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SPATIO-TEMPORAL MODELING OF AGRICULTURAL YIELD DATA WITH 

AN APPLICATION TO PRICING CROP INSURANCE CONTRACTS 

 

INTRODUCTION 

 

Historically, crop insurance in Brazil has been offered by the government at both the 

federal and state levels. In spite of the government’s efforts, the experience with crop 

insurance in Brazil has generally not been satisfactory.  The absence of a suitable 

actuarial method to price crop insurance contracts is one of the main reasons for the poor 

performance and ultimate failure of this agricultural risk management program. High 

premium rates inhibited the demand for the insurance by producers and, at the same time, 

selected only those with higher probability of receiving the indemnity.  This is the classic 

problem of adverse selection, which characterized historical efforts at developing crop 

insurance in Brazil.  

In recent years, efforts have been made to improve the performance of the programs 

and to make crop insurance more popular among producers. In December/2003, the 

federal government of Brazil approved Law No. 10,823, which authorizes the 

government to subsidize the crop insurance premium.  These premium subsidies will be 

specified according to the sort of insurance, type of crop and animal species, categories of 

producers, and production regions.  A priority of the new insurance is to provide 

coverage to those engaged in activities considered to be risk-reducing or technology-

enhancing. 

Beyond the federal government’s efforts, state governments have attempted to 

stimulate producers’ demand for crop insurance. The State of São Paulo, through a pilot 

project initiated in 2003, subsidized the premium paid by the producers by 50% for five 

crops: banana, orange, grape, corn and beans in 219 cities of the State.  In 2004, the 

subsidy program was expanded to cover 14 more crops in 534 of the 645 cities of the 

State. These crops included cotton, peanuts, irrigated rice, cassava, soybeans, sorghum, 

wheat, pineapples, plums, kaki, guava, passion fruit, peaches, and cabbage.  In the State 

of Rio Grande do Sul, the state government began regulating the crop insurance state 

system through the Law No. 11,352 in 1999. The program is subsidized and operates 
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with three types of insurance which vary according to the producer and the total amount 

of subsidy. 

This article concentrates on statistical and actuarial methods with the objective of 

pricing an alternative crop insurance contract based on an index of regional yields. This 

type of insurance is widely available in the United States, India, Sweden and Canada 

(Miranda, Skees and Hazel, 1999) and, currently, is offered in Brazil in the southern state 

of Rio Grande Do Sul.  It’s important to point out that such methods addressed in this 

paper can also be applied to pricing others forms of insurance contracts, such as those 

based on individual yields, as long as there are enough data to do the analysis. 

In the analysis that follows, a number of alternative parametric, statistical models 

were applied to the data set with the objective of modeling the stochastic generating 

process of yield data and, in particular, properly recognizing the temporal, spatial and 

spatio-temporal dynamics underlying crop yields. To select among a large number of 

potential candidate models, a minimum mean square prediction error criteria was used. 

This article is arranged according to the following outline.  In the next section, the 

history of agricultural insurance in Brazil will be described briefly.  Particular attention 

will be given to the institutional, legal and operational aspects of crop insurance at both 

the federal and state levels.  In the next section, we review the literature that has 

addressed statistical aspects of agricultural yield data.  To be precise, statistical modeling 

of yield data will be considered. We also describe temporal, spatial, spatio-temporal 

Bayesian modeling methods.  As we discuss in detail, alternative distributional 

assumptions and techniques, including mixtures of normal distributions and the normal 

distribution, are considered.  We also consider methods appropriate for choosing among 

alternative candidate models.  The next section of the paper builds upon this discussion 

by applying the empirical methods to an analysis of Brazilian yield data for maize.  In 

particular, we describe our optimal model specification and pursue an analysis of the 

problem of pricing a crop insurance contract using corn yield data from the State of 

Paraná, Brazil between 1990 through 2002. It should be noted that, although our 

application is to a case of regional yield insurance, our methods are entirely applicable to 

other types of contracts.  We conclude the paper with a brief summary and concluding 

comments.   
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A BRIEF HISTORY OF CROP INSURANCE IN BRAZIL 

 

Agricultural insurance was introduced in Brazil in 1938.  This early form of federal 

crop insurance was specific peril—being directed toward hail damages to cotton.  Hail 

insurance was later expanded to cover additional crops, including grapes and other 

horticulture crops.  The early performance of the program was poor, with loss ratios (i.e., 

the ratio of indemnities paid out to premiums collected) above 3.8 being observed in the 

early years.   

In January 1954, the federal government of Brazil established the norms and 

regulations for crop insurance in Brazil through Law No. 2,168. This legislative action 

established the Agrarian Insurance Stability Fund to guarantee insurance market stability, 

allow the gradual adjustment of premium rates, cover catastrophic risks, and to provide a 

number of other initiatives to improve crop insurance. The Institute of Reinsurance of 

Brazil (IRB), through its Technical Board, was responsible for the administration of the 

Fund’s resources.  The law created the National Company of Crop Insurance (CNSA) 

with the objective of gradually developing the operational aspects of agricultural 

insurance.  All responsibilities not assumed by the insurance companies or the CNSA 

were reinsured in the IRB.  If these companies did not find reinsurance within the country 

they could, through the IRB, seek reinsurance in international markets.   

The company functioned between 1954 and 1966, but was forced to interrupt its 

activities in November 1966 because of a legal decree (Law No. 73) which closed down 

the CNSA.  One of the main causes of the failure of the company was the extreme 

centralization of the program’s administration in the city of Rio de Janeiro. Even with 

branch offices spread in many regions in the central and south of the country, the central 

administration was thought to monopolize the decision-making process.  Thus, important 

programmatic aspects that should have been taken into account were ignored.  For 

example, the construction of regional plans that considered the features and peculiarities 

of local environments should have been considered.  Likewise, the area to be insured and 

selection of the producers should have been subject to tighter constraints. These are 
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crucial program design issues that one must consider when dealing with crop insurance in 

a large country like Brazil with so many different climates and types of soil.  

In contrast to such a reasoned approach, the federal company applied generically-

designed plans throughout the entire country.  Moreover, due to the fact that CNSA was 

not allowed to operate in other types of more profitable insurance lines, their exposure to 

risk was concentrated on agricultural risks in a small volume of business. Further, the 

operational resources available to the company were modest and the company ran large 

deficits. 

After the dissolution of the CNSA (through Law No. 73/66), the government did not 

provide any risk management or protection mechanism to the agricultural sector until 

1973. In December 1973, the Farming Activity Guarantee Program, called PROAGRO 

was created by Law No. 5,969.  The federal government, because of a need to offer risk 

protection to producers due to the increasing supply of rural credit, implemented the 

PROAGRO program to protect the capacity of the financial system in case of large-scale 

defaults on loan obligations by producers.  From its beginnings through 1993, the 

program accumulated large deficits ($1.6 billion). Many problems were raised during this 

period; including delays and non-payment of indemnities, technical and operational 

deficiencies and concerns regarding the presence of fraud and abuse in the program. 

