982)

SPATIAL MODELING

In the traditional literature of spatial models,variable ®; denoting the spatial
aspects of the data can be represented initialtgrims of a set of covariates placed in a
vector ®@; representing a given characteristic of a certaga,acontributing a component
g(®;), whereg would be a specific parametric function. In theseaice of covariates,
random effects are introduced in order to capteterogeneity among different regions.
Gelfand et al. (1998), in the absence of covarjatesd random effects as surrogate to the
covariates in order to capture the effects of logieneity in a context where a hedonic
price model was used to predict the future seltinge of houses.

In their article, they identified a variablg that reflected such characteristics as, for
example, quality of the construction, income in suhdivision and socio-economic
variables, such as, race and education. In additiamstructured heterogeneity, a latent

variable was introduced to catch the spatial effedhat represented the geographic

nature of each subdivision and the importance ofi @ea in relation to the selling price

of the houses. Thus, the spatial variable carepeesented a®; = & +v;, wherey; is a
spatially non-structured latent variable (repreisgnheterogeneity) anfl is a spatially

structured latent variable (representing clustgriridentification of the parameters in the
likelihood function in this case is verified in theerarchical model by assuming a

conditional auto-regressive prior distribution (CABr ¢ and exchangeable priors fgr

Based in the work of Besag (1974), Clayton and &ald987) used the concept of
spatial dependence applied to the problem of desesgpping. Their application was to
modeling cancer rates in Scotland. The spatialetation was modeled on the basis of
the geographic proximity of a particular regionrelation to other adjacent regions.
Cressie and Chan (1989) studied the sudden infaathdsyndrome with a data set

collected during the period of 1974 through 1984aunties of North Carolina using
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space models. They noted that, in a manner anadoigothe time series case where one
may try to show how the actual observations areiémiced by its past values, in spatial
processes one may try to verify how a particuldneras influenced by its "neighboring”
values.

In these prior studies, the non-structured variabl@ssumed to follow a normal

distribution, such that ~ N(4,,0?). In addition, we assume that the spatially $tmec
variable ¢; conditional on¢, , wherej # i, can be modeled such thgt ~ N(é,, aﬁ/ n),
where & is the average of the’s andj indexes the neighboring sites of i. The variance

parameterss’ and a§ are assigned an inverse gamma prior distributme can note

that these terms determine a spatial process iar@acce with the terms defined by
Besag et al. (1991). Bernardinelli et. al. (199pa)nted out that the choice of the
dispersion parameter must be made with cautiony €hgied out a simulation study of a
Poisson model applied to a model of disease mapmugverified that the heterogeneity
parameter has standard deviation approximatelylégqua7 times the standard deviation

of the clustering parameter, var) = 0.7 var ). Thomas et al. (2002) suggested that a

restriction must be imposed on the random effeatarpeters such that those effects sum
to zero. In other words, an intercept parametertrbasncluded in the model receiving
an improper (uniform) prior distribution.

Gelfand et al. (1998) noted that, if both paranseteere placed in the model, then

one must allow Bf) = 0. In the same fashion, if both parameterand ¢, were included
in the model and one attributed a non-informatisierdor v,, then eithen,=0 or} v, =
0. Moreover, as they pointed out, & andv; are included in the model, the prior

distribution will have greater weight in the posterdensity. If one allows; to be

centered around zero with a small variance, thenctmponenté, will have greater

weight in the term®;. Due to convergence issues in the MCMC algorit@afland et
al. (1998) suggested that one should choose tadeatither the spatially non-structured
variable or the structured variable, but not b&8#cause the objective of their article was

to obtain predicted values, they concluded thatrtfeelel includingé, yielded better

results.
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SPATIO-TEMPORAL MODELING

