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Abstract

The study proposes a discrete-choice model for environmental policy/program valuation,
to be used in cases when several policies are valued sequentially. The stochastic specification
of the model is consistent with the transitivity and continuity axioms of utility analysis. An
empirical methodology for the model is suggested. An application of this model to WTP esti-
mation for Little Tennessee River watershed ecosystem restoration is provided. Findings from
the application agree with hypothesized agent’s behavior.

1 Introduction and Objectives

Modern-day environmental policies or programs such as watershed ecosystem restoration are de-
signed to improve multiple ecosystem services and naturally consists of multiple components or
parts. Clearly, the valuation of such policies or programs should address the multi-dimensionality
of the problem; that is, the relative importance of the program’s components needs to be studied.
If the contingent valuation method (CVM) is used, a commonly practiced approach is to include
several policy options in the survey, which are to be valued in a sequential manner. An example
of such a sequence may be valuing a bare-bones policy first and subsequently augmenting it with
more attributes or higher levels of the already included ones, building up to the most comprehensive
package of management actions.

When multiple items1 are valued using the dichotomous choice format — the respondents are
asked “take it or leave it” questions for one item at a time — a binary discrete-response data set
with a sequence of observations per individual is generated.

The focus in scholarly literature has been mainly on deterministic utility functions to be used
with multiple items. Considerable effort has been made to suggest economically meaningful func-
tional representations for deterministic utility. Modelling the stochastic part has received far less
attention. In many applied studies, utility shocks are modelled as independently and identically
distributed random variables. Some studies recognize the fact that observations on one and the
same individual must be related to each other. Unobserved effects models are then used, that range
in complexity from very simple random or fixed effects to sophisticated mixed logit or latent class
models.

1Since our analysis essentially applies to valuing any composite non-market goods, the terms “commodity,” “good,”
“policy,” and the like are used interchangeably.

1



Whatever the level of sophistication, distributional assumptions with respect to utility shocks
are typically made on the basis of intuition or statistical convenience. This makes the role of error
terms rather ambiguous, from a utility analysis perspective.

Deterministic and stochastic terms determine unobserved utility, working as one whole. If an
applied CVM study employs utility theory to estimate a welfare measure for the representative
agent, then the estimate would only be valid provided the whole model is in agreement with the
postulates of utility theory, for the latter need to be axiomatically assumed in order to arrive at
any conventional welfare measure. All parts of the model should thus agree with utility theory.
Conversely, if there is no holistic treatment of the model components, the validity of valuation
results may be called into question on economic grounds and their usefulness for informing policy
and management decisions hindered.

Concepts behind such a holistic model is the raison d’être of this paper. Our overall objective
is to provide the rationale for, conceptually develop, and test empirically a stochastic model for
valuing several multi-attribute environmental policies or programs, one at a time, that accounts
for such principles of rational behavior as utility transitivity and continuity. Unlike most of the
models suggested in CVM literature to date, our model is inherently invariant to changing from
the sequential to simultaneous choice format. The model we consider can be used for valuation
purposes as such, or it can serve as a default model, should one wish to test for instrument format
effects.

A general conceptual valuation model is developed in Section 2. On the grounds of dynamic
consistency we argue that, as long as the commodity information the respondent possesses remains
unchanged, the exact, albeit unobservable, utility levels attainable at all restoration programs
involved should be thought of as the same throughout the valuation process. This conjecture leads
to the equivalence of the sequential and simultaneous elicitation formats and makes the model
consistent with the utility transitivity axiom.

We further build on this reasoning and posit that, for the utility continuity axiom to be main-
tained, the degree of dependence between the utility shocks in any pair of items should increase as
the items get closer together attribute-wise. This constitutes the main research hypothesis of the
study.

In Section 3, we introduce the specifics of survey data for the Little Tennessee River empirical
application. We provide several alternative stochastic specifications for our valuation model. Model
parameters estimated by maximum likelihood are presented and discussed. We discuss empirical
evidence in support of the continuity hypothesis. Willingness-to-pay (WTP) values for restoration
program components based on median voter equilibrium are presented and compared to the results
from an earlier CVM study with the same data.