The results in the first five years of the program were disastrous. The loss ratios for 

the years between 1975 and 1979 were 84.8, 8.2, 10.1, 9.3 and 16.5, respectively.1  The 

period corresponding to the beginning of the PROAGRO until August of 1991, was 

characterized by unsatisfactory results. The average loss ratio in the period of 1980 

through 1991 was 2.4. In 1991, a number of important modifications to the program were 

announced, though these modifications did not halt the growing deficit of the fund, which 

reached $264.6 million by May of 1994. Consequently, in August of 1994, there were 

additional operational modifications to the program, although some deficiencies still 

persisted. Program shortcomings included an absence of monitoring, multiple risks 

covered by the program, and a substantial delay in the payment of indemnities. 

In October of 1995, the Ministry of Agriculture and Supply, in partnership with the 

Foundation of Technological and Scientific Enterprises (FINATEC) and the University of 

                                                 
1 The loss ratio is the total amount of indemnity paid out divided by the total amount of premium collected. 
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Brasilia, implemented the “Project to Reduce Climatic Risk in Agriculture.” The 

objective of this project was to develop a methodology to reduce losses in agricultural 

production and to induce the adoption of techniques that the producer could use to 

manage climatic risk, specifically rainfall risks.  The project was concluded in August of 

1996 and the National Monetary Council in accepting the recommendations, redefined 

the objectives of the PROAGRO program.   

New legislation in 1996 stipulated that producers that adhered to agricultural 

production recommendations would be charged differentiated insurance premium rates. 

Moreover, the project determined the proper seeding period for each city and for the 

following crops: rice, cotton, soybeans, corn and dried beans for the entire country and 

for wheat in the central and southern regions. As result, there was a significant 

improvement in the performance of the program. The loss ratio over the period of August 

of 1991 to 1997 was 0.94.  At the state level, some initiatives were introduced though 

these were initially restricted to only a few crops.  

Several private insurance companies currently offer crop insurance in Brazil. 

Although the amount of business is still small, some pilot projects have been 

implemented throughout the country. For example, a private company implemented an 

insurance plan based on county yield (that is, an area-wide insurance plan) in the State of 

Rio Grande do Sul.  In this type of insurance, the producer will be indemnified only on 

the basis of a large area’s yield experience.  In particular, the level of protection and 

indemnities are based upon the difference between the area-wide guaranteed yield and the 

observed county yield.  Indemnities are paid only if the observed yield is lower than the 

county-level guarantee, regardless of an individual farmer’s experience. Other private 

insurance companies are offering contracts covering yields at the individual farm level.  

Other types of crop insurance can also be found in the country. A mutual, cooperative 

form of insurance is the oldest type of insurance in Brazil. Through a formal contract, 

individuals get together and agree to divide damages or losses that individual producers 

might experience due to certain unexpected events. Instead of paying premiums, the 

insured growers contribute according to a quota necessary to cover administrative costs. 
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The responsibility for risk is shared by everyone. Some examples of mutual insurance can 

be found in the southern regions of Brazil.2   

  

STATISTICAL MODELING FRAMEWORK 

 

A fundamental parameter of any insurance contract is the premium rate.  An 

actuarially fair premium rate is a rate that is set such that premiums collected are equal to 

expected indemnities.  An inaccurate premium rate results in distortions to the insurance 

pool and thus may result in losses as agents adversely select against the insurance 

provider.  In particular, low risk agents may be overcharged and high risk agents may be 

undercharged.  This will distort participation in favor of the higher risks and thus 

premiums will not be sufficient to cover indemnity payments.  This condition of adverse 

selection has been well documented for a number of insurance plans.  The eventual 

failure of an insurance program as a result of such selection is often called the “death 

spiral of adverse selection.”  Optimally, an insurance provider would prefer to calculate 

individual premium rates for each farmer on the basis of that farmer’s risks and expected 

yields.  However, individual data are rare at best and thus crop insurance plans are often 

based upon more aggregate data—such as data at the county level.  Such index-based 

crop insurance plans were developed to overcome the problem of short or nonexistent 

individual crop yield series. 

Another important aspect of insurance contract design pertains to the actuarial 

procedures used in the calculation of insurance premium rates.  In particular, the 

derivation of such rates generally requires a statistical analysis of crop yields. A wide 

variety of statistical methods are often adopted in the estimation of crop insurance rates 

and a number of issues relating to the modeling of crop yields are pertinent to these 

methods.  For example, one often must address issues related to the fact that yields tend 

to have substantial trends over time and tend to be significantly correlated over space due 

to the systemic nature of weather.  One subtlety often overlooked in crop insurance yield 

models pertains to the fact that a degree of uncertainty also applies to the parameters of 

                                                 
2 This includes the Cooperativa Agropecuária Batavo, the Cooperativa Agrária Mista Entre Rios, and 
Associação dos Fumicultores do Brasil (Afubra). 
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any model used to describe the uncertainty of yields.  For example, it is common to 

detrend yields using standard regression models and then to use the detrended yields to 

measure yield uncertainty.  However, a certain degree of uncertainty is also inherent in 

the models used to detrend yields.  In this analysis, we adopt a Bayesian inferential 

framework that accounts for all such sources of uncertainty while estimating the 

appropriate premium rate.   

Over many years, the statistical issues underlying agricultural yields have been a 

controversial point in the crop insurance literature. Several statistical approaches have 

been considered, including parametric yield models, semiparametric methods (Ker and 

Coble, 2003), nonparametric models (Goodwin and Ker, 1998; Turvey and Zhao, 1999) 

and empirical Bayes nonparametric approaches (Ker and Goodwin, 2000).  

Within the parametric modeling approach, some researchers have concluded that crop 

yields tend to follow a normal distribution (Just and Weninger, 1999). However, a large 

number of other researchers including Day (1965), Taylor (1990), Ramirez (1997), and 

Ramirez et al. (2003) have found evidence against normality.  Other suggestions included 

the use of a Beta distribution (Nelson and Preckel, 1989), inverse hyperbolic sine 

transformations (Moss and Shonkwiler, 1993), and gamma distributions (Gallagher, 

1987). Sherrick et al. (2004) used several parametric distributions including the normal, 

lognormal, Beta, Weibull and logistic distributions to model individual yield data.  Of 

course, the characteristics of crop yields may be idiosyncratic and may vary by location, 

crop, and production practice.  Thus, it is unlikely that any single parametric approach 

will be universally supported across different applications.   

As we have pointed out, a related problem pertains to the limited number of yield 

observations typically available for empirical models.  This is true even when aggregated 

data are considered.  This limitation typically precludes the use of individual farm-level 

data for the purposes of modeling yields and rating insurance contracts.  The choice of a 

statistical model that adequately reflects the conditional density of yields is an important 

consideration in the actuarial calculation of an accurate premium rate. In doing this, one 

must try to recover the probability generating process of the yield data. Agricultural 

yields follow a spatio-temporal process, in the sense that if we take the average in a 

region conditional on the underlying temporal process, one can recover the conditional 
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density yield f(y | tΩ ) at a certain moment in time and point in space, where tΩ  is the 

minimum σ -algebra generated by the information known at moment t (Ker and 

Goodwin, 2000). 