One of the pioneering articles related to the sp&timporal analysis using a log-
linear Poisson model in the disease mapping wasiged by Bernardinelli et al.
(1995b). In this article, they represented theiapaffect, which can be interpreted as
the rate of variation of a certain disease in &giarea by a random effect varialle
The temporal term is captured through a trend aoefft and the interaction between the

space and temporal effect reflected by the spat@tirelated covariaté,. In general,

the model can be represented by: (intercept + aréane + area*time). To capture the

dependence betweenand &, or in other words, the intercept and trend, thegumed
thatv; arose from a univariate normal distribution andttf§ came from a conditional

normal distribution. Based on this research, Drie@003), modeled the relative risk for
each period and city in Italy, incorporating an inadl covariate that allows one to
determine in which time lag the disease, in thidipaar case, lung cancer is affected by
socio-economic factors.

Another approach to modeling spatio-temporal e$fecas proposed by Waller et al.
(1997). In this model, instead of capturing the tigpemporal variation in a
multiplicative form, they considered a nested mpaeiere the spatial effect and the

heterogeneity effect were allowed to vary in tifibe general model considered was:
Hha = XB+Z W+ & +V,, (5)

where x_£3 is the covariate representing the effect for eadhgroups, z' w represents

the regional covariates, is the spatial effect for thigh region in year t and, is the

random effect for thé&h region in year t.
Using the principle of parsimony, simpler modelsrevehosen among the various
models considered in the article. Because of éimglitional interchangeability associated

with time, the resulting prior distribution assigh® the heterogeneity can be represented
iid
by v ~ N(u,a?"). For the spatial effecf"” in theith region in yeat, Waller et al.

(1997) adopted an intrinsic CAR prior distributiofhus, &V~ N(&©, 0?91 ny), where
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&Yis the average of thigh contiguous areas of An inverse Gamma was used to form

hyper-priors for g

ZVand g;". Some restrictions also must be imposed in spatio
temporal models in order to ensure identificatiofhe inclusion of the former effect

makes unnecessary the addition wfand ¢, . Moreover, the model is incapable of
identifying & and W, if both are included in the model and a non-infaiweaprior is
assigned td¥, given the time t. If botlv’ and & are included in the model, then one

must let " = 0.

We also allow the spatial effects to be nestediwithe temporal process, such that

the parameters of the deterministic trenfi’f) are modeled using the CAR prior.

Intuitively, one can think of the trend parametassbeing correlated across space, given

time. Thus we have the following general expressidar the mean
componeny, = B9 + BVt* +Bt*? +u,. As was described in the previous subsection,

we can incorporate the stochastic term in the gérexpression and reparameterize the

correlation term. We also reparameterized the tpEmdmeters by recentering the trend.
MODEL SELECTION CRITERIA

As we have demonstrated in the preceding revieverakmodels emerge as potential
candidates for our particular problem. A basicqfioa is thus how to select the best
model, taking into account one of the objectiveshid work—prediction of agricultural
yields. Traditional criteria of model selection,chuas the Bayes’ factor, are not
applicable in cases like ours where non-informativeonditional auto-regressive (CAR)
prior distributions are used. Carlin and Louis @0pg. 220), have shown that the use of
improper priors results in improper conditional gicive distributions, limiting the use
of Bayes’ factor as a model selection criteriothi@se cases.

In the simplest case, when both models have thee gasmameterization and the
hypotheses are simple, one can see that Bayest figotquivalent to the likelihood ratio
between the two models. The application of thesital approach to model selection is

also difficult in these cases. Penalized likelih@odieria based on asymptotic efficiency
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require the determination of the dimension of the@lel or the number of the parameters.
In hierarchical models with random effects suchttes ones used in this paper, the
dimension is difficult to characterize. Further, more sophisticated models the
dimension of the model increases with the sampte, shus invalidating the use of
popular model selection criteria. Examples of sgonventional criteria include the
Akaike Information Criteria (AIC) (Akaike, 1973),hich in terms of change from model
1 (My) to model 2 (M) is given by -2loggupmaf(x/ 8))(supmzf(x/ 8)) ™ - 2(p - p1), where