The paper concludes in Section 4 by discussing the ability of our model to produce economically
and statistically valid welfare change estimates from data generated by the sequential, multiple
valuation question per respondent format.

2 Conceptual Model

Consider this admittedly contrived example. The investigator is interested in comparing the agent’s
preferences between three hypothetical states of the world yielding deterministic utility levels v0, v1

and v2. One way to elicit the preferences is to let the agent pick the preferred state from all possible
pairs. An alternative is to ask the agent to rank the three states at once. From an economic theory
perspective, choosing the simultaneous format over the sequential or vice versa is immaterial as
long as preferences remain unchanged. But it is not so when it comes to empirical modelling.
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Econometric literature offers a broad spectrum of panel data discrete-response model options to
consider for both cases. If choices are arranged in pairs, the following random utility model (RUM)
arises:

ujt =vj + εjt (1)
ukt =vk + εkt

where (j, k) are (1, 0), (2, 0), (2, 1) respectively for t = 1, 2, 3; v are deterministic components of the
respective random utility levels and ε are utility shocks.

Some stochastic specifications may assume that utility shocks are independently and identically
distributed; an error components model would account for unobserved heterogeneity of individuals.
Whatever model is used, however, it will operate implicitly assuming there are six random quantities
involved and there are eight possible outcomes, of which two are intransitive. Evidently, reflexivity
is also violated.

Meanwhile, there are only three random quantities in the simultaneous ranking format, and there
are six transitive outcomes. Thus, results from a simultaneous model will differ systematically and
to an unknown extent from those coming from a sequential model even if the deterministic parts
are identically specified. To make things worse, if the study aims to address a possible instrument
format effect, the investigator may erroneously conclude such an effect exists while in reality it does
not.

Following this line of reasoning, the investigator will probably opt for the simultaneous format
even though the necessity for the respondent to consider multiple options at once may bring about
accuracy concerns. Questions will remain. Is it possible to attain an equivalent representation of
both formats? Should intransitivity be excluded? And, more in general, is there a way to reconcile
rationality axioms that the traditional utility theory imposes on the decision-maker’s preferences
within the stochastic setting of a stated-preference experiment?

Let us consider a T -period sequential binary choice model. A utility maximizer i chooses, at
each period t, t = 1 . . . T , in a sequence between two states of the world. These states are a
period/individual-specific “alternative” (a particular environmental policy) and a no-action baseline
policy, the “status quo”, with the corresponding utility levels:

uit = vit + εit (2)
ũit = ε̃it

where vit = v(xit) is the deterministic utility of the alternative with attributes xit, the deterministic
utility of the status quo is zero, and (εit, ε̃it) are the respective error terms. The model implies the
following marginal probabilities of choice outcomes:

Pr(uit > ũit) = Pr(vit > ε̃it − εit) = Fε̃it−εit(vit) (3)

where Fε̃it−εit is the distribution function of the difference of utility shocks at time t.
The standard practice is to use 2T independently and identically distributed (i. i. d.) errors

(Hoehn 1991). As already mentioned, this leads to the non-equivalence of elicitation formats and
potential problems with transitivity. In their comprehensive review of statistical methods with CVM
data, Hanemann and Kanninen (1999) consider a model where ε̃it ≡ εi0, ∀t. This condition means
that an unobserved utility level of the “status quo” state, ui0, is the same no matter where in the
survey this state is invoked. To be consistent, one can extend this logic to all states. If xis and xit

are identical, then:
Pr(uit > ui0|uis > ui0) = 1, s 6= t (4)
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It is apparent that, if all alternative states are different, this specification restricts the number
of latent random quantities to T + 1 and statistically forces the equivalence of the sequential and
parallel choice representations from our earlier example. We shall term this model the pseudo-
sequential choice to emphasize its atemporal nature. The study (ibid.) does not put forward any
justification for this restriction. Indeed, what are the reasons why one should consider imposing it?

We begin with presenting our understanding of the roles played by the deterministic and stochas-
tic components of the structural RUM in Equation (2). Hanemann (1984a) provides the following
definition for a generic RUM:

A random utility model arises when one assumes that, although a consumer’s utility function is
deterministic for him, it contains some components which are unobservable to the econometric
investigator and are treated by the investigator as random variables.

