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Abstract: We challenge the assumption of i.i.d random utility across alternatives 
embedded in typical applications of logit models to dichotomous choice contingent 
valuation data.  Using a Gumbel mixed distribution which nests a number of traditional 
models, we show that the logistic distribution is not a suitable distribution for contingent 
valuation analysis. 
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1. Introduction 

Including dichotomous choice contingent valuation (DCCV), widely different fields 

of economics have used the binary data based on the random utility model. The binary 

choice in DCCV is “yes (or one)” if the random utility after environmental change is still 

greater than that of the current state, and “no (zero)” otherwise. With the assumption of i.i.d. 

type I extreme value for the distribution of the unobserved term, the random utility models 

can be estimated through a simple logit model (See Haab and McConnell 2002).  

The simplicity and robustness of the estimation model, however, are the result of 

strong assumptions or constraints on the decision model rather than the natural outcome of 

correct specification of the model1. The main problem is that i.i.d. assumption across 

alternatives can be far from the real choice situation. First, since the state after 

environmental change is uncertain to the respondent in spite of surely increasing 

environmental quality, the variance of the additive error term in the proposed state may be 

different from that in the current random utility. Second, the existence of alternative project 

that respondents prefer but the researcher does not consider in the CV survey, can lead the 

respondent to refuse the proposed project even though respondent agrees with the change in 

environmental quality. In this situation, the simple logit is not suitable estimation model 

and yields an incorrect measure of parameters or welfare change.  

Undoubtedly, there has been a series of studies to relax the i.i.d. assumption in the 

logit model. For example, the heteroskedastic extreme value model has been suggested in 

the transportation (Bhat 1995) and marketing literatures (Allenby and Ginter 1995) to 

incorporate heteroskedasticity across alternatives into the multinomial or conditional logit 

models. However, no literature has paid attention to the strict assumption of identical error 

distributions across alternatives in the choice set. Since alternatives are only two and the 

scale and level of the utility is immaterial, variance-covariance parameters cannot be 

estimated with the binary choice by conventional models including generalized extreme 

values such as nested logit, paired combinatorial model, etc2.  

                                                 
1 We focus only on the logit model. When we assume the bivariate normal distribution, the choice probability 
still follows the univariate normal. The probit model, however, can identify only one parameter related with 
error distribution because of normalization. For details, see Train (2003). 
2 Note that these models have only J(J – 1)/2 – 1 covariance parameters after normalization, where J is the 
number of total alternatives 
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In this paper, we relax the identical and independent disturbance assumption of the 

random utility model by utilizing Gumbel mixed model. Gumbel mixed model is an 

asymptotic bivariate distribution of maxima, which provides us a scale parameter of one 

state normalized by the scale parameter of the other state and an association parameter 

related with correlation coefficient. The derivation of Gumbel mixed model is explained in 

the section 2. In section 3, we introduce two estimation techniques with Gumbel mixed 

model: approximation using Gaussian quadrature and simulation using mixed logit model. 

The generalized estimation procedures are applied to two contingent valuation studies in 

the section 4. Section 5 applies the generalized estimation method into the alternative 

choice model (willingness to pay function from expenditures difference), in which we 

found the same result as the random utility model. The section 6 concludes the analysis. 

 

2. Gumbel Mixed Model of Bivariate Extreme Values Distribution 

Including Gumbel (1960, 1961), Gumbel and Mustafi (1967) and Tiago de Oliveira 

(1980, 1983), a series of papers has introduced several bivariate extreme value distributions 

including the Gumbel mixed model which is one of differentiable bivariate extreme value 

distributions3. Let ( 0 1,F )ε ε  be a asymptotic distribution of bivariate extreme values of 

maxima for 0ε  and 1ε  with Gumbel margins, ( )F z . The asymptotic distribution of 

bivariate maxima is defined as 

(1)    ( ) ( ) ( ) ( )
0 1 0 1,

k
F F F

τ
ε ε ε ε⎡ ⎤= ⎣ ⎦  

where  is called the dependence function representing the asymptotic connection 

between 

( )k ⋅

0ε  and 1ε , and τ is reduced difference defined as 0 0 1 1/ /ε θ ε θ− . iθ  is a scale 

factor and the location factor is assumed to be equal to zero. 

Different bivariate distributions are derived using different dependence functions, of 

which the Gumbel mixed model has ( ) ( ) ( )( )2
| 1 exp / 1 expk τ λ λ τ τ= − + , where λ is an 

                                                 
3 For other examples of parametric families of bivariate extreme value distributions, see Kotz and Nadarajah, 
2000. Applications of Gumbel mixed model can be found in the hydrological engineering studies (Yue 2000, 
Yue et al. 1999). 
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association parameter4. Plugging the dependence function into equation (1) and using the 

definition of Gumbel margins, ( ) ( )( )exp exp /
i iF z zε θ= − − , the Gumbel mixed model is 

expressed as 

(2) ( ) ( ) ( )
0 1

0 1
0 1 0 0 1

, | exp exp exp
exp / exp /

F ε ε λε ε
1θ θ ε θ ε

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞
Γ = − − + − +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ +⎢ ⎥⎝ ⎠⎝ ⎠⎝ ⎠⎣ ⎦θ

 

where Γ is a parameter set of scale factor ( 0 1,θ θ ) and association factor (λ). Note that the 

expected value and the variance of independent extreme value iε  are ( ) 0.57722i iE ε θ≈  

and . Figure 1 shows the contour of the Gumbel mixed bivariate 

distribution function with λ = 0.5. For 

( ) 2 2 / 6i iVar ε θ π=

0λ = , the joint distribution is independent such that 

( ) ( ) ( )0 1 0 1,F F Fε ε ε= ε . The correlation coefficient is a function of the association 

parameter λ.  

