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Abstract 

There is considerable interest in watershed-based pollution water quality protection 
 
but the approach can be highly information intensive (USEPA 2004, NRC 2000).  This 

study examines the value of different types and levels of information for water quality 

management in the Conestoga watershed.  For this estimation, a Monte Carlo procedure 

is used to construct the posterior expected value.  Then, an Evolutionary Optimization 

Strategy with Covariance Matrix Adaptation (CMA-ES) is used to compute the expected 

value of optimized resources allocations given posterior information structures for 

specific sample sizes.  This posterior optimization is nested within a second Monte Carlo 

simulation that computes the preposterior expectation (a nested Monte Carlo procedure).  

Thus, this paper provides some insight about the relative values of these alternative types 

of information for controlling water pollution from agriculture, and the gains from more 

intensive sampling.  
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I. Introduction 

The U.S. Environmental Protection Agency’s (EPA) Total Maximum Daily Load (TMDL) 

initiative requires states to develop and implement watershed-based plans for surface 

waters that do not meet in-stream water quality standards even after point sources of 

pollution have installed the minimum required levels of pollution control technology 

(Ribaudo 2001, USEPA 2004a).  The states must identify the maximum total pollution 

load consistent with satisfying the water quality standards and allocate the loads among 

point and nonpoint sources. While there is much to be said in favor of this comprehensive, 

watershed-based approaches to water quality protection, it is also clear that 

implementation requires much more information about pollution sources, water quality 

conditions, relationships between land uses and pollution loads, and pollution loads and 

water quality conditions than does the traditional approach (NRC 1999, 2000).  And, as 

highlighted by the recent National Research Council (NRC) report on the TMDL 

approach, essential information is often lacking (NRC 2000).  The report emphasizes the 

essential role of information acquisition by water quality managers for improving the 

effectiveness and efficiency of water quality management.  However, given that 

information acquisition is costly, to make good use of scarce resources for water quality 

management calls for attention to the benefits and costs of information collection. 

 

This paper examines the sample value of various types of information for water quality 

management.  Value of information studies often focus on the value of perfect 

information.  A recent example, relevant to this study is Borisova et al (2004), which 

estimates the value of perfect information about the benefits and costs of water quality 
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protection under alternative water quality policy regimes.  However, because perfect 

information is an unrealistic goal, a more meaningful measure is the expected value of 

sample information (EVSI) that reduces but does not eliminate uncertainty.  The expected 

value of sample information (EVSI) that reduces but does not eliminate uncertainty is a 

widely cited but little used measure of the contribution of information to decision making 

(Yokota and Thompson 2004).   

Calculating EVSI requires preposterior knowledge of how newly added 

information is used to update the posterior density functions of uncertain parameters.  

Then, using this preposterior knowledge, EVSI is generally defined as the difference 

between the expected value of  optimal action selected with the updated posterior 

probability of parameters, and the expected value of optimal decision selected only with 

the prior information about the parameters.   

We analyze the EVSI of various types of economic and biophysical parameters in 

the context of nitrogen pollution control from agricultural nonpoint and municipal point 

sources in the Conestoga watershed of Pennsylvania.  The Conestoga is a major source of 

nutrients entering the Susquehanna River and in turn the Chesapeake Bay.  We take the 

objective of water quality management in the Conestoga to be maximization of the 

expected benefits less the expected costs of nitrogen pollution control regulations.  

Uncertainty is modeled from the perspective of a social planner seeking to develop an ex 

ante efficient allocation of resources for water quality protection.  The planner is 

uncertain of:(1) the private costs of changes in resource allocation for nitrogen pollution 

control, (2) the relationships between land use practices and nitrogen load at the mouths 

of the watersheds, (3) the transport of pollution loads from the watersheds to the Bay, and 
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(4) the economic benefits of reduced pollution loads.  In this context, sample information 

about the information components, has value when its acquisition and use increases the 

posterior net benefits.   

The analysis is performed using a model that couples economic and biophysical 

components to simulate nitrogen delivery from point and nonpoint sources to the Bay 

from the Conestoga (non-point water pollution).  The unknown parameters are treated as 

random variables with known distributions from the planner’s perspective.  The EVSI is 

computed for individual parameters, sets of parameters, and alternative sample sizes to 

learn how different types of information contribute to the water quality management, and 

to learn how the value of information changes with the extent of information acquisition. 