An immediate implication of this definition is that there is conceptually only one source of un-
certainty in the model and it is the investigator’s uncertainty. The respondent consistently applies a
deterministic yet unknown decision rule throughout the elicitation process. Under the general guid-
ance of economic theory the investigator subjectively formulates a specification of the respondent’s
deterministic utility. There is no theory to substantiate any parametric assumption with respect to
errors in the model, and both deterministic and stochastic parts need to be functionally specified
before the actual survey data are incorporated into the model2. If so, then a distributional assump-
tion with respect to utility shocks, whatever it turns out to be, determines the subjective rule the
investigator will apply to specify the likelihood of a choice outcome for any parameter values in
both parts of the model. That is, conditional on vit, the investigator presents her subjective odds
that uit > ũit by making a parametric assumption about the distributions of εit and ε̃it.

Because the investigator has made subjective judgements with respect to both parts of the
RUM, she has set the modelling rules which must be followed. This leads to determinism in her
understanding of the respondent’s behavior. Thus, we predicate non-volatility of both agent and
investigator in their decision making. This determines dynamic consistency of the parties. Theories
of rational dynamic choice generally uphold dynamic consistency. The agent should be dynamically
consistent in her actions, so that, if the agent’s present “self” embarks on a course of action, all
later “selves” should abide by that commitment (McClennen 1990). Dynamic consistency has a
timing invariance property: a sequential choice problem and a planned choice problem should be
equivalent to the agent, given they are strategically equivalent3.

Participants of CVM experiments are likely to have no experience with programs or policies
to be valued. A number of empirical studies found that different ways of supplying commodity-
related information or different amounts of information supplied led to in a significant variation
in valuation results (Bergstrom et al. 1989). The time dimension and sequencing of choice sets
can only be reasonably omitted in situations where information about the programs is supplied to

2In a number of studies, researchers attempted to obviate the issue of supplying parametric specifications for
either or both systematic and random terms by using semiparametric (Klein and Spady 1993) or nonparametric
approaches (Matzkin 1992; Matzkin 1993). The resultant models, however, either replace the problem of parametric
specification with that of selecting a kernel and its parameters or are unsuitable to obtain a welfare change estimate.

3Experimental revealed-preference studies conducted by behavioral scientists do not appear to have come up with
definitive results with respect to timing invariance (Read et al. 2001). Read and Loewenstein (1995) introduced the
term “diversification bias,” referring to a demonstrated excess variety in items selected in the simultaneous design.
Read, Loewenstein, and Rabin (1999) argue that simultaneous choice enables agents to diversify their assets to reduce
the overall risk, thus giving preference to the simultaneous choice. In these and other studies, reviewed by Read et al.
(2001) agents showed some psychological phenomena which admit various interpretations. The issue of an empirical
validity of timing invariance largely remains a moot point.
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respondents strictly prior to elicitation, and no additional information is given in between elicitation
questions.

The pseudo-sequential structure of a choice model makes the latter consistent with the transi-
tivity axiom, so that the consumer is supposed to be able to order her preferences amongst policy
alternatives in a consistent manner. The essence of this model is that, if xs = xt

4 for Programs

and Programt, then εs = εt; that is, the respective utility shocks are perfectly dependent. But
suppose there is an infinitesimally small difference between xs and xt. Now one deals with two
random quantities, εs and εt. But the utility continuity axiom, however, asserts that in this case
the departure from perfect dependence should be small as well. Loosely stated, the principle of
continuity postulates that any two states which are infinitely close cannot be far apart in terms
of their respective utility levels. Considering environmental policies as bundles of services to the
consumer, continuity allows for the possibility of substitution between policy components, which,
in turn, permits comparing the relative importance of these components.

In real-world situations, agents themselves select relevant attribute sets for items they compare.
The investigator may correctly guess a large or small subset of these sets. The bare fact that two
options have the same observable attribute levels does not give the investigator much information
on whether or not the bundles lie close together in one’s consumption space.