From the Gumbel mixed distribution, several important distributions are derived; 

probability density function, conditional distribution and distribution of reduced difference. 

The probability density function is derived by differentiating (2) with respect to 0ε  and 1ε  

such that  

(3) 

( )

( )
( ) ( ) ( )

1 2 1 2
1 2

1 2 1 2 1 2

/ / / /
/ /

3 2/ / / / / /
1 2

,

, 2 x y x y
x y

x y x y x y

f x y

F x y e ee e
e e e e e e

θ θ θ θ
θ θ

θ θ θ θ θ θ

λ λ λ
θ θ

+
− −

⎡ ⎤

2
e⎧ ⎫⎧ ⎫

⎪ ⎪⎪ ⎪⎢ ⎥= + − −⎨ ⎬⎨ ⎬⎢ ⎥+ + +⎪ ⎪⎪ ⎪⎢ ⎥⎩ ⎭⎩⎣ ⎦⎭

. 

The contour of probability function is shown in Figure 2. As can be seen in Figure 1 and 2, 

the bivariate extreme value distribution is upper-right skewed.  

 [Figure 1-2 located here] 

The conditional cumulative distribution function of the Gumbel mixed model is 

(4) ( ) ( ) ( )
( )

( ) ( )0 1

1 1 1 1
| 0 0 1 1 1 2

0 0 1 1

exp 2 / exp /
, exp exp /

exp / exp /
F Fε ε

ε θ ε θ
ε ε ε ε θ λ

ε θ ε θ

⎧ ⎫⎡ ⎤+ −⎪ ⎪⎣ ⎦⎡ ⎤= − −⎨ ⎬⎣ ⎦
⎡ ⎤+⎪ ⎪⎣ ⎦⎩ ⎭

 

                                                 
4 The logistic model, one of differentiable bivariate extreme value distribution, is derived using the difference 
function of ( ) ( )( ) ( )

1
| 1 exp / 1 / 1 expk

λ
τ λ τ λ

−
⎡ ⎤ τ⎡ ⎤= + − − + −⎣ ⎦⎣ ⎦

. Unfortunately, the logit model, i.e. the generalized 

extreme value with two alternatives, cannot identify the association factor λ. 
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from ( ) (
0 1 1| 0 1, /f f fε ε ε )1ε ε= ε   (Yue 2000). The distribution function of reduced difference 

is derived as (Tiago de Oliveira 1980) 

(5)   ( ) ( )
( )

( )( )
( )( ) ( )

2

2

1 expexp
|

1 exp 1 exp exp
D

τ λτ
τ λ

τ τ λ τ

+ −
=

+ + −
. 

Figure 3 and 4 show the cumulative distribution and probability function of the reduced 

difference with various λ. The probability density function of reduced difference is 

symmetric around zero mean. For 0λ = , i.e. independent case, the conditional distribution 

(4) reduces to be a univariate type I extreme value and the difference distribution (5) 

becomes a logistic distribution. 

[Figure 3-4 located here] 

 

3. Random Utility and the Probability of Binary Choice 

3.1. Random Utility Model 

A standard random utility consists of two parts; a systematic component observable 

to researcher and an error component that is known to respondent but not necessarily. Let 

the random utility of individual n with alternative i be ( ),in i n n inU V I z ε= + , where  is the 

systematic component and 

iV

iε  is the error component. Alternatives in the binary choice set 

are the proposed state representing to accept the policy and the current state without change 

indicating to reject the policy5. The systematic part is the function of respondent’s income 

( nI ) and the vector of respondent’s characteristics and choice attributes ( ). The 

probability of choosing the state one is; 

nz

(6)          ( ) ( ) ( )1 0 1 0 0 1 1 0n n n n n n n n n nP P U U P V V P v 1ε ε ε= < = + < + = < +ε

0n

                                                

 

where . Further progress in estimation is feasible by specifying a parametric 

form for both of the systematic component and the error distribution in equation (6). The 

systematic component is usually assumed linear in parameters even though only linearity in 

income is sufficient. The error component in the standard additive random utility for 

discrete choice case is assumed independent and identical distribution over states 

1n nv V V= −

 
5 We assumes that ‘to be uncertain’ responses are grouped as ‘no’ response for conservative reason. For 
details of ‘uncertain’ response issue, see Carson et al. 1998; Groothuis and Whitehead 1998. 
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(Karlström 1999). With i.i.d. type I extreme value (or Gumbel) distribution, the derivation 

of the logistic distribution for the difference of two identical extreme values is 

straightforward. In addition, McFadden (1974) also shows that the logit formula for the 

choice probabilities implies extreme value distribution for the random utility.  