 A nested Monte Carlo procedure is used in combination with the Evolution 

Strategy with Covariance Matrix Adaptation (CMA-ES) to compute the expected value 

of optimized resources allocations under alternative information collection strategies.  

The CMA-ES is an evolutionary (search) algorithm for highly nonlinear optimization 

problems. The CMA-ES is typically applied to unconstrained or bounded constraint 

continuous optimization problems, and search space dimensions between three and a 

hundred.  The CMA-ES is used to compute agricultural practices and point source 

abatement levels that maximize expected net benefits given posterior information 

structures for specific sample sizes.  A Monte Carlo procedure is used to construct the 

posterior expected value.  This posterior optimization is nested within a second Monte 

Carlo simulation that computes the preposterior expectation.   

 

II. Expected Value of Sample Information  
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Information is valuable when reducing uncertainty leads to better decisions.  Value of 

information (VOI) analysis provides a quantitative means to assess the gains from 

improving information.  Policymakers can use this analysis to determine which 

uncertainties, if reduced, would change their decisions and thus give them a better idea of 

where resources should be devoted to research.  Thus, the VOI framework can provide 

helpful insights for determining the appropriate balance between taking action and 

waiting for more information.     

To examine how EVSI is calculated, consider the following maximization 

problem 

(1) ),,( 21 θθXfMax
X

 

where X is a control variable, 21 and θθ  are unknown parameters, f(.) is a concave 

objective function.  In this study, 21 and θθ  can be bio-environmental resource factors.  

So, it is most impossible to get true values of these factors.  Instead, what decision maker 

(social planner) only knows is information of prior distribution s to these factors.  With 

EVSI analysis, these input distributions are simulated as a solution technique.  The 

simulation approach tends to yield estimates of the distributions closer to those of the 

perfect information by simply increasing the number of trials (Monte Carlo simulation).  

Then, the newly added information on site-specific observed data is combined with prior 

information on parameter distributions so that posterior probability distributions of the 

random parameters are derived.  Bayesian inference affirms that these posterior 

distributions will contain less uncertainty than the prior distributions.   
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Assume that only information of is updated by the sampling.  That is, set 1θ 2θ  =  

(  is a baseline value; no additional information).  Then, with sample size m, the 

updated information can be reflected to posterior probability of parameter , 

B
2θ

B
2θ

1θ

),....,,|( 1m12111i θθθθP where 1m1211 ,....,, θθθ are observed data on through m times of 

sampling.  On the other hand, social planer tries to optimize the objective function with 

realized value of , 

1θ

1θ 1iθ at each sample i (i = 1,…,m) such as  

(2)  for i = 1,…,m  ),,(),( 2121
B

iX

B
i XfMaxL θθθθ =

In the next step, with posterior posterior probabilities of parameter , 1θ

),....,,|( 1m12111i θθθθP for all i, a Monte Carlo procedure (Rubinstein (1981), Borisova et 

al (2005)) is used to estimate expected optimal value of objective function such as  

(3) J  =  ),,....,,( B
21m1211 θθθθ ),(L),....,,|( 21i

1
1m12111i

B
m

i
P θθθθθθ∑

=

×

Finally, if the baseline optimal value (VB) with the baseline information of 1θ  =  and B
1θ

2θ  =  , is derived such as VB
2θ B ( ) = , then, the expected value 

of sample information of sample size, m (EVSI(m)) can be expressed as  

BB
21 ,θθ ),,( 21

BB

X
XfMax θθ

(4) EVSI (m) = J ( ) - VB
21m11  ,,........, θθθ B ( ) BB

21 ,θθ

  
In general, the data collection costs should be compared to the EVSI to determine 

the optimal data collection strategy as follows.  If there is a data collecting cost C(m) of 

sample size m, the optimal sample size (m*) can be earned by solving the second 

optimization,  

(5)  C(m) - )(mEVSIMax
m
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The first order condition of (7) is, 

(6) 
m
mC

m
mEVSI

∂
∂

=
∂

∂ )()( = 0 

From (6), the optimal sample size m* is earned (Figure 1). 