In most empirical work, the only information known at time t is the time index and 

previously realized yields.  Thus, in these analyses, the conditional density is based only 

on the temporal generating process of the data. Our work addresses this temporal aspect 

of the data generating process, but we also give attention to the spatial dimension of the 

data generating process.  In particular, we explicitly recognize the fact that the events that 

underlie yield realizations (e.g., weather, disease, and pest damages) tend to affect large 

areas at any single time.  Thus, adjacent regions may experience substantial correlations 

of yields over time.  Thus, our models combine the two aspects of space and time in order 

to construct a spatio-temporal model of crop yields. 

The fact that our data set is not large in the time dimension creates additional 

difficulties regarding the forecast or prediction of crop yields in future years. 3 In the 

construction of crop insurance contracts, it is typically the case that the terms and 

parameters of the contract must be available one to two years prior to the insurance cycle.  

This reflects the fundamental fact that an insurance provider will not want to offer 

coverage after the insurance buyers already have information about their yields.  In 

addition, administrative issues relating to the operation of any program require substantial 

lead time in providing the parameters of the contract offering.  In our case, the last 

observation recorded was for the year 2002.  We will assume that there is a two year lag 

between the receipt of historical yield data and the deadline required for filing new 

contract terms.  Such a two year lag is inherent in all U.S. crop insurance programs.  In 

this context, we must attempt to choose the best statistical model to predict yields for the 

following 2 years.  In light of this objective, we model the structure of the yield mean and 

assume that the precision of our models is conditionally constant throughout the analysis. 

Gelfand et al. (1998), point out that modeling the mean component rather than the 

precision in forecasting models results in more effective results. 

                                                 
3 In this article, forecast and prediction and density and distribution will be used interchangeably.  
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Under this approach, we consider the mean itµ as being identical to E(yit), where i 

represents the space variable index and t the temporal index.  Thus, yit is the agricultural 

yield in county i and in time t, where i = 1, 2, ... , S and t = 1, 2, ... , T.  The objective of 

this portion of the analysis is to model the stochastic mean component, so that itµ reflects 

the covariates, the temporal effects, spatial variation and the spatio-temporal relationships 

relevant to agricultural yields. 

In some applications, statistical models may be comprised of a large number of 

parameters.  This is especially true in analyses of data that have been pooled over time 

and cross-sections.   In such cases, a natural way of modeling the parameters is through 

hierarchical models. Under such an approach, the dependence structure between the 

parameters can be represented by the joint probability distribution. Consequently, we can 

define a prior distribution for these parameters assuming that they can be considered as a 

sample from a common population distribution.  

Hierarchical models are usually specified in several stages, thus suggesting a 

conventional notation. If the model has k stages, the joint distribution of the observed 

variable y and parameters s'θ , can be written in a multiplicative form, such as:  

f (y | θ 1) f (θ 1 | θ 2) f (θ 2 | θ 3) ... f (θ k–1 | θ k) f (θ k). 

We consider hierarchical models to be more natural for incorporating the correlation 

structure. Thus, in our model, the first hierarchical stage assumes that  yit is conditionally 

independent, givenitµ .  In other words, any parameters added to our representation of itµ  

will be random.  If itµ  includes a random effect indexed by t then, marginally, yit will 

reflect the temporal dependence in a given year. Similarly if we include an effect indexed 

by i, marginally, yit will reflect the spatial dependence within certain region.  In such a 

case, a spatial effect can be introduced into the model, thus allowing for spatial 

dependence among the observed variables yit.  Modeling the structure underlying the 

mean yield realization by adopting hierarchical models is intuitive and facilitates the 

visualization of each component in the analysis instead of modeling such structure 

directly through the yit
 .4  

                                                 
4 For this alternative version, Anselin (1988) shows several spatial and spatial-temporal models, such as, 
SUR (seemingly unrelated regression), where the Beta coefficients are allowed to vary in one of the two 
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In many applications, the observed variable is modeled conditional on a given 

number of parameters that receive a prior probability distribution, which in turn receive 

other parameters, called hyper-parameters. One can assign probability distributions to 

these parameters (hyper-prior distributions). Priors can then be chosen to reflect prior 

knowledge of these hyper-parameters.  In situations where relatively little is known about 

the hyper-parameters, diffuse prior distributions can be adopted.  However, we must be 

careful to recognize that improper priors may yield improper posterior distributions.5  

Consider, for example, the following prior distribution for the parameter θ  ~ 

N( µ , 2σ ). If we assign a hyper-prior distribution for 2σ , such as, f(σ ) = 1/( 2σ )a where 

a = 0, 0.5, 1, it may happen that the joint posterior distribution is improper, although the 

final results based on numerical output seem reasonable and the analyst may not realize 

the problem.  In such a case, an analyst will be making inferences about a non-existent 

posterior distribution. In a practical sense, as shown in Gelfand and Smith (1990), this 

problem can be prevented by considering proper prior distributions that assure that the 

Gibbs sampling process will be well-behaved, where ignorance can be represented as 

values for the precision parameter close to zero.6  

Initially, extending the work of Ker and Goodwin (2000), we modeled itµ as coming 

from two subpopulations or groups, a catastrophic group and a non-catastrophic group. A 

catastrophic event can be defined by an adverse climatic event that occurs in a 

determined period of time (such as drought, hail, etc.).  Consequently, if such an adverse 

event occurs, the agricultural yield will be drawn from the catastrophic group. 

Alternatively, yields are considered to be drawn from the non-catastrophic group when 

normal weather events are realized.  In this manner, one can think of yield realizations as 

being drawn from a finite mixture of two distributions. 

Under this approach, we fit a mixture of two Gaussian distributions, where the 

density of the first (catastrophic) group lives in the inferior tail of the second group.  

Because catastrophic events are, by definition, much less frequent and the observed yield 
                                                                                                                                                 
dimensions and the error term is correlated in the other dimension. In those models the dependence 
structure is modeled through the error term ε it, where yit = xit β it + ε it. 
5 In this context, Hobert and Casella (1996), estimated the parameters of a hierarchical linear mixed model 
using the Gibbs sampler and warned about using a non-informative prior distribution that can lead us to an 
improper posterior distribution. 
6 However, even in this case Gelman (2004) raises some computational and numerical issues. 
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in such years is inferior relative to yields in regular years, one can expect a smaller mass 

in the first group and that such concentration lies in the left tail of the non-catastrophic 

distribution.  If we had information about such catastrophic events for each region and 

each year, we could use it as an indicator variable within a regression model.  However, 

in most cases, such information is not observable and thus must be considered to be 

represented by latent variables.   