The classical assumption about the additive error components, however, may be 

wrong because of several reasons. For example, uncertainty in the future, reliability on the 

implementation and result of the project, etc, can be possible source that respondent accept 

the proposed and current states differently. More uncertainty in the proposed state 

introduces larger variance of the distribution. The proposed state is random and 

unobservable even to the respondent, which is different from the unobservability of the 

current state. Another possibility of violation of the assumption is that, if respondents have 

alternative options instead of the proposed policy that may be unknown to researcher, the 

response of reject represents either staying without change (the current state) or changing 

through other process (the future state possibly for different level of environmental 

quality)6. In addition to the possible heteroskedasticity due to unknown alternatives, the 

current and proposed states may be correlated if the unknown alternatives have the same 

goal of the environmental change with the proposed policy in the survey. Because of those 

reasons, we name the current state as the reference state to avoid misinterpretation.  

 

3.2. Approximation of the Log Likelihood 

Regardless of the heteroskedasticity and correlation, the choice probability in the 

equation (6) can be expressed as an integration of the conditional distribution over marginal 

distribution; 

(7)    ( ) ( )1

0 1
1

1 | 1 1n nP F v f
ε

ε εε 1dε ε ε
=+∞

=−∞
= +∫ . 

                                                 
6 Train (2003) defined three characteristics that alternatives in the choice set should satisfy: exclusiveness, 
exhaustiveness and countable finiteness. To vote for and vote against are mutually exclusive and finite. For 
exhaustiveness, the current state without change includes not only the state without change but also all 
possible changes except the policy proposed in the survey. Furthermore, NOAA panel report (Arrow et al. 
1993) recommends the reminder of substitute commodities among guideline for designing contingent 
valuation questions, such as other comparable natural resources or the future state of the same resource to 
assure that respondents have the alternatives clearly in mind (Haab and McConnell, 2002). Haab and Hicks 
(1999) has broadly surveyed the choice set issues in recreation demand modeling. 
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The equation (7) is a general expression of the choice probability nesting a simple logit, 

heteroskedastic extreme values and common scale factor model. Since the general 

expression of bivariate extreme value model in equation (7) does not have the closed form 

for the integration, we need to approximate or simulate the choice probability.  

As already shown in the multinomial heteroskedastic case by Bhat (1995), the 

approximation procedure utilizing Gaussian quadrature can provide a fast and highly 

accurate proxy of the choice probability7. Define a new variable such that 

, thus ( )( )exp expu w= − − ( )ln lnw u= − −  and ( ) ( )( )exp exp expdu w w dw= − − − 8. The 

new variable u is the form of cumulative distribution of extreme value and has the support 

of [ ]0,1 . This transformation enables us to approximate the choice probability much easier 

through Gaussian-Legendre quadrature. Let 1 1w1ε θ=  and 1 0/γ θ θ= , then the conditional 

density and marginal probability functions are ( ) ( )
0 1 0 1| 1 |n nF v F v wε ε ε εε γ+ = + 1

1

 and 

( ) ( )1 1 /f f wε θ= . The arguments in the conditional probability is normalized by 0θ . 

Plugging the new variable u into the choice probability function, the choice probability 

becomes  since ( )
1

1 0
,

u

n nu
P G v u

=

=
= ∫ du 1w1 1d dε θ= , where ( ) (( )

0 1|, lnn nG v u F v uε ε γ= − − )ln

n

. 

The integration can be substituted by Gaussian-Legendre quadrature such as 

( ) ( )
1

110
ˆ, ,

u L
n l n llu

G v u du G v u Pξ
=

==
≈ =∑∫  

where lξ  and  are L weights and support points (abscissas) of Gaussian-Legendre 

quadrature. The log likelihood function is approximated as 

lu

( ) ( ) ( ){ }1 1
1

log log , 1 log 1 ,
N

L L
n l n l n l nl l

n
L y G v u y G v uξ ξ

= =
=

= + − −∑ ∑ ∑ l

                                                

. 

 

3.3. Simulation of the Log Likelihood 

The mixed logit model introduced into recreation model by Train (1998, 1999) 

directly simulates the choice probability in the equation (6). Let the true random utility to 

 
7 Alternatively, Allenby and Ginter (1995) also suggest the Bayesian estimation procedure for heteroskedastic 
extreme values. 
8 Bhat (1995) uses the transformation of ( )expu w= −  with the support of [ ]0,∞  and applies a Gaussian-
Laguerre quadrature.  
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be in in inU zς ′= , where  and ( ),in in iz x d′ ′= ( ),in in inς β ε′ ′= . By rescaling the utility upward 

sufficiently (s) and adding an i.i.d. extreme value terms on both sides, the resulting choice 

probability is expressed such as 

( )
( )

( )1 1
1

0,1

exp /

exp /
n n

n
jn jnj

s z
P f

s z

ς
dς ς

ς
=

⎛ ⎞′⎡ ⎤⎣ ⎦⎜ ⎟=
⎜ ⎟⎡ ⎤′⎣ ⎦⎝ ⎠
∫ ∑

 

where ( )f ς  is a joint density of jnβ  and jnε 9. Suppose that coefficients of systematic part 

of utility are invariant across individual ( in iβ β= ) and the joint density of ( )f ς  is a 

bivariate distribution of 0nε  and 1nε . Then the mixed logit model becomes 

(8)    ( ) ( )1 1 0 1 0 1, ,n nP L f dς ε ε ε ε= ∫  

where  

(9)         ( )
( )
( )
1 0

1
1 0

exp / /
1 exp / /

n n n
n

n n n

v s s
L

v s s
ε ε

ς
ε ε

⎡ ⎤+ −⎣ ⎦=
⎡ ⎤+ + −⎣ ⎦

. 