 

III. Conestoga Watershed Model  

In the following, for the Conestoga watershed in the Pennsylvania portion of the 

Susquehanna River Basin (SRB), a hypothetical planner is assumed to maximize the 

expected net social benefit of water quality protection from agricultural nonpoint sources, 

and point sources of pollution.  For the analysis, agricultural land use, associated nitrogen 

loadings and point source emissions are the instrument variables that are targeted by the 

planner.      

The Conestoga watershed model consists of an economic model of agricultural 

production and pollution control decisions, point source pollution control costs, a model 

that quantifies nutrient transport, and the economic costs of nutrients entering the 

Chesapeake Bay from the watershed.   

  

1. Economic model for agricultural nonpoint sources 

Corn production in the watershed is a function of farmer decisions involving the use of 

land (L) and nitrogen fertilizer (N).  The corresponding profit equation associated with 

these input choices is defined generally as L) (N,π .  Agricultural land is scarce and earns 

economic rents.  Accordingly, agricultural land rents are considered when defining social 

surpluses from agricultural production. The net benefits (NB) to nonpoint sources in the 

watershed in is expressed as 
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(7) NB = L) (N,π + R(L) 

where land supply and demand are same in the equilibrium. 

 

2. Nonpoint nutrient loadings model 

Following Borisova et al. (2005), the expected annual load to the mouth of the Conestoga 

watershed b as a function of nitrogen concentration in runoff Nc, agricultural land area, 

and mean annual precipitation Z: 

(8) ⎥
⎦

⎤
⎢
⎣

⎡
+

−
+−= Z

L
NuZ

NuZb 3

2
2

1
))1((

)1( ϕ
µϕ

µϕ   

where ϕ1, ϕ2, and ϕ3 are coefficients.  Here, nitrogen concentration Nc is defined as the 

ration of nitrogen runoff mass ((1-u) N) and water volume (Z×L): 

( ) ( )
Z

LNuNc
/1 ⋅−

= µ       

where µ is a calibration coefficient, and u is the share of applied nitrogen which is taken 

(utilized) by plants.  Thus, nonpoint loadings function for the watershed is defined as l(N, 

L, Z) such as 0,0 <
∂
∂

>
∂
∂

L
l

N
l .  Precipitation Z is stochastic in the simulation.  

  

3. Point source model 

The total cost of abatement depends on the present level of abatement ap = e0 – ep where 

the abatement level are physically bounded at its upper bound, e0. Reflecting this bound 

e0, total abatement cost is expressed as 

(9) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

×−×=
0

0
0000 ln),,(

ee
ee

eeMCeeMCC
p

I
pI  
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where eI is an emission level of non-control case and MC0 is marginal cost of baseline 

information. 

  

4. Nutrient Delivery 

Only a fraction of Nonpoint source loadings and point source emissions are combined to 

build an ambient concentration of nitrogen in the Bay.  The proportion of the load that is 

delivered is modeled with constant delivery coefficientϑ  (Horan et al., 2001), so that 

total delivered nitrogen load from the Conestoga watershed to the Bay (a) is 

(10)    peb ϑϑ +=a

The transport coefficientϑ  is imperfectly known, and is modeled as random variables 

with a mean and variance.   

  

5. Economic Damages from pollution 

Following Borisova et al. (2005), the mean annual damage from the Conestoga nitrogen 

loads to the Chesapeake Bay is modeled as a convex increasing function of the total 

nitrogen load, a to the Bay such as 

(11) D(a) = ρaq 

where D is economic damage, ρ  is a coefficient, q is elasticity of damage function, 

and 0,0 22 >∂∂>∂∂ aDaD .  To reflect the social planner’s imperfect knowledge about 

environmental damage, both parameters ρ  and q are random variables.   
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6. Social Net Benefit (SNB) 

Combining the above equations ((7)-(11)), a ‘Social Net Benefit (SNB)’ function is 

constructed, which represents net economic returns in the consideration of negative 

externality of nitrogen residuals in the Bay such as 

(12) ( ) q
p

p

I
p eb

ee
ee

eeMCLRLNenefitSocialNetB )(ln)(),(
0

0
00 ϑϑρπ +−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

×−×−+=  

Social planner tries to maximize SNB (12) with respect to L, N and ep.  At last, planner 

has the following uncertainty about the values of six parameters:  1) the planner has 

imperfect information on the pollution transport parameters (Z,ϑ ), 2) the planner has 

imperfect information about substitution elasticity between land and nitrogen fertilizer 

(σ), 3) the planner has imperfect information about abatement cost parameters (MC0) and 

4) the planner has imperfect information about the damage cost parameters (ρ  and q).   