p. and p are the number of parameters, the Bayesian IntowmeCriteria (BIC)
(Schwarz, 1978), which is equal to -2lsguif(x/ 8))(supuzf(x/ 8))™* - (p2 - p)(log n)
and the Deviance Information Criteria (DIC), giviey (E,, (D) — D(E,,(6)), where the

first term is the expectation of the deviance amal gecond is the deviance estimated at
the expectation of the posterior distribution. t€ia based on cross validation are also
difficult to implement when more sophisticated migdare considered, due to the
inclusion of heterogeneity and clustering variabiiedined only by the prior (Waller,
1998).

In this article, we select our model specificatiop adopting a criteria based on
predictive densities. As Laud and Ibrahim (1996)nfed out, these criteria are easy to
interpret since they are not based on asymptotalyais and they allow for the
incorporation of prior distributions. Working ihd predictive space, the penalty appears
without the necessity of asymptotic definitionstuitively, one can think that good
models must result in predictions close to whatiserved in identical experiments.

In this context, Gelfand and Ghosh (1998) formalize predictive criteria using a
general form of loss function. The objective istmimize the posterior predictive loss.

The posterior predictive distribution is given by:

F (e | Xeto) = [ F (X IM)P(M [ X5, )dM (6)

whereM represents the set of all parameters in a givetleirandx.ey is the replicate of
the vector of observed datés.

The criteria of model selection is based on a digancy functiorl(Xnew, Xobs), and the
objective is to choose the model that minimizes éxpectation of the discrepancy
function, conditional omy,sandM;, whereM; represents all the parameters in the model



20

i. If we consider Gaussian models, the discrepanaogtion is given byd(Xnew, Xobs) =
(Xnew' Xobs)T(Xnew' Xobs):
DMi = E[( Xnew - Xobs)T (Xnew - Xobs) | Xobs' M i]

DMi = Z E[(Xn,obs - Xn,new)2 | Xobs’ M i] : (7)

Gelfand and Ghosh (1998) demonstrate gt can be factored into two additive

terms G, and B, , where the first ternG,, = Z[xn,Obs ~ E(X, pew | Xos)]° represents the
n

sum of squared errors, which is a measure of gasdokfit, and the second

termB, = Zvar(xmnEW | X,s) 1S @ penalty term. In models that are over- atenfit, the
n

predicted variance tends to be large and Ryus large. The penalty is considered in the

analysis without regard to the dimension of the ehoth this work, a slightly different
version of the model selection criterion will belinéd. Instead of using the quadratic
predicted error, the mean squared predictive emitirbe considered relative to the
number of regions used in the analysis. Note tiainclusion of a common denominator
to all models does not affect the criterion.

EMPIRICAL ANALYSIS
DATA DESCRIPTION

The agricultural yield data used in this study werevided by the IBGE (Statistical
and Geography Brazilian Institute) and correspanthé period of 1990 trough 2002 for
corn in the state of the Parand, located in thehson region of Brazil. The state of
Parand is the largest producer of corn in the egumtith a total amount produced in
2002 equal to 9,797,816 tons, a little bit morentB@% of all Brazilian production. Corn
yields in Parana are generally the fourth large®razil (3,987 Kilograms per hectare —
kg/ha in 2002).

The state is made up of 399 counties. Annual yobiservations for all 13 years are

only available in 290 counties. Consequently, weycaut the analysis with only those



21

counties with the largest number of observatiort®e Tive largest counties in terms of
average yields are Castro (6142 kg/ha), Ponta @rs829 kg/ha), Marilandia do Sul
(5488 kg/ha), Tibagi (5346 kg/ha) and Catanduv&234kg/ha). The evolution of the
corn yields in the state of the Parana betweeryglaes of 1990 and 2002 can be seen in

Figures 1 and 2.