Policy alternatives in CVM studies are different. These are made distinct in a number of key
attributes which are communicated to respondents. Accordingly, respondents determine their pref-
erences on the basis of what they have been told and/or shown about the choice options. If the
attributes of two options are the same, there can be nothing else to distinguish them one from
another. It also follows that, provided the deterministic utility is not badly misspecified, the errors
are likely to reflect some unknown effect of option attributes that could not be modelled within
the deterministic utility specification. An example of such an effect is the agent’s overall subjective
perception of a policy alternative.

Assume the investigator has a measure of dissimilarity between two states, λst = λ(xs, xt),
increasing as dissimilarity grows. If pairs of choices can be compared on the basis of that measure,
continuity would imply that unobserved utility terms for a pair of adjacent options are, on average,
closer to each other compared to either out of the pair and a non-neighboring third. For example,
if, for a chosen λ, λ(xr, xs) ¿ λ(xr, xt) and λ(xr,xs) ¿ λ(xs, xt), then one should expect that
|εr − εs| < |εr − εt| and |εs − εt| < |εr − εt| to be (subjectively) more probable events than their
respective complements.

We have assumed the existence of a dissimilarity measure and its relationship to the hypothe-
sized distribution of error terms. An empirical study would certainly require a specification of this
measure. Utility theory abstractly defines continuity by asserting that, for any bundles x and y in
the consumption space {x|x º y} and {x|x ¹ y} are closed sets. Except for the values of attributes
and the utility levels, there is nothing to use to assess the dissimilarity between a pair of bundles.

It is contended that, in general, the choice of a dissimilarity function can only be implemented
on subjective grounds. A usual distance function or the gravity formula can be suitable candidates.
We shall refrain from suggesting any particular specification. Instead, we shall first focus on the
effects of increasing the level of one attribute while keeping the others constant. If our conjecture
is true, then statistical dependence between errors should decrease as the goods are made more
different in at least one dimension.

4The observation subscript i will be dropped to simplify notation.
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This can be put in the form of a formal hypothesis. Let λst ∈ [0, 1] be a measure of statistical
independence5 between εs and εt, as above, and let 4k be the only different attribute k in xs and
xt, 4k = ||xs − xt||, x−k

s = x−k
t . Then

Hypothesis. λst ∝ 4k
∣∣=s = =t, where =s,=t are the information the respondent has about the

commodities at time s and t, respectively.

When 4k = 0, the agent will assign the same utility level to all occurrences of the same hypo-
thetical state— this is transitivity. The monetary bid is not an attribute of a bundle of commodities,
so it does not influence whether commodities are closer together or farther apart. Therefore we shall
not be viewing the bid as part of xt. Finally, the role of constant information is to disallow the
agent to reconsider expected experiences from the hypothetical commodities in light of any new
information to come about in between choices.

Combining the major elements of our reasoning, we arrive at the following pseudo-sequential
choice model:

uit = vit + εit (5)
ui0 = εi0

where the distribution of (εi0, εi1, . . . , εiT ) in general may have
(
T+1

2

)
parameters of dependence for

all possible pairs of shocks. If the measure of dependence is bounded, for example, between zero and
one, then normalization is required. One should select at least one pair, either actual or imaginary,
for which no dependence is allowed. We suggest setting dependence to zero for all (xt,0) pairs,
since the baseline option is by default most different from the rest of the policies. This results in
the availability of

(
T
2

)
dependence parameters.

In order to estimate the model in Equation (5) by maximum likelihood, one should be able to
obtain probabilities of all 2T choice outcomes. Getting the outcome probabilities for a two-period
model is fairly straightforward:

Pr(ui1 < ui0, ui2 < ui0) =Pr(ui0 = max(ui0, ui1, ui2)) (6)
Pr(ui1 > ui0, ui2 < ui0) =Pr(ui2 < ui0)− Pr(ui0 = max(ui0, ui1, ui2))
Pr(ui1 < ui0, ui2 > ui0) =Pr(ui1 < ui0)− Pr(ui0 = max(ui0, ui1, ui2))
Pr(ui1 > ui0, ui2 > ui0) =1− Pr(ui1 < ui0, ui2 < ui0)