Because of the equivalence to the logit smoothed-AR simulator (McFadden 1989), 

the estimation of the mixed model follows the simulation procedure of ‘logit kernel probit’ 

(Ben-Akiva and Bolduc 1996) adjusted simply for the bivariate extreme values. However, 

since the random draw from a bivariate extreme value distribution is unavailable, we 

employ an importance sampling procedure with Halton sequence to simulate the random 

draw from bivariate extreme values. The importance sampling provides simulated random 

variables with correlation and heteroskedasticity by transforming the original density, 

named target density, into a density from which it is easy to draw, named a proposal density 

(Train 2003).  

Let ( )ig ε  be a univariate extreme value distribution. Define the weight as 

                                                 
9 The mixed logit model, usually, has employed a joint distribution of parameters β in the systematic 
component of random utility. The probability function of the random parameter is defined to be 

( )
( ) ( )exp

exp
in

in
jnj

x
P d

x
β

φ β β
β

⎛ ⎞′
⎜ ⎟=
⎜ ⎟′⎝ ⎠
∫ ∑

 

where ( )φ ⋅  is the distribution function of parameters which can be flexibly assumed such as a normal 
(Provencher and Bishop 2004), lognormal (Bhat 2000), uniform or triangular (Train 2001) distribution. The 
mixed logit model can be applied to any choice model with any degree of accuracy by assuming appropriate 
distribution (Train 2003, McFadden and Train 2000). By assuming that parameters have an individual and 
alternative specific randomness, the mixed model relaxes the IIA assumption and represents any pattern of 
substitution among alternatives. 
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(10) 
( )

( ) ( ) ( ) ( ) ( ) ( )
0 1

0 1 0 0 1 1
0 1 0 0 1 1

,
, exp / /

exp / exp /
f

g g
ε ε λε ε ε θ ε θ

ε ε ε θ ε θ
⎧ ⎫⎪ ⎪= Ψ + +⎨ ⎬+⎪ ⎪⎩ ⎭

 

where ( 0 1,f )ε ε  is the joint density in the mixed logit model and  

( )
( ) ( ) ( )

0 1 0 1
0 1

0 01 1

/ / / /
/ /

3 2/ / // /

2,
x y x y

x y

x x xy y

e ex y e e
e e e e e e

θ θ θ θ
θ θ

θ θθ θ

λ λ+
− −

0 1
2/y

e
θ θ

λ⎧ ⎫⎧ ⎫
⎪ ⎪⎪ ⎪Ψ = + − −⎨ ⎬⎨ ⎬

+ + +⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭

i

. 

Using the fact that i iwε θ=  and ( ) ( ) ( )1/i ig ε θ= ig w , the choice probability of mixed logit 

model becomes  

( ) ( ) ( ) ( ) ( )1 1 0 1 0 1 0
0 1

ˆ , exp ,
exp expn nP L w w w w d w w

w w
λς

⎧ ⎫⎪ ⎪= Ψ + +⎨ ⎬+⎪ ⎪⎩ ⎭
∫ 1 , 

since multiplying the integrand of equation (8) by ( ) ( )/g gε ε  does not change the original 

choice probability. 

Application of importance sampling to the mixed logit model is as follows: (1) Take 

draws for  and  from a standard extreme value distribution and construct two-

dimensional independent random variables. In this first step and through the repetition, 

Halton sequence is used to draw standard extreme values

0w 1w

10. (2) For this draw, calculate the 

logit formula,  with prespecified scaling factor (s), and the weight function of the 

equation (10). (3) Repeat two steps enough times and take the average of the result, 

1nL

1
1ˆ

n r
P

R
= ∑ 1nP

P̂

n−

                                                

, which is an unbiased estimate of the choice probability with correlation 

and heteroskedasticity. The probability of choosing the alternative zero is . The 

simulated log likelihood function becomes  

0 1
ˆ 1n nP = −

( ) ( )1 1
1

ˆ ˆlog log 1 log 1
N

n n n
n

L y P y P
=

= + −∑ . 

3.4. Estimation of Welfare Change 

We define the expected welfare change (willingness to pay for the environmental 

change) as the expected maximum income that equates the expected random utility in two 

 
10 Halton sequence reduces the number of draws and the simulation error associated with a given number of 
draws. The simulation error with 125 Halton draws is smaller than even with 2000 random draws. See Bhat 
(1999), Train (1999, 2003) and Greene (2002). 
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states11. Assume that the systematic component of the random utility is linear in the income 

and the marginal utility of income is constant (α) across individuals and states, i.e. no 

income effect, then the expected willingness to pay becomes 

(11)            ( ) ( )1 0
1 1

n n nE WTP v E nε ε
α α

= + − . 

Due to the linearity assumption of the income, the income variable is not included in . 