The general mixture model can be written as: 

1 1 1
( | ,..., , ,..., ) ( | )

J

j j j jj
f y f yθ θ γ γ γ θ

=
=∑ ,                   (1)  

where θ j is the parameter vector, J is the number of components, such that j = 1, 2, ... , J 

and jγ ≥0 is a weighting parameter representing the ratio of the population attributed to 

the component j, and ∑ =
j

j 1γ .  If the distribution f (y | jθ , jγ ) is represented by a 

Gaussian distribution, then we have θ j = ( jµ , 2
jσ ). Thus, eq. (1) can be written as  

1 1 1
( | ,..., , ,..., ) ( | )

J

j j j jj
f y N yθ θ γ γ γ θ

=
=∑                     (2) 

The previous model can be specified in an alternative manner by introducing an 

unobserved (latent) indicator variable that identifies the component from which the 

observation is drawn. This indicator variable I receives values equal j when y is drawn 

from the jth component. Equivalently, thus the mixture model in (1) can be represented 

as: 

y | I, θ  ~ f(y | θ I)       

I |γ  ~ DCat (γ ),           (3) 

Where DCat ( ) is the categorical distribution and P[I = j] = jγ  , j = 1,…,J.  We assume 

that we do not know from which component each observation is drawn.  In this case, if 

we consider that the parameters θ  and γ  are independent, then the prior distribution can 

be considered as the product of the two distributions. As we assign a categorical prior 

distribution for I, the conjugate prior for γ will be the Dirichlet distribution with hyper-

parameter α : 
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1

)(

)(
)( −Π

ΓΠ

Γ
=

∑
j

jj
jj

j j
qf α

α

α
γ ,     (3) 

where 0 < qj < 1 and 1=∑ j jq , 0>jα , j = 1, ... J.  

Gelman et al. (2003) suggest that the ratio between the two variances should be 

considered as fixed or, alternatively, one should assign a proper prior distribution.  In this 

analysis, we assign an Inverse Gamma distribution (a, b) to assure that the posterior 

distribution is proper (assuming J = 2), and adopt normal priors for the jµ terms and a 

Dirichlet distribution for the jγ terms.   

 

TEMPORAL MODELING 

 

Considering the temporal component as an integral part of itµ , we will model it 

initially by assuming that tt u+=Ψ β , where tΨ  is a constant mean for all regions plus 

an error term, where tu  
iid

~  N(0, 2σ ).  This model, though initially lacking in realism, 

provides a convenient benchmark which will be expanded in a fashion that allows 

subsequent models to incorporate time as a covariate in the analysis.  In this deterministic 

trend model, time may be represented by a polynomial in t according to t

p

l

l
lt ut +=Ψ ∑

=1

β . 

For this type of deterministic trend model, we center the variable t in order to improve the 

speed of convergence of our Markov Chain Monte Carlo (MCMC) algorithm. Thus, we 

have t* = (t - (N+1)*0.5). We consider p = 1, 2 in the model estimation and use the 

normal distribution to form prior distributions for the intercept and trend parameters of 

the deterministic trend models.  

As an initial data exploration technique, we use empirical plots to evaluate the type of 

trend that might be present in the data. This evaluation indicated that a quadratic trend 

was sufficient to capture deterministic trend effects in the yield data.  Beyond the 

deterministic trend models, one can also analyze in a complementary fashion stochastic 

trend models and the interactions between stochastic and deterministic models. In this 

paper, we modeled the stochastic trend component as a first-order auto-regressive model 
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AR(1), where, tΨ = ρ ut-1 + ut, where -1 ≤  ρ  ≤  1.7   Note that this specification includes 

a standard random walk model as a special case. We also adopt two assumptions 

regarding the exact specification of the model.  First, the correlation parameter ρ  in the 

stochastic trend models is allowed to vary according to the region.  Second, an 

exchangeable normal prior was assigned to the parameter ρ  with normal and inverse 

gamma hyper-distributions for the mean and variance parameters, respectively. 8 

The interaction between the deterministic and stochastic trend was analyzed initially 

by considering a first-order polynomial function in t added to the stochastic component. 

This implies a subsequent model which emerges if we sum the second order term, which 

yields tΨ = ρ yt-1 + β 0 + β 1t* + β 2t*
2 + ut. In a similar way, the correlation coefficient 

was reparameterized as in the previous case and normal prior distributions were assigned 

for β 0 and β 1 and β ,, with a prior precision parameter τ  →  0.  

If we consider a random effects model, then all of the β  parameters will be 

exchangeable.  Such a result is convenient and it is reasonable to assume that the 

parameters may be different from one another, although they arise from the same 

population distribution.  

One can then consider the preceding model as an exchangeable model that takes the 

form β  ~ N3(b, Σ ), where the hyper-prior distributions for the vector b and the matrix Σ  

will be, respectively, b ~ N3( bµ , bΣ ), where bµ  = 0 and bΣ  is the diagonal covariance 

matrix with diagonal elements that approach ∞ and Σ  ~ W(R, k), where Σ  is a p x p 

symmetric positive definite matrix, with a density proportional to: 

 

                                                 
7 In light of the small sample size, a more sophisticated temporal model was not possible. For example, Ker 
and Goodwin (2000 p. 465) proposed an IMA(1,1) process, represented by yt = yt-1 + θ 0 + θ et-1 + et. The 
number of observations used in their article was small as well, though larger than in our case. Thus 
modeling an IMA(1,1) process can become a troublesome with regard to the stability and convergence of 
the parameters. In this manner, because we can express an MA(1) process as an AR(∞ ) process, they 
modeled the temporal process as a AR(4), such that, yt = yt-1 + β 0 + β 1(yt-1 - yt-2) + β 2(yt-2 - yt-3) + β 3(yt-

3 - yt-4) + β 4(yt-4 - yt-5) + et . 
8 We can also reparameterize the parameter ρ  so that a prior distribution could be assign toρ , such that ρ  

= 2η  – 1, 0 ≤ η  ≤ 1. Naturally, the Beta (c, d) distribution emerges as a prior for the parameter η  where c 

= ξ ψ and d = (1 - ξ ) ψ , 0 < ξ  < 1, ψ  > 0 and hyper-prior distributions for ξ  and ψ . 
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|R|k/2 |Σ |(k–p–1)/2 exp [–1/2(Tr(R Σ ))], (4) 

 

where k ≥  p yields the Wishart distribution (Anderson, 1982).  

 

SPATIAL MODELING  

 

In the traditional literature of spatial models, a variable Φ i denoting the spatial 

aspects of the data can be represented initially in terms of a set of covariates placed in a 

vector Φ i representing a given characteristic of a certain area, contributing a component 

g( Φ i), where g would be a specific parametric function. In the absence of covariates, 

random effects are introduced in order to capture heterogeneity among different regions. 

Gelfand et al. (1998), in the absence of covariates, used random effects as surrogate to the 

covariates in order to capture the effects of heterogeneity in a context where a hedonic 

price model was used to predict the future selling price of houses.  