−Pr(ui1 > ui0, ui2 < ui0)
−Pr(ui1 < ui0, ui2 > ui0)

For larger numbers of periods, outcome probability formulae become unwieldy, which implies
having quite a complex likelihood function. While algebraic expressions for outcome probabilities
grow prohibitively complex, the computation of those is easily automated, using the fact that the
outcome probability for a subset of Yi = {yi1 = 1[ui1 > ui0], yi2 = 1[ui2 > ui0], . . . , yi2 = 1[uiT >
ui0]} can be expressed as a sum of probabilities of the mutually exclusive joint events that constitute
it. All that is needed is a facility to calculate Pr(ui0 = max(ui0, ui,A)), where ui,A are the utility
levels of options in the subset A of indices {1, 2, . . . , T}.

The objective is to solve a linear system Ap = b of 2T equations. Let Tr be a set of
(
T
r

)
unique

ordered combinations of subscripts, trs, in {1, 2, . . . , T}. The algorithm presented in Algorithm1.
In the next section, we provide specifications for both deterministic and stochastic parts of

the model. We then fit several alternative specifications with actual survey data to assess the
reasonability of our conjectures about an agent’s rationality.

5It can be, but is not limited to unity minus squared correlation.
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Data: T , Yi, Tr

Result: pj

begin
list all possible 2T outcomes for Yi;
/*probabilities of outcomes are the unknowns in p */
arrange all trs from all Tr, r = 1, 2, . . . T in an array of sets A;
/*A will then have

∑T
r=1

(
T
r

)
= 2T − 1 elements Aj */

/*when T = 3, A =
{{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} */

foreach Aj do
calculate bj = Pr(YAj = 0);

end
/*For the T = 3 example */
/*b5 = Pr(YA5 = 0) = Pr(yi1 = 0, yi3 = 0) */

for j = 1 to 2T − 1 do
for k = 1 to 2T − 1 do

if (YAj = 0) event contains k-th outcome then
ajk = 1;

else
ajk = 0;

end
/*calculate all ajk elements of A, except for the last row */

end
end
A2T ,. = 0;
b2T = 0;
/*put 1 in all cells of the last row of A */
/*and last cell of b --- the sum of outcome probabilities must be one */
solve Ap = b for relevant outcome probability pj with Cramer’s rule;
/*the determinant of A will be either 1 or -1, */
/*which further simplifies calculations */

end

Algorithm 1: Obtaining Outcome Probabilities

3 Empirical Illustration:
Estimating WTP for Little Tennessee River Management Al-
ternatives

The Little Tennessee River watershed is located in Georgia, North Carolina, and Tennessee. The
watershed encompasses 10,783 acres, including 18 rivers and streams and 26 lakes. The LTR wa-
tershed is used by logging, agriculture and mining industries; however, the aesthetically pleasing
environment in the basin has brought about a tremendous increase in the population of people who
visit or live within the watershed. In the last twenty years the population has doubled, leading to
concerns about the future health of the watershed and the ecosystem services the watershed pro-
vides. The majority of land within the watershed is privately owned and private land use decisions
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have a major impact on ecosystem structure and function. For example, agricultural activities, such
as watering cattle in streams, as well as housing and commercial developments along the streams
and creeks influence water quality, a key parameter of ecosystem health.

The objectives of a recent CVM study by Holmes et al. (2004) were to develop and test a general
methodology for valuing ecosystem services and to identify and value particular ecosystem services
present in the Little Tennessee River watershed. To place a value on ecosystem services, a CVM
survey instrument was designed and implemented. The present study uses the data set obtained
through the above survey.

The survey followed a close-ended, single-bounded format. Valuation questions were posed in
the “take it or leave it” way: “If a local county sales tax were to reduce your annual household
income by $BID each year for the next 10 years to support Program t, would you vote in favor of
it?” 58 respondents (N = 58) provided complete sequences of votes in the survey.