While the expectation of the error term of the logit model is zero by including a constant 

term in the systematic component, the expected value of error terms in equation (11) is not 

zero. As explained below, it is much convenient for estimating equation (11) to remain the 

expectation term. 

nv

In general case, we can estimate the expectation of error differences through a 

simulation procedure using estimated relative scale and association parameters since the 

exact moment of error difference in Gumbel mixed model is unknown. Note that the 

expected value of error difference is the integration of random variables over Gumbel 

mixed bivariate probability; 

( ) ( ) ( )1 0 1 0 1 0 1 0, ,n n n n n n n nE w w w w f w w d w wγ γ− = −∫ . 

By reapplying importance sampling procedure with Halton sequence, the expected 

willingness to pay becomes  

( ) ( )1 0
1 ˆ

n n n nE WTP x E w wβ γ
α α
′= + − . 

since ( )1 0 /n nE ε ε− α  is equivalently ( )1 0 /n nE w wγ α− .  

Except the general case, however, the expected willingness to pay can be exactly 

calculated. In the heteroskedastic case, the expectation of 1n 0nε ε−  is approximately 

( 1 00.57722 )θ θ⋅ − , providing the final expression of the expected willingness to pay as 

( ) ( )/ 0.57722 1 /n nE WTP v α γ α≈ + − . For identical cases, the willingness to pay is simply 

( ) /n nE WTP v α= . 

                                                 
11 A series of papers has investigated the correct welfare measure consistent with the microeconomic theory. 
The welfare measurement is incorrect if we estimate the models using the incorrect choice set (Kaoru et al. 
1995). More seriously, a large difference of amount of money in a cost-benefit analysis has been found even 
though the welfare estimates from different model are similar (Hau 1986, Herriges and Kling 1999, Karlström 
1999). 
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4. Applications to Dichotomous Choice Contingent Valuation Study 

To test classical assumption, we apply Gumbel mixed model to the previous 

dichotomous choice CV studies. The study used in the estimation includes the sewage 

treatment in Barbados  and the wastewater disposal system in Montevideo, Uruguay 

(McConnell and Ducci, 1989)12. Observations in data were 1276 for Montevideo and 426 

for Barbados data. For mixed logit model, the rescaling factor s was set to be 0.3 and the 

simulation was iterated 125 times. The association parameter (λ) was constrained to be 

between zero and one, and the relative scale factor (γ) was restricted to be nonnegative in 

the CML procedure of Gauss program13.  

Table 1 and Table 2 show the estimation results of random utility model with 

Barbados and Montevideo data, respectively. The results consist of three sets; simple logit 

model in the second column, the result of bivariate extreme values in the third to sixth 

column and the result of mixed logit in the last four columns.  

[Table 1 located here] 

In Table 1, the first part of results of each estimation method is for the constrained model 

with independent and identical error ( 1γ = , 0λ = ) that is theoretically equivalent to the 

simple logit model. The constrained bivariate extreme value model with 1γ =  and 0λ =  

provides exactly same parameter estimates with the simple logit model while the 

constrained mixed logit model with 1γ =  and 0λ =  has slightly different estimates from 

the simple logit model. However, both estimation models fail to estimate parameters with 

the constraint of 0λ =  due to too large relative scale estimate. When the correlation is 

allowed in estimation, i.e. in general model and constrained model with 1γ = , the 

association parameter is different from zero but not statistically significant. In addition, the 

relative scale parameter is not statistically different from one. LR statistics fail to reject the 

constraints for homoskedasticity or independence. Barbados data shows that the assumption 

of independent and identical distribution is suitable for estimation of random utility. 

[Table 2 located here] 
                                                 
12 The data is available in Haab and McConnell (2002).  
13 The positive constraint can be assigned in the model by transforming the parameter such as exponential 
term. However, the estimation results for other parameters are not different and zero estimate of relative scale 
implies extreme difference of scale terms. 
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Table 2 also shows that bivariate extreme value model with constraints of 1γ =  and 

0λ =  provides the estimation result closer to logit model than mixed logit model does. In 

both of bivariate extreme value and mixed logit models, association parameter estimates are 

statistically indifferent from zero except one case of mixed logit model. The relative scale 

estimates, however, are zero implying that the variance of the reference state is extremely 

larger than that of the proposed state. The association parameter estimates are not 

statistically different from zero. LR statistics fails to reject the constraint of independence 

( 0λ = ), but heteroskedasticity is statistically significant.  

[Table 3 located here] 

Table 3 shows the sample average of the expected willingness to pay from Table 1 

and 214. RD indicates the random utility model and ED represents the expenditure 

difference model result explained in the next section. In spite of similar parameter estimates 

among different constrained models, the welfare measure from the change of environmental 

quality varies enormously depending on the relation of error terms. For instance, the sample 

average of the expected willingness to pay in Montevideo is estimated around -28 ~ -26 

when 1γ =  is imposed, but it is estimated -81 ~ -65 without the constraint of 1γ = . 

Unfortunately, due to the failure of estimation, the willingness to pay cannot be estimated 

in two heteroskedastic models of random utility with Barbados data. However, the expected 

willingness to pay with the homoskedasticity constraint is also similar to logit model since 

independence has been found in most cases.  