In their article, they identified a variable vi that reflected such characteristics as, for 

example, quality of the construction, income in the subdivision and socio-economic 

variables, such as, race and education. In addition to unstructured heterogeneity, a latent 

variable was introduced to catch the spatial effectξ i that represented the geographic 

nature of each subdivision and the importance of each area in relation to the selling price 

of the houses.  Thus, the spatial variable can be represented as Φ i = iξ  + vi, where vi is a 

spatially non-structured latent variable (representing heterogeneity) andiξ  is a spatially 

structured latent variable (representing clustering).  Identification of the parameters in the 

likelihood function in this case is verified in the hierarchical model by assuming a 

conditional auto-regressive prior distribution (CAR) for ξ  and exchangeable priors for vi.  

Based in the work of Besag (1974), Clayton and Kaldor (1987) used the concept of 

spatial dependence applied to the problem of disease mapping.  Their application was to 

modeling cancer rates in Scotland. The spatial correlation was modeled on the basis of 

the geographic proximity of a particular region in relation to other adjacent regions.  

Cressie and Chan (1989) studied the sudden infant death syndrome with a data set 

collected during the period of 1974 through 1984 in counties of North Carolina using 
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space models.  They noted that, in a manner analogous to the time series case where one 

may try to show how the actual observations are influenced by its past values, in spatial 

processes one may try to verify how a particular value is influenced by its "neighboring" 

values. 

In these prior studies, the non-structured variable is assumed to follow a normal 

distribution, such that vi ~ N( υµ , 2
υσ ).  In addition, we assume that the spatially structure 

variable iξ  conditional on jξ , where j ≠ i, can be modeled such that iξ  ~ N( iξ , 2
ξσ / ni), 

where iξ is the average of thejξ ’s and j indexes the neighboring sites of i.  The variance 

parameters 2
υσ  and 2

ξσ  are assigned an inverse gamma prior distribution. One can note 

that these terms determine a spatial process in accordance with the terms defined by 

Besag et al. (1991).  Bernardinelli et. al. (1995a) pointed out that the choice of the 

dispersion parameter must be made with caution. They carried out a simulation study of a 

Poisson model applied to a model of disease mapping and verified that the heterogeneity 

parameter has standard deviation approximately equal to 0.7 times the standard deviation 

of the clustering parameter, var (vi ) ≈  0.7 var ( iξ ).  Thomas et al. (2002) suggested that a 

restriction must be imposed on the random effects parameters such that those effects sum 

to zero. In other words, an intercept parameter must be included in the model receiving 

an improper (uniform) prior distribution.  

Gelfand et al. (1998) noted that, if both parameters were placed in the model, then 

one must allow E(vi) = 0. In the same fashion, if both parameters iv  and iξ  were included 

in the model and one attributed a non-informative prior for iv , then either iv = 0 or ∑ iv  = 

0. Moreover, as they pointed out, if iξ  and vi are included in the model, the prior 

distribution will have greater weight in the posterior density.  If one allows vi to be 

centered around zero with a small variance, then the component iξ  will have greater 

weight in the term Φ i.  Due to convergence issues in the MCMC algorithm, Gefland et 

al. (1998) suggested that one should choose to include either the spatially non-structured 

variable or the structured variable, but not both. Because the objective of their article was 

to obtain predicted values, they concluded that the model including iξ   yielded better 

results. 
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SPATIO-TEMPORAL MODELING 

 

One of the pioneering articles related to the spatial-temporal analysis using a log-

linear Poisson model in the disease mapping was provided by Bernardinelli et al. 

(1995b).  In this article, they represented the spatial effect, which can be interpreted as 

the rate of variation of a certain disease in a given area by a random effect variable vi. 

The temporal term is captured through a trend coefficient and the interaction between the 

space and temporal effect reflected by the spatially correlated covariate iξ . In general, 

the model can be represented by: (intercept + area) + (time + area*time).  To capture the 

dependence between vi and iξ , or in other words, the intercept and trend, they assumed 

that vi arose from a univariate normal distribution and that iξ  came from a conditional 

normal distribution.  Based on this research, Dreassi (2003), modeled the relative risk for 

each period and city in Italy, incorporating an ordinal covariate that allows one to 

determine in which time lag the disease, in this particular case, lung cancer is affected by 

socio-economic factors.  

Another approach to modeling spatio-temporal effects was proposed by Waller et al. 

(1997). In this model, instead of capturing the spatio-temporal variation in a 

multiplicative form, they considered a nested model, where the spatial effect and the 

heterogeneity effect were allowed to vary in time. The general model considered was: 

T T
ist is i it itx z vµ β ω ξ= + + + ,                  (5) 

where T
isx β  is the covariate representing the effect for each sub-group s, ωT

iz  represents 

the regional covariate, itξ is the spatial effect for the ith region in year t and itv is the 

random effect for the ith region in year t.  

Using the principle of parsimony, simpler models were chosen among the various 

models considered in the article.  Because of the conditional interchangeability associated 

with time, the resulting prior distribution assigned to the heterogeneity can be represented 

by )(t
iν

iid

~  N( )(2)( , tt
νν σµ ).  For the spatial effect )(t

iξ  in the ith region in year t, Waller et al. 

(1997) adopted an intrinsic CAR prior distribution. Thus, )(t
iξ ~ N( )(t

iξ , )(2 t
ξσ / ni), where 
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)(t
iξ is the average of the jth contiguous areas of i. An inverse Gamma was used to form 

hyper-priors for )(2 t
νσ and )(2 t

ξσ .  Some restrictions also must be imposed in spatio-

temporal models in order to ensure identification.  The inclusion of the former effect 

makes unnecessary the addition of vi and iξ . Moreover, the model is incapable of 

identifying )(t
iξ  and tΨ  if both are included in the model and a non-informative prior is 

assigned to tΨ  given the time t. If both )(t
iν and )(t

iξ  are included in the model, then one 

must let )(t
νµ = 0. 

We also allow the spatial effects to be nested within the temporal process, such that 

the parameters of the deterministic trend (β ’s) are modeled using the CAR prior. 

Intuitively, one can think of the trend parameters as being correlated across space, given 

time. Thus we have the following general expression for the mean 

component it
iii

it utt +++= 2)(
2

)(
1

)(
0 ** βββµ . As was described in the previous subsection, 

we can incorporate the stochastic term in the general expression and reparameterize the 

correlation term. We also reparameterized the trend parameters by recentering the trend. 

 

MODEL SELECTION CRITERIA 

 

As we have demonstrated in the preceding review, several models emerge as potential 

candidates for our particular problem.  A basic question is thus how to select the best 

model, taking into account one of the objectives of this work—prediction of agricultural 

yields. Traditional criteria of model selection, such as the Bayes’ factor, are not 

applicable in cases like ours where non-informative or conditional auto-regressive (CAR) 

prior distributions are used. Carlin and Louis (2000, pg. 220), have shown that the use of 

improper priors results in improper conditional predictive distributions, limiting the use 

of Bayes’ factor as a model selection criterion in these cases.   

In the simplest case, when both models have the same parameterization and the 

hypotheses are simple, one can see that Bayes’ factor is equivalent to the likelihood ratio 

between the two models.  The application of the classical approach to model selection is 

also difficult in these cases. Penalized likelihood criteria based on asymptotic efficiency 
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require the determination of the dimension of the model or the number of the parameters.  