The survey included 4 different programs (T = 4). Program1 offered an overall watershed
protection plan, whereby buffer strips along all small streams and creeks running into the LTR
would be created. Programs 2–4 included partial restoration of the stream bank along a 20 mile
stretch of the LTR, in addition to the omnipresent watershed protection plan. The suggested scope
of the restoration was 2 miles in Program 2, 4 miles in Program 3, and 6 miles for Program 4.

The computer-assisted bidding followed a simple adaptation structure. If the respondent had
voted in favor of Program τ = 2, 3, then the bid for Program τ + 1 would have increased, otherwise
τ + 1 would have been offered at the same bid amount as τ .

The conditional indirect utility function we use for this study is a linear combination of weighted
policy attributes and bid:

vit = −γiBIDit + βwpwpt + β2m2mt + β4m4mt + β6m6mt (7)

where BIDit is an amount in $100, asked from respondent i for Programt, and (wpt, 2mt, 4mt,
6mt) are indicators for attributes of the program. wpt = 1 indicates the presence of the watershed
protection plan, and qmt = 1 indicates that the program provides for the restoration of a q-long
stretch of the river, q = 2, 4, and 6 miles.

This specification admits an arbitrary dependence of utility on miles restored. To account for
heterogeneity amongst respondents, we allow the coefficient on bid, γi, to be varying across the
panel; it is assumed to follow a log-Normal distribution with parameters µ and σ2 to be esti-
mated. Solving vt = 0 for the bid value yields the compensating surplus welfare change measure
for Programt (Hanemann 1984b) as the ratio of the implicit price of its attributes to that of $100
of extra income:

WTPt =
βwpwpt + β2m2mt + β4m4mt + β6m6mt

γi
(8)

One option for estimating the stochastic version of Equation (8) is a multivariate Normal dis-
tribution of utility shocks. It offers a general covariance structure and, accordingly, a full range of
values for the dependence parameters, from independence to the perfect positive/negative correla-
tion. Unfortunately, choice probabilities from a probit-type model are not closed-form expressions
and must be simulated. Simulation is very computationally expensive and may result in a large
variation of likelihood values, when the sample size is small.

Another candidate for estimating Equation (8) is a generalized extreme value (GEV) distribu-
tion. Despite being more restrictive in comparison with multivariate probit models, GEV models
still allow sufficient flexibility. More importantly, GEV choice probabilities are directly computable,
which substantially reduces the computational load and saves one from other problems related to
simulation-assisted estimation.
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Table 1: Model Specifications

Mnemonic Description

PCL PCL choice probabilities; λst unrestricted

MNL PCL/MNL choice probabilities; λst = 1, ∀s, t
Logit All errors are i. i. d. Extreme Value Type I

Consider a GEV distribution that underlies the paired combinatorial logit (PCL) (Chu 1989):

F (ε1, ε2, . . . , εJ) = exp[−G(e−ε1 , e−ε2 , . . . , e−εJ )] =
exp[−G(a1, a2, . . . , aJ)]

G =
J−1∑

k=1

J∑

l=k+1

(
a

1/λkl

k + a
1/λkl

l

)λkl (9)

where J is the total number of options. Each (k, l : k 6= l) pair of error terms in this distribution
forms a nest, with the total number of nests equal to

(
J
2

)
and λkl being a measure of independence

for the members to the respective nest. When λkl = 1, members of the nest do not exhibit any
significant covariation; when λkl → 0, the dependence becomes perfect. The distribution provides
the dependence parameters that meet our needs. Besides, if one sets λkl ≡ 1, ∀k, l, this GEV model
reduces to multinomial logit (MNL).

In our case J = T + 1. Since the status quo option is assumed to be different from the others
to the utmost extent, we restrict λ0t ≡ 1, t = 1 . . . T ; that is, we shall not allow any covariation
between the error term of the status quo and those of the alternative options. This restriction
conforms with a PCL identification requirement to have at least one λ set to unity. It also has a
useful consequence: the model becomes the standard binary logit for any cross-section.

Using the PCL choice probability formula,

Pr(uit = max(ui)) =

∑
j 6=t evit/λtj

(
evit/λtj + evij/λtj

)λtj−1

∑T−1
k=0

∑T
l=k+1

(
evik/λkl + evil/λkl

)λkl
(10)

and Algorithm1, one can apply the regular maximum likelihood to estimate parameters in vit and
all λ.

