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As information technologies develop, researchers have access to unprecedented 

amounts of individual or micro-level data (e.g., data from surveys and scanner data).  The 

availability of data, combined with interest in understanding demographic differences in 

consumer behavior, has encouraged researchers to use micro-level data in demand 

analysis (Capps and Love, Jensen, Cotterill).  Micro-level data provide new opportunities 

as well as challenges in demand estimation.  A primary challenge surrounding micro-

level demand analysis with commonly used (generalized) least squares estimation 

procedures is the development of a computationally workable model that ensures non-

negativity of predicted quantities and that incorporates constraints implied by economic 

theory (Dong, Gould, and Kaiser).   

A key issue in much of the micro-level demand analysis performed to date is 

ensurance of parameter invariance while imposing adding up constraints.  In the absence 

of non-consumption (e.g., aggregate data where individual non-consumption is 

concealed), the imposition of adding-up restrictions in a system of share equations is 

straightforward.  In this case, the conventional method of estimating the system of 

equations requires that one share equation, along with its corresponding row and column 

of the error covariance matrix, be dropped.  The system of (n-1) equations is estimated, 

and “adding-up” conditions are used to recover missing parameter values.  With 

aggregate data and a well-defined demand system, parameters estimated with a maximum 

likelihood approach will be invariant to which equation is eliminated from the system 

(Barten).   

When micro-level data with observations exhibiting non-consumption (censored 

micro-level data) are used with an Amemiya-Tobin censoring specification in demand 
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analysis the conventional method of imposing adding-up will no longer provide 

satisfactory results.  In this case, demand systems containing censored data will not have 

identical regressors and parameter estimates will not be invariant.  That is, parameter 

estimates obtained from the econometric estimation will vary depending on which share 

equation is dropped from the estimated system.  

Parameter Invariance in Censored Demand Systems 

Researchers have attempted to solve the problem of parameter estimates that vary 

depending on which share equation is dropped using a number of approaches.  Pudney 

summarizes several alternative approaches for handling the adding-up conditions when 

estimating a censored demand system in the presence of a budget constraint.   

The first, and probably the most popular, approach is to treat one of the 

expenditure categories as a residual with no specification of its own.  In this case, the 

estimated model would consist of (n-1) equations.  The share value for the designated 

residual category is defined as the difference between one and the sum of the first (n-1) 

shares.  While this approach is simple and in some sense addresses the adding up issue, it 

fails to account for the parameter invariance problem.  That is, the selection of a different 

“residual” category will typically result in different parameter values.  This approach has 

been used by a number of researchers including: Yen, Lin, and Smallwood and Yen and 

Huang.      

A second approach identified by Pudney is to modify the Tobit model when 

imposing adding-up.  An example of this approach is Heien and Wessells’ two-step 

estimation procedure.  The first step of the two-step estimation requires estimation of 

probit regressions to determine the probability that a given consumer will consume each 
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of the goods in question.  The results of the probit regressions are then used to compute 

inverse Mills ratios for each consumer.  The inverse Mills ratios are used as independent 

variables in the second stage of the demand estimation.  To ensure adding-up of the 

system, this approach implicitly requires the omitted equation to include the negative of 

the sum of the inverse Mills ratios as an independent variable.  While accounting for 

adding-up within the system, this approach, like to previous one, does not produce 

parameter estimates that are invariant to which equation is omitted.   

An alternative to either of the above approaches is to consider the resource 

constraint assumed in consumer planning as an ex ante rather than an ex post concept.  

That is, planned expenditures will satisfy the adding-up restriction, but actual 

expenditures (those estimated with econometric techniques) may not add up, in part as 

the result of “accidents, whims, or mistakes” (Pudney, p. 156).  This approach, in a sense, 

ignores the problem of adding up and the corresponding problem of parameter invariance 

by avoiding dropping a share equation and omitting the cross equation constraints that 

would be imposed on parameter estimates in the presence of adding up.       

While the alternatives discussed above provide means for imposing adding-up (or 

describe why adding-up may not hold in actual data), they fail to provide a satisfying 

solution for obtaining a unique set of parameter estimates when working with censored 

data.  From a strictly econometric standpoint this lack of invariance is not an issue as the 

parameter values are consistent, but from an applied standpoint the lack of invariance of 

both parameter estimates and elasticity estimates can be disconcerting.  This paper 

suggests a new method of demand estimation (hereafter referred to as INvariant 

Seemingly Unrelated Regression or INSUR) that provides an invariant set of parameter 
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estimates.  While it does not correct problems associated with ensuring predicted shares 

sum to one, it can be used with existing procedures (e.g., either the first or second 

approaches suggested by Pudney and reviewed above) to ensure that parameters 

estimated by these procedures are at least invariant to which equation is chosen to be 

dropped or to be modified.   