In hierarchical models with random effects such as the ones used in this paper, the 

dimension is difficult to characterize. Further, in more sophisticated models the 

dimension of the model increases with the sample size, thus invalidating the use of 

popular model selection criteria.  Examples of such conventional criteria include the 

Akaike Information Criteria (AIC) (Akaike, 1973), which in terms of change from model 

1 (M1) to model 2 (M2) is given by -2log(supM1f(x/θ ))(supM2f(x/θ ))-1 - 2(p2 - p1), where 

p1 and p2 are the number of parameters, the Bayesian Information Criteria (BIC) 

(Schwarz, 1978), which is equal to -2log(supM1f(x/θ ))(supM2f(x/θ ))-1 - (p2 - p1)(log n) 

and the Deviance Information Criteria (DIC), given by ( )(| DE xθ – D( )(| θθ xE ), where the 

first term is the expectation of the deviance and the second is the deviance estimated at 

the expectation of the posterior distribution.  Criteria based on cross validation are also 

difficult to implement when more sophisticated models are considered, due to the 

inclusion of heterogeneity and clustering variables defined only by the prior (Waller, 

1998).  

In this article, we select our model specification by adopting a criteria based on 

predictive densities.  As Laud and Ibrahim (1995) pointed out, these criteria are easy to 

interpret since they are not based on asymptotic analysis and they allow for the 

incorporation of prior distributions.  Working in the predictive space, the penalty appears 

without the necessity of asymptotic definitions. Intuitively, one can think that good 

models must result in predictions close to what is observed in identical experiments.  

In this context, Gelfand and Ghosh (1998) formalized a predictive criteria using a 

general form of loss function. The objective is to minimize the posterior predictive loss.  

The posterior predictive distribution is given by: 

 (6) 

 

where M represents the set of all parameters in a given model and xnew is the replicate of 

the vector of observed data xobs. 

The criteria of model selection is based on a discrepancy function d(xnew, xobs), and the 

objective is to choose the model that minimizes the expectation of the discrepancy 

function,  conditional on xobs and Mi, where Mi  represents all the parameters in the model 

∫= dMxMpMxfxxf obsnewobsnew )|()|()|(
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i. If we consider Gaussian models, the discrepancy function is given by d(xnew, xobs) = 

(xnew - xobs)
T(xnew - xobs): 

],|)()[( iobsobsnew
T

obsnewM MxxxxxED
i

−−=             

∑ −=
n

iobsnewnobsnM MxxxED
i

],|)[( 2
,, .                    (7) 

Gelfand and Ghosh (1998) demonstrate that 
iMD  can be factored into two additive 

terms 
iMG and 

iMP , where the first term ∑ −=
n

obsnewnobsnM xxExG
i

2
,, )]|([  represents the 

sum of squared errors, which is a measure of goodness-of-fit, and the second 

term ∑=
n

obsnewnM xxP
i

)|var( ,  is a penalty term.  In models that are over- or under-fit,  the 

predicted variance tends to be large and thus
iMP is large. The penalty is considered in the 

analysis without regard to the dimension of the model. In this work, a slightly different 

version of the model selection criterion will be utilized. Instead of using the quadratic 

predicted error, the mean squared predictive error will be considered relative to the 

number of regions used in the analysis. Note that the inclusion of a common denominator 

to all models does not affect the criterion. 

 

EMPIRICAL ANALYSIS 

 

DATA DESCRIPTION 

 

The agricultural yield data used in this study were provided by the IBGE (Statistical 

and Geography Brazilian Institute) and correspond to the period of 1990 trough 2002 for 

corn in the state of the Paraná, located in the southern region of Brazil.  The state of 

Paraná is the largest producer of corn in the country, with a total amount produced in 

2002 equal to 9,797,816 tons, a little bit more than 27% of all Brazilian production.  Corn 

yields in Paraná are generally the fourth largest in Brazil (3,987 Kilograms per hectare – 

kg/ha in 2002). 

The state is made up of 399 counties.  Annual yield observations for all 13 years are 

only available in 290 counties. Consequently, we carry out the analysis with only those 
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counties with the largest number of observations. The five largest counties in terms of 

average yields are Castro (6142 kg/ha), Ponta Grossa (5629 kg/ha), Marilândia do Sul 

(5488 kg/ha), Tibagi (5346 kg/ha) and Catanduvas (4923 kg/ha). The evolution of the 

corn yields in the state of the Paraná between the years of 1990 and 2002 can be seen in 

Figures 1 and 2. 

 

EMPIRICAL APPLICATION 

 

We begin our analysis by choosing the model that minimizes the posterior predictive 

loss. Among the several models that were considered as candidates (25 in all), we  only 

present results for the 10 best models (that resulted in minimum Dm, according to the 

criteria described above).  Results for the model selection criteria are presented in Table 

1.  Note that all of the models chosen by the ten best values of the predictive error 

criterion include the temporal component and the stochastic trend. This clearly 

demonstrates the importance of the stochastic trend in the analysis. The optimal model, or 

in other words, the model that minimizes the quadratic predictive error, includes both the 

stochastic and deterministic components. In addition, the optimal model allows the 

intercept to vary from one county to another.  Further, this model includes spatial 

dependence in the slope parameters. 

The difference between models 1 and 2 lies in the prior distributions assigned to the 

β  parameters. The superscript C indicates that a conditional autoregressive prior was 

assigned to the parameter. Otherwise, β  receives a normal prior.  Comparing models 4 

and 9, one can note that the presence of heterogeneity results in a smaller Dm as compared 

to the inclusion of the clustering effect. In a comparison of models 6 and 7, the addition 

of the spatially structured latent variable (clustering) which varies in time results in a 

larger value of Dm as compared to the model that holds the clustering variable fixed in 

time. If we include the deterministic term, the model with a clustering effect that varies in 

time becomes slightly superior to the model considering the same effect constant in time 

(D8 < D9).  The results in Table 1 also demonstrate that the quadratic deterministic trend 

model and mixture of normal models were not included in the top ten best model 

specifications.  This is because they resulted in unsatisfactory values of Dm. 
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According to Table 1, given the fact that the best model was the one including the 

temporal and stochastic component, we will present a detailed description of this model 

in the discussion that follows.  Initially, to give a better visualization and understanding, 

model 1 will be written graphically, in Figure 3.  

In Figure 3, nodes of the Directed Acylic Graph (DAG) are stochastic variables, 

rectangles are constants, arrows with simple and parallel straight lines represent, 

respectively, parameters of the distributions and logical links between the variables. The 

index i and t in the rectangles denote, respectively, the variable of space and time.  The 

parameter β 2 has logical links between c and ξ  (zeta), so that we can redefine it, in 

order to recentralize it. The first variable receives a Normal prior distribution and the 

second one a conditional auto-regressive prior. 