 

Among six random parameters, for the concavity of objective function SNB baseline 

point source marginal abatement cost is assumed to be 100,000 after several candidate 

values are examined by authors.  The information of distributions of rest of uncertain 

parameters is earned from Horan et al (2002) and Borisova et al (2005).  The random and 

fixed values are used in the analysis (Table 1). 

 

In Figure 2, a flow chart for estimation of for the value sample information is presented.  

At each iteration i of sample size M, random numbers of five uncertain parameters are 

generated.  Then, we do optimize the objective function, SNBi and get ith optimal value 

of social net benefit (Ji).  After all the M optimizations are performed, these optimal 
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values are summed up and averaged to earn the average optimization value ( ) from 

sample size M.  To test the robustness of the sample mean of optimal values with sample 

size M, the expected social net benefit calculation are repeated S times in the outer circle 

of the flow chart and acquire the representative social net benefit of sample size M ( ) 

(Nested Monte Carlo Simulation).  Here, to get the ith optimization value J

s
MĴ

S
MĴ̂

i, varying 

variables, L, N and ep, we should extract Kuhn-Tucker condition.  However, since Ji itself 

has a nonlinear form, we cannot get the optimal condition directly.  Thus, among 

heuristic methods, the Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) 

is used to get ith optimization value Ji (i = 1,…., M).  The model is computed using the 

CMA-ES by Matlab 7.0.   

 

IV. The CMA Evolution Strategy for Noisy and Global Optimization 

The CMA-ES (Evolution Strategy with Covariance Matrix Adaptation) is an evolutionary 

(search) algorithm for difficult optimization problems.  The CMA-ES is typically applied 

to unconstrained or bounded constraint continuous optimization problems, and search 

space dimensions between three and a hundred.  The method should be applied, if 

derivative based methods, e.g. conjugate gradient, fail due to a rugged search landscape 

(e.g. discontinuities, sharp bends, noise, local optima, outliers).  

Originally designed for small population sizes, the CMA-ES was interpreted as a robust 

local search strategy.  In Hansen and Kern (2004), the CMA-ES was expanded by the so-

called rank-µ-update.  The rank- µ-update exploits the information contained in large 
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populations more effectively, because the algorithm selects only µ best individuals in the 

next generation.  It can reduce the time complexity of the strategy from quadratic to 

linear.  Similar to quasi-Newton methods the CMA-ES estimates the inverse Hessian 

matrix (here: the covariance matrix) within an iterative procedure. In the end, any 

convex-quadratic (ellipsoid) objective function such as social benefit function in this 

study is transformed into the spherical function (Hansen, 2005).  This can improve the 

performance on ill-conditioned problems.  In addition, the CMA-ES has several 

invariance properties.  Two of them are (i) invariance against order preserving (i.e. 

strictly monotonic) transformations of the objective function value, and (ii) invariance 

against angle preserving transformations of the search space (including rotation, 

reflection, and translation), if the initial search point is transformed accordingly. These 

invariances are highly desirable, because they imply uniform behavior on classes of 

functions and therefore allow for generalization of empirical results. The complete 

algorithm is presented in Hansen and Kern (2004), and Hansen (2005).   

 

V. CMA-ES Application to Simulations 

In this section, we apply CMA-ES to optimization problem of water quality management 

in Conestoga, Pennsylvania.  The non-linear objective function of social net benefit is 

described in chapter III.  Here, five randomly generated parameters are implemented into 

the optimization problem: substitution elasticity between land and nitrogen fertilizer (σ), 

damage exponent (q),   damage coefficient (ρ), transport coefficient for watershed in 

Conestoga river (ϑ ), and regional precipitation (z). 
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This problem is entered into CMA-ES Matlab code (Hansen, 2005).  We collect the 

information of all five randomly generated parameters, simultaneously in every sample 

trial.  Then, we perform the optimization procedure at each sample in the same manner 

with the perfect information case.  After that, we sum up all the optimized values of 

social net benefit and divide the sum by the number of samples (m).  This final value is 

the optimized social net benefit of the sample size, m.  For each sample size, we iterate 

100 times so that a representative optimized values of social net benefit can be earned at 

each sample size.  In the same manner, ex post1 mean quantities of three control variables 

(N, L and ep) are calculated such that every ex post optimal quantity of each control 

variable is summed up and averaged.   