Seemingly Unrelated Regression (SUR) Estimation 

Before describing the INSUR approach to demand estimation we provide a brief 

review of standard SUR estimation commonly used in demand analysis.  Zellner’s SUR 

approach is an iterative process that begins with an initial step of estimating equation 

system parameters using ordinary least squares (OLS).  Parameter values obtained from 

initial OLS regressions are used to estimate residuals between the actual and predicted 

dependent variables, which are then used to estimate the residual or error covariance 

matrix.  The inverse of the estimated error covariance matrix obtained from this step is 

then used to weight the errors in order to account for cross-equation correlations.  If the 

procedure is iterated, the process above continues, alternating between coefficient 

estimation and estimation of the updated error covariance matrix until the parameter 

estimates and the error covariance matrix converge (Zellner; Judge, et al.). 

Consider a linear approximate almost ideal demand system (LA/AIDS) demand 

system with N goods and T consumers.  If the system is defined in share form, where the 

expenditure share for good i depends on prices and consumer income, the system of share 

equations can be written as: 
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This same demand system can be written in matrix notation as 

 iiii εβXY +=  (2)

where the subscript i denotes the i-th equation, and the superscript t refers to the 

transpose operator, with   
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If the demand system is stacked, the complete demand system (representing all 

consumers and all goods) could be expressed as 
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(7)

 Or in more compact notation as 

 εβXY += . (8)

The SUR approach described above assumes contemporaneous error correlation 

exists (i.e., errors across equations are correlated) but serial correlation does not exist 

(i.e., errors across consumers are not correlated).   These assumptions imply E[ sjtiεε ] = 

ijσ  if t = s, but zero if t ≠ s.  The covariance matrix can be written as 
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where 
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Incorporating this error structure into the model (substituting Σ̂  in for the unknown Σ ) 

the generalized least squares estimator for β  can be written as 

   ( )[ ] ( )YXXXβ II ⊗Σ⊗Σ= −−− 111 ˆ' ˆ'ˆ . (11)

When linear restrictions in the form rβ =R are imposed on the system the estimator above 

must be modified so that the generalized least squares estimator for β  is written as 

(Judge, et. al. 1988): 

   ( ) 





 −+=

−
βrββ ˆ̂ˆˆˆ̂ˆ̂ 1* RRCRRC tt . (12)

where 

   ( )[ ] 11ˆˆ −− ⊗Σ= XX IC t . (13)

and 

   ( )YXβ IC t ⊗Σ= −1ˆˆˆ̂ . (14)

The covariance matrix for the coefficients of the restricted SUR estimation procedure is 

calculated as: 

 ( ) CRRCRRCC ˆˆˆˆ ''− . (15)

Invariant Seemingly Unrelated Regression (INSUR) Estimation 

As explained earlier, when estimating a micro-level demand system using the 

traditional approach of dropping one equation and recovering the dropped equation’s 

parameter estimates from theoretical restrictions, n different sets of parameter estimates 

will be obtained from each of the n possible systems.  The INSUR approach, which 

provides consistent and invariant parameter estimates, sums the objectives over these n 

sub-systems of (n-1) equations into one estimation objective function.  Thus, using 
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notation similar to Equation 8 above, the objective function to be minimized over the 

parameters for the INSUR procedure can be written as:    

 ( )    1

1
ii

n

i
i εIΣε ⊗′ −

=
∑  

(16)

where iε  represents the stacked error vector with the errors corresponding to the i-th 

equation omitted and ( )IΣ ⊗−1
i  represents elements from the inverted error covariance 

matrix with the i-th row and column removed.  The minimization is conducted subject to 

standard theoretical parameter restrictions used in SUR.  Note that objective function in 

the INSUR approach is simply the summation of the possible n systems that could be 

estimated in standard SUR demand analysis.      

Equivalence of SUR and INSUR in Non-Censored Data: An Example  

For demand systems that satisfy the usual invariance property, e.g., systems with 

non-censored data, the INSUR method produces parameter estimates that are identical to 

those produced by SUR.  In addition, standard errors for each methodology are identical.  

In this section we illustrate the equivalence of standard SUR estimation and INSUR 

estimation when non-censored data is used.   

Data 

Our example uses a LA/AIDS system functional form and aggregated data from a 

survey conducted by the National Livestock and Meat Board during a five-month period 

between November 1993 and March 1994.  A randomly selected sample of 1,057 

households kept a diary of their meat purchases during the five-month period in which 

they participated.   
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The sample identified twenty-two different types of meats consumed by one or 

more households.  To simplify our illustration, these twenty-two different meat types 

were aggregated into three different meats, beef, poultry and pork.  After removing non-

useable responses and observations in which all three meat types were consumed in 

positive amounts, the resulting database contained 757 observations.   

Functional Form 

For purposes of our example a LA/AIDS with a “corrected” Stone’s price index is 

used as the functional form for the demand estimation.  The LA/AIDS system, developed 

by Deaton and Muellbauer is derived from the Almost Ideal Demand System (AIDS) cost 

function.  The AIDS cost function (in log form) is defined as: 
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where ),(ln upc  is the logarithm of the cost function, tip  is the market price faced by 

consumer t for commodity i, and u  is the consumer’s utility level. 