The adaptive nature of the bid generation leads to the endogeneity of BID for Programs 2
and 3. It is important to emphasize, however, that since outcome probabilities are obtained in the
simultaneous choice framework, it is equivalent to conditioning the probabilities on all values of
BID for a given individual, which makes the endogeneity of BID immaterial.

Table 1 summarizes the three versions of the model that we estimated with the specification of
v given by Equation (7).

The PCL specification applies no restrictions to the model in Equations (5) and (10), that is, the
pseudo-sequential choice framework is used to ensure transitivity and 6 dependence parameters are
estimated to see whether they are related to changes in the mileage of riverbank restoration in the
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Table 3: Estimated Dependence Parameters from PCL Specification

Program 2 3 4

1 0.01 0.78 0.99

2 0.05 0.98

3 0.01

Table 4: Estimated WTP

Specification WTP Quantile, $

25% 50% 75%

PCL:

Programs 1–3 7 31 128

Program 4 20 86 361

MNL:

Programs 1–3 9 25 74

Program 4 30 80 229

Logit:

Programs 1–3 10 41 147

Program 4 34 121 452

manner hypothesized in the previous section. The MNL specification is also built on the pseudo-
sequential choice framework but it excludes any dependence amongst utility shocks, so that choice
probabilities are obtained from MNL. Finally, the Logit specification is simply a mixed logit, which
addresses neither transitivity nor continuity. There are 8 i. i. d. Extreme Value Type I errors in
this specification, 2 for each of 4 pairs of choices. Logit was chosen as a mainstream discrete-choice
model. All three models reduce to binary logit for any cross-section.

Table 2 summarizes model parameter estimates for all specifications. Comparing the estimates,
one can notice that respondents did not quite distinguish between Programs 1–3. Estimated coeffi-
cients on β2m and β4m are not significantly different from zero in all specifications. The restoration
of 6 miles of the river produces a spectacular effect. A possible cause of such an dramatic increase
may be the “bet big, win big” maxim. In each management program, the survey identified category
values for a set of ecosystem services, such as habitat for fish, wildlife, water purity, etc. Levels
of those services were defined as “low,” “moderate,” or “high.” While other programs featured

11



differing service levels, Program 4 has all levels at “high.” It seems to be likely that the maximum
improvement was the threshold to trigger both attention and considerable spending.

In order to assess the goodness-of-fit (in-sample predictive ability) of the three models, we used
the percentage of correctly predicted sequences on a 1000 draws with replacement from the sample.
The results were compared to a benchmark success rate of 17%6 attainable by indiscriminately
guessing the outcome on each trial, solely based on the proportions of outcomes in the sample.

The PCL specification performed the best, marginally improving on the MNL results. At the
same time, the Logit specification proved to be useless in decision-making, even falling short of the
simple guessing.

Estimated λ in Table 3 are, at a glance, consistent with our hypothesis that the dependence
between unobserved utility levels decreases as the items grow farther apart attribute-wise.

λ̂ for neighboring Programs are very close to zero, that is, the respective utility shocks are highly
dependent. The degree of dependence plummets to almost nothing for non-adjacent options. The
dependence between the difference in miles restored and estimated λ was tested with Kendall’s τ
nonparametric test. The value of the statistic was 0.77, which has the p-value less than 0.01. This
provides a statistical confirmation to the observed pattern.

Since the coefficient on bid is assumed to be following a log-Nornal distribution, WTP calculated
according to Equation (8) is distributed as a weighted reciprocal of this log-Normal variate. Table 4
presents selected WTP quantiles for all models. We report the single WTP value for Programs 1–3,
assuming the insignificant estimates of β2m and β4m to be zero and, thus, a difference in WTP for
these Programs to be undetectable.