EMPIRICAL APPLICATION

We begin our analysis by choosing the model thatimikzes the posterior predictive
loss. Among the several models that were considasechndidates (25 in all), we only
present results for the 10 best models (that medul minimumD,, according to the
criteria described above). Results for the modéddion criteria are presented in Table
1. Note that all of the models chosen by the test lvalues of the predictive error
criterion include the temporal component and theclsistic trend. This clearly
demonstrates the importance of the stochastic iretite analysis. The optimal model, or
in other words, the model that minimizes the quad@edictive error, includes both the
stochastic and deterministic components. In additibhe optimal model allows the
intercept to vary from one county to another. FRert this model includes spatial
dependence in the slope parameters.

The difference between models 1 and 2 lies in i@ plistributions assigned to the

[ parameters. The superscriptindicates that a conditional autoregressive pwas
assigned to the parameter. OtherwiSereceives a normal prior. Comparing models 4

and 9, one can note that the presence of heterbgeesults in a smalldd,, as compared
to the inclusion of the clustering effect. In a qarison of models 6 and 7, the addition
of the spatially structured latent variable (clustg) which varies in time results in a
larger value oD, as compared to the model that holds the clusterangable fixed in
time. If we include the deterministic term, the rabdith a clustering effect that varies in
time becomes slightly superior to the model corrsigethe same effect constant in time
(Dg < Dg). The results in Table 1 also demonstrate thagtadratic deterministic trend
model and mixture of normal models were not inctude the top ten best model
specifications. This is because they resultechsatisfactory values @,
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According to Table 1, given the fact that the basidel was the one including the
temporal and stochastic component, we will presedétailed description of this model
in the discussion that follows. Initially, to giwebetter visualization and understanding,
model 1 will be written graphically, in Figure 3.

In Figure 3, nodes of the Directed Acylic Graph (BAare stochastic variables,
rectangles are constants, arrows with simple andllph straight lines represent,
respectively, parameters of the distributions amwichl links between the variables. The
indexi andt in the rectangles denote, respectively, the viriabspace and time. The

parameterf, has logical links betweea and é (zeta), so that we can redefine it, in

order to recentralize it. The first variable re@siva Normal prior distribution and the
second one a conditional auto-regressive prior.

The parameters of the varialdgtia, namedneigh, wei, andnum are, respectively, the
J-th adjacent counties in relation to a central countthe weights assigned to each
neighboring county, such that, adjacent countiesive weight equal 1 and 0, otherwise,
and the sum of the adjacent counties to a centrahty. The variance parameter of the
zeta variable receives an Inverse Gamma prior distriouti

We run three chains to check the mixing of the Markequence and also check for
all the parameters the graphical diagnostics ofvemyence. Results showed that all
parameters achieved good convergence and mixingureé=4 shows the convergence of

L1, B2and p in selected counties.

Next, in Figure 5, we show the decompositionupf according to model 1, in its
temporal component, deterministic and stochastc, tfie counties of Castro, Ponta
Grossa, Marilandia do Sul, Tibagi, CatanduvasRoidndia. One can see that in the five
first counties, the stochastic term has larger fteig the composition ofi; and the
residual are around zero for the six counties.

One of the main advantages of the Bayesian analy$isat one can incorporate the
uncertainty when estimating the parameter valu&inbathis fact into account, Table 2
shows the expected value of the parameter, itslatdrdeviation and the percentiles 5%,

median and 95%. For these counties, the averagdasth deviation is for3,, S, and

pequal to 582, 3.9 and 0.11.
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Because of the limited space, we will show onlycdipsive statistics of the 290

counties. Thus, the maximum predicted valuegBaf £, and p are respectively 2410,

46.85 and 0.83. The minimum values are 550, 46r«B @30 and the average, 1174,
46.79 and 0.61. The average standard deviatioB(s3!195 and 0.13.
Figure 6 shows that the number zero is in thep@it of the posteror distributions of

the parameterg?;, £, and p. Thus, we can confirm that, in fact, the slopentef the

deterministic term is different from zero and tlmgrelation parameters were, in average,
equal to 0.73 for these six counties.