Using Shephard’s lemma the compensated share equations can be derived as 
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To uncompensate the share equation, the log cost function (17) is inverted to obtain the 

indirect utility function.  The utility level, u, in equation (18) is replaced with the indirect 

utility obtained from the inversion to provide the uncompensated share equation  
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where tm  is expenditure (or income) for consumer t, and Pt is a price index (a corrected 

Stone’s price index in our case).  The “corrected” Stone’s price index, the log-linear 

analogue of the Paasche price index, has the form: 
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Here tiw  is the i-th share equation for consumer t, tip  is the price associated with the i-th 

good for consumer t, and 0
ip  is a base price (in this case 0

ip  is set equal average price in 

the sample1).  With the “corrected” Stone’s price index incorporated into the model the 

share equations are defined by 
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Finally, in order to empirically estimate the model, a specification for the 

stochastic nature of the model must be developed.  For ease of exposition a 

homoskedastic, normally distributed error term is added to each share equation so that the 

final share equation has the form: 
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Results 

As indicated above, the INSUR approach provides parameter estimates and 

corresponding standard errors that are equal to standard SUR estimates and errors when 

data does not exhibit censoring.  Using the data described above and the LA/AIDS 

                                                 
1  Moschini suggests that using the mean value for the base may be more appropriate than other options 

(e.g., the first period observation).  In cross-sectional data sets the mean provides a more appealing base 
as any type of ordering among survey observations would tend to be subjective. 
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functional form also reviewed above the following demand results were obtained.  

Italicized parameter values in the standard SUR section of the table indicate parameter 

values that were obtained through theoretical restrictions (values not directly estimated 

econometrically due to singularity of the covariance matrix.  Standard errors for these 

parameters were not estimated and are thus not provided in the table). 

Parameter values are equivalent between standard SUR estimation and INSUR 

estimation.  Standard errors for parameter values are also equivalent between the two 

methods (note slightly different standard error estimates are the result of rounding 

errors).2       

Conclusion 

Imposing adding-up restraints in demand systems using censored micro-level data 

to date has been “one of the notorious stigmata in censored demand systems” (Yen, Lin, 

and Smallwood, p. 460).  A key issue in much of the micro-level demand analysis 

performed to date is insurance of parameter invariance while imposing adding up 

constraints.  This paper has introduced a new methodology for estimating demand 

systems that ensures parameter invariance when working with censored demand data and 

SUR estimation.   

When applied to situations where parameter invariance holds, e.g., non-censored 

data in which all individual demands within the system have the same explanatory 

variables, the INSUR procedure provides parameter estimates and standard errors that are 

identical to those obtained through the standard approach of dropping one equation.  

While this procedure is not currently available in pre-programmed econometric software, 
                                                 
2  INSUR parameters were estimated using GAMS.  For ease of calculation standard errors were calculated 

in GAUSS.  The transition between the two programs resulted in slight differences in standard error 
estimates.     
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more flexible self-programming packages such as Gauss or GAMS can be used to 

implement it.  Moreover, as the use of micro-level data and censored demand systems 

becomes more common, perhaps econometric software will incorporate the procedure 

proposed here as an option. 
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Table 1.  Parameter Estimates via SUR and INSUR – An Invariant Case 

 Standard SUR  
 Equations in estimated system   
 Equations (1) & (2) Equations (1) & (3) Equations (2) & (3) INSUR 

Parameter 
Parameter 
Estimate 

Standard 
Errors 

Parameter 
Estimate 

Standard 
Errors 

Parameter 
Estimate 

Standard 
Errors 

Parameter 
Estimate 

Standard 
Errors 

1α  0.2952 0.0417 0.2952 0.0417 0.2952  0.2952 0.0416

2α  0.3719 0.0381 0.3719 0.3719 0.0381 0.3719 0.0380

3α  0.3329  0.3329 0.0374 0.3329 0.0374 0.3329 0.0373

11γ  0.0020 0.0217 0.0020 0.0217 0.0020  0.0020 0.0217

12γ  -0.0121 0.0131 -0.0121 0.0131 -0.0121  -0.0121 0.0131

13γ  0.0101 0.0182 0.0101 0.0182 0.0101  0.0101 0.0181

21γ  -0.0121 0.0131 -0.0121 -0.0121 0.0131 -0.0121 0.0131

22γ  0.0435 0.0136 0.0435 0.0435 0.0136 0.0435 0.0136

23γ  -0.0314 0.0119 -0.0314 -0.0314 0.0119 -0.0314 0.0119

31γ  0.0101  0.0101 0.0182 0.0101 0.0182 0.0101 0.0181

32γ  -0.0314  -0.0314 0.0119 -0.0314 0.0119 -0.0314 0.0119

33γ  0.0213  0.0213 0.0203 0.0213 0.0203 0.0213 0.0203

1β  0.0314 0.0086 0.0314 0.0086 0.0314  0.0314 0.0085

2β  -0.0170 0.0078 -0.0170 -0.0170 0.0078 -0.0170 0.0078

3β  -0.0144  -0.0144 0.0076 -0.0144 0.0076 -0.0144 0.0076

* Equation definitions (1) beef, (2) poultry, (3) pork.  

 