 

5. Expenditure Difference Model 

An alternative model of explaining respondent’s choice in dichotomous choice 

contingent valuation is the willingness to pay function derived from the expenditure 

functions. Let the minimum expenditure of individual n be ( )0 0
0 ,nm m q u= n

)n

                                                

 at the reference 

state and  at the proposed state where  is the environmental quality at 

state i. Then, the willingness to pay function is defined as a difference of two expenditure 

( 1 0
1 ,nm m q u= iq

 
14 Since the purpose of reporting willingness to pay is to compare the result from each estimation and decision 
model, monetary units are ignored in the table. Furthermore, by the assumption of linear function and infinite 
range of error distribution, the expected willingness to pay can be negative value. 
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function: ( ) ( ) ( )0 0 0 1,WTP u m q u m q u= − 0, . Like the random utility, the expenditure 

function consists of a systematic component ( ) and an unobservable random component 

(

*
nm

nη ). The logistic distribution of the willingness to pay function implies that the underlying 

distribution of expenditure functions is the i.i.d. type I extreme value distribution. As can be 

recognized, the exactly same problems as random utility model arise in the willingness to 

pay function model.  

While the random utility is derived from the utility maximization, the expenditure 

function is the minimized cost, requiring that the extreme value of the expenditure function 

is the smallest extreme value. The smallest extreme value is easily derived from the dual 

relation of ( ) ( )min maxi iZ Z= − −  (Tiago de Oliveira, 1983). The joint distribution 

function for minima with Gumbel reduced margins is  

( ) ( ) ( ) ( )0 1 0 1 0 1, 1 ,F F Fη η η η ηΩ = − − − − + − −η , 

where  and  are marginal and joint distributions of maxima. The probability 

density function of bivariate extreme values of minima is 

( )F ⋅ ( ),F ⋅ ⋅

( ) (0 1 0 1, ,f )ω η η η η= − −  by 

definition. From the dual relationship, we can derive the marginal distribution function and 

probability function as ( ) ( )1i iFη ηΩ = − −  and ( ) ( )fω η η= − . Note that the expected 

value of η is ( ) 0.57722iE iη θ≈ − . The conditional distribution of minima is derived from 

the conditional distribution of maxima in equation (9) such as 

( ) ( ) (1

1 0 0 1 0| | 1d F
η η

η
)|η η ω η η η η

=

=−∞
Ω = = − − −∫ η

)

 

since ( ) (1 0 1 0| |fω η η η η= − − . The distribution and probability functions of reduced 

difference of minima are identical to that of maxima. 

The estimation of the willingness to pay function follows the same procedures in 

random utility model. The choice probability of expenditure difference is expressed as  

( ) ( ) ( )0

0

* * *
1 1 1 0 0 0 0 0|n n n n n nP P m b m m b d

η

η 0η η η η
=+∞

=−∞
= + + < + = Ω − +∫ ω η η

*
1n

)lu

. 

where . The choice probability can be approximated by Gaussian quadrature 

such as  through appropriate transformation. The mixed logit model 

* *
0n nm m m= −

( *
1 1
ˆ ,L

n l nl
P H mξ

=
= ∑
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simulates the choice probability as ( ) ( )1 1n nP L dς ω η η= ∫  where 0 1,η η η=  and 

( ) ( ){ } 1
*

1 1 exp / /n n n n nL m b s η η0 1 s
−

⎡= + − − − −⎣
⎤
⎦ . The simulation procedure of the bivariate 

probability of minima is the same as the bivariate probability of maxima. However, all 

parameters are normalized by 1θ  rather than by 0θ  such as ( )0 1 / 1β β β θ= −  for the 

systematic part, 11/bβ θ=  for the minus bid value and 0 / 1γ θ θ=  for the relative scale 

factor. Due to the bid variable, the expenditure difference model is able to identify both 

scale parameters. Finally, the expected willingness to pay is estimated as 

( ) (*
0 1n nE WTP m E )η η= + − .  

Table 4 and Table 5 report the estimation results of expenditure difference model 

using the same data in the random utility model. Note that the relative scale factor γ is 

estimated as 1 0/θ θ  rather than 0 / 1θ θ  to enable the comparison with random utility model. 

Parameter estimates of the expenditure difference model are statistically duplicates of the 

random utility model, i.e. assumption of underlying distribution such as maxima or minima 

does not affect the estimation result. Table 4 shows that Barbados study satisfies the 

classical assumption of logit model in terms of parameter estimates and LR test statistics. 

Montevideo data in Table 5, however, rejects the homoskedasticity constraint but fails to 

reject the independence constraint in both estimation models as the random utility model 

(Table 2). However, in spite of that the relative scale estimate is statistically significantly 

less than one, parameter estimates of systematic component of expenditure difference are 

seemingly equivalent with that of the random utility model15. The expected willingness to 

pay in expenditure difference model is reported in Table 3. 

[Table 4-5 located here] 

 

6. Conclusions 

We challenge the theoretical and technical background of the simple logit model 

often used for estimating willingness to pay from dichotomous choice contingent valuation 

applications. The simple logit model assumes that the respondent’s evaluations of the two 

                                                 
15 Note that the parameters are normalized by 

1θ  not by 
0θ . 
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states are stochastically independent and homoskedastic. However, when random utilities 

across states of the world are heteroskedastic or correlated, we cannot derive the logit 

model theoretically consistent with random utilities. In this paper, we suggest generalized 

estimation methods by utilizing Gumbel mixed model to relax restrictive assumptions of 

the standard random utility model. Nested within this generalized model are the 

heteroskedastic logit model and the simple logit. The nesting structure allows for 

straightforward tests of the homoskedastic-independent error assumptions. In addition to 

the random utility model, expenditure difference (willingness to pay) model was estimated 

using Gumbel mixed bivariate distribution of minima. Again, this model has nested within 

it a number of standard logit-expenditure difference models. 