The parameters of the variable zeta, named neigh, wei, and num are, respectively, the 

j-th adjacent counties in relation to a central county i, the weights assigned to each 

neighboring county, such that, adjacent counties receive weight equal 1 and 0, otherwise, 

and the sum of the adjacent counties to a central county. The variance parameter of the 

zeta variable receives an Inverse Gamma prior distribution.   

We run three chains to check the mixing of the Markov sequence and also check for 

all the parameters the graphical diagnostics of convergence. Results showed that all 

parameters achieved good convergence and mixing.  Figure 4 shows the convergence of 

β 1, β 2 and ρ  in selected counties. 

Next, in Figure 5, we show the decomposition of µit, according to model 1, in its 

temporal component, deterministic and stochastic, for the counties of Castro, Ponta 

Grossa, Marilândia do Sul,  Tibagi, Catanduvas and Rolândia. One can see that in the five 

first counties, the stochastic term has larger weight in the composition of uit and the 

residual are around zero for the six counties.  

One of the main advantages of the Bayesian analysis is that one can incorporate the 

uncertainty when estimating the parameter value. Taking this fact into account, Table 2 

shows the expected value of the parameter, its standard deviation and the percentiles 5%, 

median and 95%. For these counties, the average standard deviation is for β 1, β 2 and 

ρ equal to 582, 3.9 and 0.11.  
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Because of the limited space, we will show only descriptive statistics of the 290 

counties. Thus, the maximum predicted values of β 1, β 2 and ρ are respectively 2410, 

46.85 and 0.83. The minimum values are 550, 46.73 and 0.30 and the average, 1174, 

46.79 and 0.61. The average standard deviation is 430, 3.95 and 0.13. 

Figure 6 shows that the number zero is in the tail part of the posteror distributions of 

the parameters β 1, β 2 and ρ . Thus, we can confirm that, in fact, the slope term of the 

deterministic term is different from zero and the correlation parameters were, in average, 

equal to 0.73 for these six counties.  

Because of the series being relatively short, we do not correct for conditional 

heteroskedasticity. Instead we assume that the series are conditially homoskecastic. If 

series were relatively longer, a procedure that could be used to verify heteroskedasticity 

would be assign to the precision parameter tau (Figure 3) indexes i and t, or in other 

words, make the parameter vary in time and space and, later on, monitor such parameter 

to verify the variation in the precision and correct it, when necessary. 

In Table 3 we show the predicted values of yields and its respective standard 

deviation and percentiles 5, 50 and 95% for the counties of Castro, Ponta Grossa, 

Marilândia do Sul,  Tibagi, Catanduvas and Rolândia. The variance tends to increase as 

the time lag increases. 

 

RATING THE CROP INSURANCE CONTRACT 

 

Pricing an insurance contract accurately is essential for the viability and existence of 

an agricultural insurance market. Premium rates that are too high result in an insurance 

pool made up of only high risk individuals.  Likewise, rates that are universally too low 

will result in insurance losses since premiums are not adequate to cover indemnity 

outlays.  The selection problem that is brought about by inaccurate rates is known as 

adverse selection.  In the literature of insurance economics, this is often also referred to 

as as the hidden information problem since agents tend to know more about their risks 

than does the insurance provider.9 

                                                 
9 In the context of the principal-agent theory, the problem of hidden information or adverse selection occurs 
when the characteristics of the agent are imperfectly observed by the principal. In a classical article, 



 24 

The insurance premium rate (PR) represents a proportion (or percentage) of total 

liability.  In the simple case where a proportion λ (0 ≤ λ ≤ 1) of the expected crop yield y e 

is used to form the basis of insurance, the premium rate is given by:  

Premium Rate (PR) = 
e

ee
Y

e
Y

y

yyYyEyF

λ
λλλ )]|([)( <−

,   (8) 

where E is the expectation operator and F is the cumulative distribution function of 

yields.  Note that the premium rate is completely transparent to the price at which yields 

are valued since the price term would appear in both the numerator and denominator of 

the premium rate expression.   

A slightly different derivation of the premium rate is convenient for our purposes.. If 

we reparameterize y, such that, y* = y / λye, then equation (8) becomes:  

PR = P(y* < 1)Ey*[1 – (y*| y* < 1)]          (9) 

Note that the support of the random variable Y remains the same in this transformation. If 

we consider w = 1 – y*, then equation (9) can be rewritten such that: 

PR = P(w > 0)[1 – Ew(1 – w|w > 0)]     

PR = P(w > 0) Ew[w|w > 0)]    (10) 

After some simplification, the premium rate equation reduces to: 

1

0

( )PR wf w dw= ∫      (11) 

                                                                                                                                                 
Akerlof (1970) analyzes the market of used cars (“lemons”), arguing that in a market where sellers have 
more information about the quality of the used car than buyers, then only the bad quality cars will remain in 
this market. One can note that, on average, the quality will be inferior compared to the price paid and in the 
limit the market for used cars will not exist due to the problem of asymmetric information. Analogous to 
the “lemons market”, Akerlof also pointed out that the health insurance market is also affected by the 
adverse selection. The higher the premium, the riskier is the insurance market, or in other words, only those 
individuals who really need to buy the insurance contract will do so, thus selecting only those more likely 
to receive the indemnity. Rothschild and Stiglitz (1976) analyzed a general model of a competitive 
insurance market. In this market the nature of the imperfect information lies in the fact that insurance 
companies are not capable to differentiate risks among buyers. Consequently, they argue that in a 
competitive insurance market the equilibrium cannot be reached. Possible "second best" solutions would be 
desirable for the viability of this market, such as, the implementation of the "auto-selective" insurance 
contracts, in which the insured would reveal to the insurers his risk structure constraint to the zero profit 
condition by the firm. Thus, contracts that could voluntarily be chosen would be offered to individuals, 
such that, the low risk individuals would be offered contracts with partial coverage at a lower premium.  
Likewise, low incentives (e.g., higher premiums) are given to the high risk group to buy the contract. The 
auto-selection mechanism was demonstrated to be a Pareto improvement if an individual can be 
categorized according to signals correlated with their risk. Another "second best" solution would be to 
formulate the contract according to the available information. If the insurer can monitor the insured, even 
imperfectly, then a Pareto improvement situation can be reached. 
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 We can similarly write (11) as PR = E[wI(0 < w < 1)]. Because of the change of 

variable, the support also changed such that w lies now in between 0 and 1. 

Premium rates were evaluated and compared using the mean posterior of w. In figure 

6 below, we illustrate aggregate premium rates for regions in the state of Paraná. The 

state was divided into 10 large regions: Occidental Centre of Paraná (1), Oriental Centre 

of Paraná (2), Centre-South of Paraná (3), Metropolitan of Curitiba (4), Northwest of 

Paraná (5), Central North of Paraná (6), Pioneer North of Paraná (7), West of Paraná (8), 

Southeast of Paraná (9), Southwest of Paraná (10).  