There are no large differences between the WTP values resulting from the three model spec-
ifications. Yet the differences of 20–50% of the value’s magnitude are in no case trifling, either.
Parenthetically, the obtained WTP estimates are several times higher than estimates arising from
the random effects probit model by Holmes et al. (2004), while the conclusion with respect to
the WTP overall super-additivity remains. The results do not quite satisfy the scope test (Arrow
et al. 1993), since WTP values do start increasing until the program size reaches 6 miles of river
restoration. However, the triggering effect of the maximal action package in Program4 makes this
result fairly logical. The individual demand therefore appears to be more of a step-function rather
than a conventional downward-sloping schedule.

4 Discussion and Conclusions

Listed below are three net results from the empirical part of the study:

(a) The PCL specification that enforces transitivity and allows for continuity provides a mod-
erately better fit, ceteris paribus, than others that exclude either or both continuity and
transitivity.

(b) Whatever specification is used, Program 4, being the most extensive management package,
has a super-additive effect on WTP.

(c) Estimated dependence parameters from the PCL specification appear to exhibit the pat-
tern the continuity hypothesis suggests: when the difference between values of an attribute
increases for two policy options, the dependence between the respective utility levels dimin-
ishes.

6Such high a figure arises because 3 outcomes out of the possible 16 make up 68% of the sample. These are: “yes”
to all programs (29%), “no” to all Programs (22%), and “yes” only to Program4 (17%).
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The immediate implication of the results (a) through (c) for WTP estimates is that a model that
adheres to the principles of utility analysis is capable of providing more reliable WTP estimates
both economically and statistically. Even though no dramatic differences between estimates from
different models have been found, these differences are still non-negligible and may be important
for policy decisions.

Why do PCL and MNL specifications do a better job predicting choice outcomes for the Little
Tennessee River data set than mixed logit? As earlier mentioned, more than half of all observations
in the data set are invariable sequences of “yes” and “no” votes given for all the alternatives. Roughly
50% of respondents had not changed their mind with respect to whether or not they would want
any restoration of Little Tennessee River watershed. The utility from the status quo level of the
river’s protection had a great deal of influence on people’s choices. Knowing the respondent’s vote
for any given program, one could flip a coin to predict the voting outcome for another program
without any valuation model. The mixed logit model totally disregards this fact. It allows the
utility of the baseline state to change so that, after conditioning on the person-specific marginal
utility of income, any previous or subsequent choices bear no additional information. Meanwhile,
PCL and MNL specifications anchor the utility from the alternatives to the unvarying individual
point of reference and thus make use of this information. These specifications provide a better
control for individual heterogeneity rather then impute the series persistence to the “warm glow”
or protest voting phenomena. The PCL specification goes further and reaps a reward. Based on
utility continuity, it allows the utility levels from similar states to be also similar. This lets the
model extract even more information from the unobserved utility components, while doing so in a
manner consist with utility theory.

The authors do not intent to promote the use of paired combinatorial logit or any other par-
ticular distribution of utility shocks. Choosing such a distribution the investigator chooses her risk
management technique for one thing, and a computational device, for the other. The message of our
entire exercise is more general. It serves to stress the importance of specifying a stochastic CVM
model in such a way that the investigator can attach theoretically-found meaning to all parameters
in the empirical model. Modern statistical software allows fitting a variety of flexible probabilistic
choice models. But if a particular chosen model accounts for unobserved phenomena only mecha-
nistically, then the researcher is left with the need for ex post facto interpretation of estimates. This
limits the extent of quality control, since one would never know whether the observed pattern in
estimates is what one should reasonably expect or it is a mere sporadic occasion. The mechanism
of a dose-response statistical model ultimately reflects on the welfare estimates. If utility shocks are
allowed to follow whatever process, then welfare change estimates have whatever meaning. This is
definitely not what a CVM investigator would intend to produce.

Much further research needs to be done in the valuation of multiple environmental policies. A
rigorous testing of the timing invariance property in CVM applications is particularly desirable.
An in-depth inquiry on specifications for the stochastic interaction of utility would be instrumental
for the practitioner’s needs. Considering similarities between the utility space and a geographical
one, a direction for search can be spatial statistical models (Besag 1975). Those models adopt a
conditional probability approach, the spatial Markovity, in formulating entire spatial systems and
provide holistic schemes where deterministic and stochastic components are inherently interrelated.
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