Estimation results from several existing data including Barbados and Montevideo 

data show that correlation between two states is usually minimal, but Montevideo data 

presents extremely different scale of error terms across states implying that the i.i.d. 

extreme values, i.e. logistic distribution for the difference of error terms, may not be a 

suitable distribution. Serious problem arises in estimation of welfare measure. 

Heteroskedasticity or correlation provides willingness to pay estimate different from 

estimate of the simple logit, thus different policy implication in benefit-cost analysis. 

In spite of the simplicity and profound theory of binary choice logit model, much 

careful consideration is required to apply the model into contingent valuation studies. 

Various estimation models do not suggest different decision process but indicate that due to 

the nature of decision process, the estimation result from simple logit model could be 

incorrect. However, as we mentioned before, if random utility or expenditure function 

follows the bivariate normal distribution, the binary choice probability is still a normal 

distribution. The similar estimation result between probit and logit models arises the 

question about the comparison between models with bivariate normal and bivariate extreme 

value distributions. Decision of which estimation model should be used in practice is based 

on the how researchers define the choice situation and choice set, but when they employ the 

logit model, the assumption of the model should be tested in priori. 
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 Figure 1: Distribution Function of Gumbel Mixed Model of Maxima with λ = 0.5 
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Figure 2: Probability Function of Gumbel Mixed Model of Maxima with λ = 0.5 
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Figure 3: Distribution Function of Reduced Difference of Extreme Values 
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Figure 4: Probability Function of Reduced Difference of Extreme Values 
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Table 1. Estimation Result of Random Utility Model with Barbados Data 
Constrained Bivariate Constrained Mixed Logit 

  Logit
(γ = 1, λ = 0) ( λ = 0) * (γ = 1) 

Bivariate 
Extreme 
Value Model (γ = 1, λ = 0) ( λ = 0) * (γ = 1) 

Mixed Logit 
Model 

Constant 0.6789 
0.5261 

0.6790 
0.5262  0.5959 

0.4233 
0.6700 
0.5861 

0.4718 
0.5207  0.5803    

0.4771 
0.6646    
0.7226 

Income 0.0549 
0.0210 

0.0549 
0.0210  0.0412 

0.0178 
0.0498 
0.0375 

0.0645 
0.0238  0.0532    

0.0233 
0.0812    
0.0703 

City 0.4099 
0.2929 

0.4100 
0.2929  0.2804 

0.2304 
0.3401 
0.3602 

0.4527 
0.3150  0.3432    

0.3137 
0.5297    
0.6748 

Age -0.0285 
0.0090 

-0.0285 
0.0090  -0.0219 

0.0083 
-0.0272 
0.0209 

-0.0265 
0.0098  -0.0250   

0.0092 
-0.0386   
0.0232 

Bid 0.0387 
0.0063 

0.0387 
0.0063  0.0311 

0.0082 
0.0389 
0.0283 

0.0408 
0.0078  0.0368    

0.0068 
0.0554    
0.0355 

γ - 1.0000 
-  1.0000 

- 
1.2648 
0.8285 

1.0000 
-  1.0000 

- 
1.6949    
0.9574 

λ  - 0.0000 
-  0.6099    

0.3739 
0.5638 
0.4613 

0.0000 
-  0.3516    

0.5122 
0.2623    
0.6528 

Log likelihood -160.841 -160.841     -160.211 -160.122 -160.782 -160.678 -160.268

* Function calculation is failed. 

Table 2. Estimation Result of Random Utility Model with Montevideo Data 
Constrained Bivariate Constrained Mixed Logit 

  Logit
(γ = 1, λ = 0) ( λ = 0) (γ = 1) 

Bivariate 
Extreme 
Value Model (γ = 1, λ = 0) ( λ = 0) (γ = 1) 

Mixed Logit 
Model 

Constant -0.6140 
0.1295 

-0.6139 
0.1295 

-0.1297 
0.0822 

-0.4860 
0.1444 

-0.1297 
0.0823 

-0.6985 
0.1336 

-0.1360 
0.0924 

-0.6565 
0.1617 

-0.0994   
0.0819 

Income 0.0944 
0.0192 

0.0944 
0.0192 

0.0743 
0.0138 

0.0778 
0.0228 

0.0743 
0.0138 

0.1108 
0.0183 

0.0812 
0.0146 

0.1074 
0.0286 

0.0708    
0.0077 

Bid 0.0100 
0.0014 

0.0100 
0.0014 

0.0053 
0.0008 

0.0078 
0.0022 

0.0053 
0.0008 

0.0104 
0.0015 

0.0063 
0.0009 

0.0096 
0.0017 

0.0063    
0.0009 

γ - 1.0000 
- 

0.0000 
. 

1.0000 
- 

0.0000 
. 

1.0000 
- 

0.0000 
. 