Because of the series being relatively short, wendb correct for conditional
heteroskedasticity. Instead we assume that thessare conditially homoskecastic. If
series were relatively longer, a procedure thatccbe used to verify heteroskedasticity
would be assign to the precision parameser (Figure 3) indexes andt, or in other
words, make the parameter vary in time and spadelater on, monitor such parameter
to verify the variation in the precision and cotrigcwhen necessary.

In Table 3 we show the predicted values of yieldsl ds respective standard
deviation and percentiles 5, 50 and 95% for thenties of Castro, Ponta Grossa,
Marilandia do Sul, Tibagi, Catanduvas and Rolandle variance tends to increase as

the time lag increases.

RATING THE CROP INSURANCE CONTRACT

Pricing an insurance contract accurately is essefati the viability and existence of
an agricultural insurance market. Premium rates dha too high result in an insurance
pool made up of only high risk individuals. Likesgi rates that are universally too low
will result in insurance losses since premiums @oé adequate to cover indemnity
outlays. The selection problem that is broughtualdny inaccurate rates is known as
adverse selection. In the literature of insuracenomics, this is often also referred to
as as the hidden information problem since agemd to know more about their risks

than does the insurance provider.

° In the context of the principal-agent theory, the probbf hidden information or adverse selection occurs
when the characteristics of the agent are imperfectly obsenvetiebprincipal. In a classical article,
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The insurance premium rate (PR) represents a propofor percentage) of total
liability. In the simple case where a proportio® < 4 < 1) of the expected crop yieyd

is used to form the basis of insurance, the premmatmis given by:

F, (AY*)E [Ay° = (Y |y <Ay°)] (8)
Ay® ’

where E is the expectation operator aiRdis the cumulative distribution function of

Premium RateRR) =

yields. Note that the premium rate is completedysparent to the price at which yields
are valued since the price term would appear ih bioé numerator and denominator of
the premium rate expression.
A slightly different derivation of the premium rateconvenient for our purposes.. If
we reparameterizg such thaty* = y/ 1y®, then equation (8) becomes:
PR=P(y* < 1E-[1 - ¢ y* <1)] 9)
Note that the support of the random variablemains the same in this transformation. If
we considew = 1 —y*, then equation (9) can be rewritten such that:
PR= P(w > 0)[1 —Ew(1 —wjw > 0)]
PR = P(w > 0) E,[wjw > 0)] (20)

After some simplification, the premium rate equatieduces to:

PR= Jl.wf (w)dw (11)

Akerlof (1970) analyzes the market of used cars (“lemons”),irggihat in a market where sellers have
more information about the quality of the used car thamitsuyhen only the bad quality cars will remain in
this market. One can note that, on average, the qualitp&ilhferior compared to the price paid and in the
limit the market for used cars will not exist due to thebpgm of asymmetric information. Analogous to
the “lemons market”, Akerlof also pointed out that the hemitturance market is also affected by the
adverse selection. The higher the premium, the riskier insieance market, or in other words, only those
individuals who really need to buy the insurance contralttdwiso, thus selecting only those more likely
to receive the indemnity. Rothschild and Stiglitz (1976algzed a general model of a competitive
insurance market. In this market the nature of the imperfectniation lies in the fact that insurance
companies are not capable to differentiate risks among buyerseQuently, they argue that in a
competitive insurance market the equilibrium cannot be reachssib"second best" solutions would be
desirable for the viability of this market, such as, the@lé@mentation of the "auto-selective" insurance
contracts, in which the insured would reveal to the insunés risk structure constraint to the zero profit
condition by the firm. Thus, contracts that could voluhtdne chosen would be offered to individuals,
such that, the low risk individuals would be offered cacts with partial coverage at a lower premium.
Likewise, low incentives (e.g., higher premiums) are givethéohigh risk group to buy the contract. The
auto-selection mechanism was demonstrated to be a Pareto improviénan individual can be
categorized according to signals correlated with their risk.tero'second best" solution would be to
formulate the contract according to the available informatiothel insurer can monitor the insured, even
imperfectly, then a Pareto improvement situation can be reached.
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We can similarly write (11) aBR = E[wl(0 < w < 1)]. Because of the change of
variable, the support also changed suchwhiggs now in between 0 and 1.