Figure 6 represents the average premium rate for the coverage levels (i.e., the 

percentage of the expected yield that is insured) of 70% through 90%, in multiples of 5, 

for each region. One can note that the largest rates are located in regions in the north and 

northwest of the state. We should note that for our model of yields that underlies rates is 

strongly influenced by the last observed yields (for 2002).  Consequently, premium rates 

are strongly influenced by this value.  To understand how yields in 2002 affect the 

premium rate, we must go back to the reparameterization of y in equation (9). One can 

see that, the smaller the value of y in relation to λye, the smaller will be y*, thus, the larger 

the value of w. Because of the fact that rates are directly proportional to w, an increase in 

this variable will result in higher rates.  This is, of course, a natural consequence of 

having such a short time-series of data.  As more experience is accumulated, the effect of 

any single observation will be muted.  Going back to Figure 2 one can see that counties 

situated in the northwest region, regions 1, 5, part of regions 6 and 8, in Figure 6, had 

relatively lower yields in 2002.  Consequently, this situation results in higher premium 

rates in these regions.  On the other hand, regions 2, 3 and 9 had relatively strong yield 

performance in 2002 and thus have relatively lower premium rates.  Considering counties 

1, 2, 3 and 4, in Figures 7 and 8, (below) one can clearly note that counties 1, 2 and 3, 

whose yields were relatively low in 2002, resulted in higher premium rates in relation to 

county 4. Thus, we again see that the premium rate is highly influenced by yields in 

2002. 
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CONCLUSIONS 

 

We have discussed a statistical and actuarial method of pricing a crop insurance 

contract that is based upon hierarchical Bayesian models. Our models of the probability 

generating process of yield data consider temporal and spatial effects as well as the 

interaction between these two effects, resulting in spatial-temporal models.  The contracts 

are based upon a regional crop yield index.  Such crop insurance plans have been adopted 

in many areas, including in the United States.  Area-wide plans of this sort are now being 

implemented as an alternative risk management tool in the South of Brazil. We point out 

that this methodology can also be applied to contracts based on individual yields, as long 

as there are enough data to conduct the statistical analysis.  Conventional methods of 

pricing this type of individual contract using aggregate yield data, such as, county 

averages, are not recommended, because they do not reflect accurately the risk structure 

of an individual producer, thus increasing the problem of the adverse selection. 

The use of these new risk management tools, together with the approval of the Law nº 

10,823 in December 2003, provide support for the development of a crop insurance 

market in Brazil.  Likewise, these developments improve incentives for the entrance of 

new private insurance companies in this market.  Finally, the new legislation includes 

improved incentives for agricultural producers to buy crop insurance contracts in the 

form of premium subsidies. 

The methodology developed in this article was used to forecast corn yields for 

selected counties in the State of Paraná using data covering 1990 through 2002. Using the 

posterior predictive criteria of Gelfand and Ghosh (1998), we chose from among several 

models appropriate for this forecasting and insurance pricing problem. The optimal 

model was used in the calculation of premium rates for insurance coverage based on 

regional yield indexes.  Our analysis considers not only the temporal aspect of yield 

movements but also the spatial correlation that exists between counties. The resulting 

spatial-temporal model is thus more flexible compared to other potential specifications 

that have been considered in the literature.  In light of the rather small sample of data 

available, we demonstrate the sensitivity of premium rates to the yield observed in 2002.  

In particular, higher rates were found in the regions where yields were lower in this year. 
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We discuss the potential application of our methods to the general problem of pricing 

insurance contracts for individual coverage.  We note that, to the extent that sufficient 

data are available, these methods may be applicable to the problem of pricing crop 

insurance contracts with individual coverage.  Future research will evaluate methods of 

pricing insurance contracts for individual yields using the methods developed in this 

analysis.   
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Table 1. Model Selection Criteria 

M Dm Model for uit 

1 667800  

2 673200  
3 700100 R-W 
4 728500  
5 736800 AR(1) 
6 737900  
7 739900  
8 751400  
9 751700  

10 761300 Exchangeable model 
 

 

 

 

Table 2. Predicted parameter values, standard deviation and percentiles 5, 50 and  

95%, of selected counties. 

County parameter predicted value standard deviation 0.05 0.95 
β1 1366 683.6 201.3 2475 
β2 46.83 3.938 40.33 53.29 Castro 
ρ 0.8073 0.1143 0.6236 1.002 
β1 1545 515.7 687.5 2397 
β2 46.78 3.95 40.29 53.34 Catanduvas 
ρ 0.7147 0.1032 0.5447 0.8851 
β1 1446 592.6 461 2426 
β2 46.78 3.937 40.28 53.28 Marilândia do Sul 
ρ 0.7703 0.1092 0.5904 0.9502 
β1 1511 612.3 490.1 2523 
β2 46.82 3.94 40.34 53.3 Ponta Grossa 
ρ 0.7553 0.11 0.5749 0.9413 
β1 2109 526.4 1260 2993 
β2 46.79 3.937 40.31 53.28 Rolândia 
ρ 0.5579 0.1082 0.374 0.733 
β1 1380 563 450.5 2306 
β2 46.82 3.941 40.32 53.32 Tibagi 
ρ 0.7751 0.1062 0.6021 0.9526 
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Table 3. Predicted yield values, standard deviation and percentiles 5, 50 and  

95%, of selected counties, in 2003 and 2004. 

 

County year 
predicted 

yield 
standard 
deviation 

0.05 median 0.95 

2003 8301 791 6990 8303 9591 Castro 
2004 8455 1114 6647 8443 10280 
2003 6553 760 5296 6550 7793 Ponta Grossa 2004 6638 1008 5021 6628 8338 
2003 7499 786 6208 7492 8784 Marilândia do Sul 2004 7624 1074 5883 7614 9405 
2003 7730 793 6419 7733 9019 Tibagi 2004 7779 1094 6035 7753 9613 
2003 5968 758 4716 5972 7195 Catanduvas 2004 5833 903 4350 5813 7316 
2003 7336 777 6068 7342 8615 

Rolândia 
2004 7461 1079 5745 7433 9280 
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Figure 1: Corn yields in the state of Paraná, kilograms per hectare in 1990. 
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Figure 2: Corn yields in the state of Paraná, kilograms per hectare in 2002. 
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FIGURE 3. Graphical Description of Model 1 
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FIGURE 4. Convergence checking of β 1, β 2 and ρ , respectively, for Castro, Ponta 
Grossa, Marilândia do Sul,  Tibagi, Catanduvas and Rolândia. 
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FIGURE 5. Decomposition of uit in its deterministic and stochastic components. 
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FIGURE 6.  Posterior densities of β 1, β 2 and ρ , respectively, for Castro, Ponta Grossa, 

Marilândia do Sul,  Tibagi, CatanduvasandRolândia. 
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FIGURE 7. Premium rates (%) aggregated by regions in the state of Paraná 
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FIGURE 8. Corn yields in counties 1, 2, 3 and 4 (kg/hectare), 1990 and 2002. 

 

 

 

 

FIGURE 9. Premium rates (%) in counties 1, 2, 3 and 4 with coverage 

levels of 70, 75, 80, 85 and 90%. 
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