1.0000 
- 

0.0000 
. 

λ  - 0.0000 
- 

0.0000 
- 

0.5313 
0.4445 

0.1909 
0.0000 

0.0000 
- 

0.0000 
- 

0.2277 
0.2478 

1.0000 
. 

Log likelihood -726.719         -726.720 -723.611 -726.244 -723.611 -726.174 -723.625 -725.782 -723.432
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Table 3. Sample Average of Welfare Measure for Environmental Quality Change 
Constrained Bivariate Constrained Mixed Logit 

  Logit
(γ = 1, λ = 0) ( λ = 0) (γ = 1) 

Bivariate 
Extreme 
Value Model (γ = 1, λ = 0) ( λ = 0) (γ = 1) 

Mixed Logit 
Model 

Barbados Data 

RU1 -2.0701 -2.0688 . -0.2368 1.6110 -2.1668 . -1.1496 1.6930 

ED2 -2.0701        -2.0709 7467.3236 -0.2374 2.8939 -3.4701 3.7356 -0.0794 2.9927

Montevideo Data 

RU1 -26.8148 -26.8149 -81.6514 -25.7220 -81.6283 -27.9171 -65.7042 -27.2881 -65.1584 

ED2 -26.8148 -26.8189 . -25.7257 . -27.3092 -65.3239 -26.4295 -65.3239 
1 RU represents the random utility model. 
2 ED represents the expenditure difference model. 

Table 4. Estimation Result of Expenditure Difference Model with Barbados Data 
Constrained Bivariate Constrained Mixed Logit 

  Logit
(γ = 1, λ = 0) ( λ = 0) (γ = 1) 

Bivariate 
Extreme 
Value Model (γ = 1, λ = 0) ( λ = 0) (γ = 1) 

Mixed Logit 
Model 

Constant 0.6789 
0.5261 

0.6789 
0.5260 

0.3512 
0.4404 

0.5958 
0.4233 

0.5283 
0.4392 

0.5658    
0.5402 

1.1122    
1.1487 

0.6474    
0.4580 

0.7489   
0.7095 

Income 0.0549 
0.0210 

0.0549 
0.0210 

0.0419 
0.0155 

0.0412 
0.0178 

0.0393 
0.0173 

0.0569    
0.0216 

0.1063    
0.0513 

0.0494    
0.0185 

0.0649    
0.0396 

City 0.4099 
0.2929 

0.4099 
0.2929 

0.3047 
0.2342 

0.2804 
0.2304 

0.2687 
0.2228 

0.4682    
0.2981 

0.9152    
0.6835 

0.3478    
0.2690 

0.4112    
0.4621 

Age -0.0285 
0.0090 

-0.0285 
0.0090 

-0.0244 
0.0075 

-0.0219 
0.0083 

-0.0215 
0.0082 

-0.0281   
0.0088 

-0.0594   
0.0346 

-0.0249   
0.0081 

-0.0330   
0.0235 

Bid 0.0387 
0.0063 

0.0387 
0.0063 

0.0351 
0.0055 

0.0311 
0.0082 

0.0307 
0.0083 

0.0385    
0.0046 

0.0845    
0.0390 

0.0366    
0.0053 

0.0510    
0.0297 

γ - 1.0000 
- 

455.6437 
42029.933

1.0000 
- 

1.2726 
0.8559 

1.0000 
- 

2.4492    
1.1828 

1.0000 
- 

1.4920    
0.8958 

λ  - 0.0000 
- 

0.0000 
- 

0.6099    
0.3740 

0.5630 
0.4635 

0.0000 
- 

0.0000 
- 

0.4651    
0.3311 

0.4246    
0.3744 

Log likelihood -160.841 -160.841 -160.171 -160.211 -160.121 -160.320 -159.267 -159.667 -158.996
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Table 5. Estimation Result of Expenditure Difference Model with Montevideo Data 
Constrained Bivariate Constrained Mixed Logit 

  Logit
(γ = 1, λ = 0) ( λ = 0)* (γ = 1) 

Bivariate 
Extreme 
Value 
Model* (γ = 1, λ = 0) ( λ = 0) (γ = 1) 

Mixed Logit 
Model 

Constant -0.6140 
0.1295 

-0.6140 
0.1295  -0.4860 

0.1444  -0.6757 
0.1392 

-0.1988   
0.1462 

-0.6238   
0.1312 

-0.1988   
0.1462 

Income 0.0944 
0.0192 

0.0944 
0.0192  0.0778 

0.0228  0.1064 
0.0214 

0.0824 
0.0153 

0.1110    
0.0222 

0.0824 
0.0153 

Bid 0.0100 
0.0014 

0.0100 
0.0014  0.0078 

0.0022  0.0104 
0.0015 

0.0064 
0.0009 

0.0082    
0.0016 

0.0064 
0.0009 

γ - 1.0000 
-  1.0000 

-  1.0000 
- 

0.1009 
0.1913 

1.0000 
- 

0.1009 
0.1911 

λ  - 0.0000 
-  0.5313    

0.4445  0.0000 
- 

0.0000 
- 

0.6041    
0.3006 

0.0000 
. 

Log likelihood -726.719 -726.719     -726.243 -726.269 -723.976 -724.497 -723.976

* Function calculation is failed. 
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