Premium rates were evaluated and compared usingé¢la@ posterior ofv. In figure
6 below, we illustrate aggregate premium ratesrégions in the state of Parana. The
state was divided into 10 large regions: Occide@ttre of Parana (1), Oriental Centre
of Parana (2), Centre-South of Parana (3), Metitgsolof Curitiba (4), Northwest of
Parana (5), Central North of Parana (6), PioneethiNaf Parana (7), West of Parana (8),
Southeast of Parana (9), Southwest of Parana (10).

Figure 6 represents the average premium rate ferctbverage levels (i.e., the
percentage of the expected yield that is insuréd@0&6 through 90%, in multiples of 5,
for each region. One can note that the largess &te located in regions in the north and
northwest of the state. We should note that forroadel of yields that underlies rates is
strongly influenced by the last observed yields g002). Consequently, premium rates
are strongly influenced by this value. To underdtdow yields in 2002 affect the
premium rate, we must go back to the reparametenizafy in equation (9). One can
see that, the smaller the valueydh relation taly®, the smaller will be*, thus, the larger
the value ofwv. Because of the fact that rates are directly pitogrzal tow, an increase in
this variable will result in higher rates. This of course, a natural consequence of
having such a short time-series of data. As mrgpe®ence is accumulated, the effect of
any single observation will be muted. Going bazligure 2 one can see that counties
situated in the northwest region, regions 1, 5t péregions 6 and 8, in Figure 6, had
relatively lower yields in 2002. Consequently stisituation results in higher premium
rates in these regions. On the other hand, reddp@sand 9 had relatively strong yield
performance in 2002 and thus have relatively logremium rates. Considering counties
1, 2, 3 and 4, in Figures 7 and 8, (below) one daarly note that counties 1, 2 and 3,
whose yields were relatively low in 2002, resultedigher premium rates in relation to
county 4. Thus, we again see that the premium isataghly influenced by yields in
2002.
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CONCLUSIONS

We have discussed a statistical and actuarial rdetiiopricing a crop insurance
contract that is based upon hierarchical Bayesiadets. Our models of the probability
generating process of yield data consider tempanal spatial effects as well as the
interaction between these two effects, resultingpatial-temporal models. The contracts
are based upon a regional crop yield index. Swap imsurance plans have been adopted
in many areas, including in the United States. aAmde plans of this sort are now being
implemented as an alternative risk managementitoitle South of Brazil. We point out
that this methodology can also be applied to cetgrbased on individual yields, as long
as there are enough data to conduct the statigtiallysis. Conventional methods of
pricing this type of individual contract using aggate yield data, such as, county
averages, are not recommended, because they defleat accurately the risk structure
of an individual producer, thus increasing the peobof the adverse selection.

The use of these new risk management tools, togefitie the approval of the Law n°
10,823 in December 2003, provide support for theelbgpment of a crop insurance
market in Brazil. Likewise, these developmentsrione incentives for the entrance of
new private insurance companies in this markemalBi, the new legislation includes
improved incentives for agricultural producers taylcrop insurance contracts in the
form of premium subsidies.

The methodology developed in this article was usedorecast corn yields for
selected counties in the State of Parana usingcgatxing 1990 through 2002. Using the
posterior predictive criteria of Gelfand and Gh¢$898), we chose from among several
models appropriate for this forecasting and insceapricing problem. The optimal
model was used in the calculation of premium rdtesinsurance coverage based on
regional yield indexes. Our analysis considers oy the temporal aspect of yield
movements but also the spatial correlation thastexpetween counties. The resulting
spatial-temporal model is thus more flexible conegato other potential specifications
that have been considered in the literature. dhtlof the rather small sample of data
available, we demonstrate the sensitivity of premmnates to the yield observed in 2002.