 

VI. Conclusion  

 As water quality protection has become one of critical issues in the regional systems in 

the U.S., information acquisition on the water quality management has been crucial topic 

in the environmental science.  Given that collecting information is costly and imperfect, 

strategic information acquisition is essential to improving performance of water quality 

management.  Onto this necessity, the concept of expected value of sample information 

offers a tool for evaluating alternative types and amounts of information.  As a 

contribution, this paper provides some insight about the relative values of these 

alternative types of information for controlling water pollution from agriculture in the 

Conestoga watershed, and the gains from more intensive sampling.  From a water quality 

management model EVSI analysis is performed using Monte Carlo method.  In the 

                                                 
1 Ex post quantity is defined as the quantity level that social planner actually chooses in response to the 
realized values of uncertain parameters at each replication. 
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analysis, it is shown that incorporating new data to the decision framework leads to the 

updated information state with reduced uncertainty from which better decision may 

follow.   

 

EVSI is a measure of the value of the reduction in uncertainty that may result from the 

collection of new information.  For the maximization of SNB in Conestoga watershed, 

EVSI involving larger number of data can be expected to increase up close to the 

expected value of perfect information.  The EVSI can be used as an upper bound on what 

should be spent on data collection.  If the cost of data collection can be estimated, these 

costs can be compared to the EVSI to determine the optimal data collection strategy 

(equation (6)).   

 

As an analytical challenge in EVSI, the correlation in input distributions and dependence 

in information collected can be examined.  For example, precipitation in the region can 

affect the productivity of corn production.  Generally, climate factors such as monthly 

average temperature and precipitation are expected to have bio-chemical effects on the 

water pollution level such that there are differences in level of pollution by the various 

regional climate factor conditions even if emissions of pollutants are recorded at the same 

level.  Accordingly, parametric assumptions on precipitation and usage rate of nitrogen 

fertilizer taken up by the plant, etc., can influence the EVSI through social planner’s 

decisions.  Over the correlations, a sensitivity analysis can be conducted to examine the 

effect of parametric assumptions on the optimal decision and the EVSI.  Since plenty of 

rain can deliver most of nitrogen fertilizer residuals to the Bay, the optimal decision is 
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expected to be sensitive to the distribution of precipitations in the watershed.  Similarly, 

the optimal decision and the EVSI are expected to be sensitive to the change of usage rate 

of fertilizer such that higher usage rate makes a control of nitrogen fertilizer more flexible.        
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Table 1.   Model Parameters 

Sources for values:  a = Horan et al (2002), b = Borisova et al (2005) 

Variable Notation Distribution Characteristics 
Substitution elasticity between land and 
nitrogen fertilizer 

σa Uniform, mean =1.25, variance = 0.025 

Damage exponent  qb Uniform, mean = 2, variance = 0.1089 
Damage coefficient ρb Uniform, mean = 1.2×10-4, variance = 4.41×10-18

Transport coefficient for watershed 2  ϑ 2
a Gamma, mean = 0.731, variance = 0.114 

Load regression coefficient 1ϕ   1ϕ
b Deterministic, mean = 646 ×10-5

Load regression coefficient 2ϕ   2ϕ
b Deterministic, mean = 8602×10-11

Load regression coefficient 3ϕ   3ϕ
b Deterministic, mean = 136×104

Calibration coefficient µ  µb 105

Precipitation, millimeters  zi
a Gamma, mean = 40.19, variance = 7.943 

Proportion of nitrogen taken up by the 
plant 

ub 0.7 

Baseline point source marginal 
abatement cost  

MC0 100,000 

 

 

 

Figure 1. The optimal sample size m* 

Value  C(m) 
Cost 

EVSI(m) 

0 m* Sample size m 
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Figure 2.  Flow Chart of Simulation for Sample Information Analysis 
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