In particular, higher rates were found in the regiwhere yields were lower in this year.
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We discuss the potential application of our methtwd¢he general problem of pricing
insurance contracts for individual coverage. Weerbat, to the extent that sufficient
data are available, these methods may be applidabtbe problem of pricing crop

insurance contracts with individual coverage. Feiiesearch will evaluate methods of

pricing insurance contracts for individual yieldsing the methods developed in this
analysis.
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Table 1. Model Selection Criteria

M Dnm Model forui

1 667800 A Yia* B, + 5t

2 673200 O Y+ B+ Bt

3 700100 R-W

4 728500 A Yiat By BT,
5 736800 AR(1)

6 737900 A Y t§

7 739900  AYut6

8 751400 P Y+ B, +Btr+¢
9 751700  PYea+ B, +Botr+¢,
10 761300 Exchangeable model
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Table 2. Predicted parameter values, standard t@viand percentiles 5, 50 and

95%, of selected counties.

County parameter  predicted value standard deviation 0.05 0.95
B 1366 683.6 201.3 2475
Castro Bo 46.83 3.938 40.33 53.29
Jo} 0.8073 0.1143 0.6236 1.002
B 1545 515.7 687.5 2397
Catanduvas B 46.78 3.95 40.29 53.34
Jo} 0.7147 0.1032 0.5447 0.8851
B 1446 592.6 461 2426
Marilandia do Sul Bo 46.78 3.937 40.28 53.28
Jo} 0.7703 0.1092 0.5904 0.9502
B 1511 612.3 490.1 2523
Ponta Grossa B 46.82 3.94 40.34 53.3
Jo} 0.7553 0.11 0.5749 0.9413
B 2109 526.4 1260 2993
Rolandia B 46.79 3.937 40.31 53.28
o} 0.5579 0.1082 0.374 0.733
B 1380 563 450.5 2306
Tibagi B 46.82 3.941 40.32 53.32
o 0.7751 0.1062 0.6021 0.9526
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Table 3. Predicted yield values, standard deviadiuh percentiles 5, 50 and

95%, of selected counties, in 2003 and 2004.

County year pre.dlcted Staf‘d‘?“d 0.05 median  0.95
yield deviation

Castro 2003 8301 791 6990 8303 9591
2004 8455 1114 6647 8443 10280

2003 6553 760 5296 6550 7793

Ponta Grossa ., 6638 1008 5021 6628 8338
o 2003 7499 786 6208 7492 8784
Marilandia do Sul 55, 7624 1074 5883 7614 9405
Tibagi 2003 7730 793 6419 7733 9019
2004 7779 1094 6035 7753 9613

Catanduvas 2003 5968 758 4716 5972 7195
2004 5833 903 4350 5813 7316

Rolandia 2003 7336 777 6068 7342 8615
2004 7461 1079 5745 7433 9280
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Figure 1: Corn yields in the state of Parana, kdogs per hectare in 1990.




Figure 2: Corn yields in the state of Parana, kdogs per hectare in 2002.
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FIGURE 4. Convergence checking Bf;, 5. and p, respectively, for Castro, Ponta
Grossa, Marilandia do Sul, Tibagi, CatanduvasRokdndia.
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FIGURE 5. Decomposition af; in its deterministic and stochastic components.
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FIGURE 6. Posterior densities gf;, . and p, respectively, for Castro, Ponta Grossa,
Marilandia do Sul, Tibagi, CatanduvasandRolandia.
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FIGURE 7. Premium rates (%) aggregated by regionke state of Parana
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FIGURE 8. Corn yields in counties 1, 2, 3 and 4lfkgtare), 1990 and 2002.
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FIGURE 9. Premium rates (%) in counties 1, 2, 34ndth coverage
levels of 70, 75, 80, 85 and 90%.
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