
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


Agricultural and Resource Economics Review 43/3 (December 2014) 451–470
Copyright 2014 Northeastern Agricultural and Resource Economics Association

Direct Payments, Cash Rents, 
Land Values, and the Effects of 
Imputation in U.S. Farm-level Data
Michael W. Robbins and T. Kirk White

Research using the Agricultural Resource Management Survey (ARMS) and other 
data shows that direct government payments to farmers increase rents and the 
price of land. However, some ARMS data is imputed and does not account for 
relationships between payments and other variables. We investigate various 
imputation methods and beneϐits gained from a method with a wide scope rather 
than a parsimonious range of variables. Using our method, we estimate that an 
additional dollar of direct payment increases land value about $2.69 more per acre 
than ARMS imputation methods and that our imputations (using an exhaustive 
iterative sequential regression) outperform other methods and/or smaller models.

Key Words: Agricultural Resource Management Survey, cash rents, direct payments, 
farm subsidies, land values, missing data, multiple imputation, robust regression

Agricultural economists and policymakers have long been interested in the 
effect of federal farm program payments on the value of agricultural land to 
which the payments are attached (Floyd 1965, Gardner 1992, Kuchler and 
Tegene 1993, Barnard et al. 2001). Several recent studies have analyzed the 
effects of such farm subsidies on farm land rents and the value of the farm 
land. Using data from the U.S. Department of Agriculture’s (USDA’s) Census 
of Agriculture for 1992 and 1997 and various econometric models, Roberts, 
Kirwan, and Hopkins (2003) found that an additional dollar of government 
payment results in an increase of between $0.21 and $2.31 in land rents per 
dollar of payment. Using their preferred model, the authors concluded that 
this value fell between $0.34 and $0.41. In more recent research using the 
same data, Kirwan (2009) found that landlords captured roughly 25 percent 
of each additional dollar of government payment to farmers in the form of 
higher cash rents. Using data from USDA’s Agricultural Resource Management 
Survey (ARMS) for 1998 through 2001, Goodwin, Mishra, and Ortalo-Magné 
(2011) found that an additional dollar of expected loan deϐiciency payment 
appeared to add $27.00 to the value of the land. These researchers also found 
that an additional dollar per acre of direct payment (or production ϐlexibility 
contract payment, as they were called prior to 2002) raised cash rents by 
$0.72 per acre.
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Several of the variables included in the ARMS and pertinent to the 
aforementioned models involve imputed data. Like most surveys, the data 
generated by the ARMS suffers from item non-response, and the National 
Agricultural Statistics Service (NASS), which conducts the ARMS, uses imputed 
data for missing values in about 150 variables for which the missingness rates 
range from just 1 percent to 43 percent (Robbins et al. 2011a). For example, in 
the 2008 ARMS, imputed farm-level data made up 23 percent of LDP Payments 
for Target Commodity, 31 percent of Countercyclical Payments for Target Crop, 
43 percent of Value of Commodity Certiϔicates, and 31 percent of Wetland 
Reserve Program Payments. For relationships between direct payments, cash 
rents, and land values, one can compare estimates from the ARMS data to 
results from other data sources, such as panel data used by Ifft, Kuethe, and 
Morehart (2013).1 However, for many questions of interest to researchers and 
agricultural policymakers, ARMS is the only nationally representative source 
of data. Given the key role ARMS data thus plays in agricultural research and 
policy discussions, it is important for researchers and policymakers to be aware 
of the potential effects of imputed data on regression results.

Both NASS and USDA’s Economic Research Service (ERS) impute for missing 
items using conditional means.2 Since the deϐiciencies of these methods 
have been demonstrated (Miller, Robbins, and Habiger 2010), our analysis 
includes imputations generated using the recently developed iterative 
sequential regression (ISR) procedure for imputation (Robbins, Ghosh, and 
Habiger 2013).3 ISR is a regression-based Markov chain Monte Carlo (MCMC) 
algorithm, and unlike the NASS and ERS methods, it includes the ϐlexibility to 
greatly expand the scope of data incorporated into the imputation procedure, 
thereby tasking the imputer with selection of an imputation model. We 
compare the imputation methods generally used by NASS and ERS with three 
types of ISR imputations—exhaustive, parsimonious, and deϐicient—and 
evaluate the biases attributable to each method in estimates of incidence of 
farm subsidies on farm land values and cash rents, focusing on the effect of 
the method and model on the presence and magnitude of such biases. Since 
ISR is computationally intensive, our discussion of imputation models focuses 
on depth of input in terms of the number of variables used with the hope that 
a parsimonious model that minimizes the computing burden is satisfactory. 
However, the preferred ISR method is the exhaustive imputation because it 
incorporates the most variables.

It is well-established in the literature that the choice of imputation method 
can have a profound effect on point estimates pertinent to econometric 
analyses (Robbins and White 2011, Robbins, Ghosh, and Habiger 2013). For 
example, when using the ofϐicial USDA imputations, we ϐind that one dollar 
of direct payment per acre increases the per-acre value of land by $16.78, 
whereas the value shifts to $19.47 when calculated using our preferred 
imputations (ISR with an exhaustive imputation model). The higher value 
is more in line with recent research involving relatively comprehensive 

1 The ability to compare results from ARMS to other data sources is one of our reasons for 
focusing on the effects of imputation on direct payments, cash rents, and land values.

2 For NASS imputations, the conditioning variables are farm type, farm sales class, and farm 
region.

3 This method and study were developed as part of a two-year cooperative agreement between 
NASS and the National Institute for Statistical Sciences (NISS) to improve the imputation methods 
NASS uses for Phase III of the ARMS.
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ϐield-level panel data (Ifft, Kuethe, and Morehart 2013). Those results suggest 
that estimates based on ofϐicial USDA imputations in the ARMS miss about 
16 percent of the increase in land value for the average acre of program 
crop land. In 2008 (the year of our sample), the average direct payment per 
acre was about $19.57 (Ifft et al. 2012). Thus, estimates using our preferred 
imputation method point to an additional $52.64 in land value per acre 
(payment of $19.57 × $2.69 additional increase in land value) associated with 
direct payments. In 2008 there were about 260 million base acres enrolled 
in the Direct Payments program (Ifft et al. 2012). A back-of-the-envelope 
calculation therefore suggests that using exhaustive ISR imputations instead 
of the ofϐicial NASS imputations would increase the total land valuation 
associated with direct payments by about $13.7 billion. The magnitude of the 
increase in per-acre value of land drops from $19.47 to $18.13 when using 
ISR with a parsimonious (seemingly sufϐicient) imputation model.

We address another avenue of analysis of imputed econometric data that 
has been largely untouched in the agricultural economic literature to date: the 
effect of imputation on standard errors. In addition to inϐluencing the value of 
survey indicators, imputations can induce bias in the standard errors of such 
indicators. Further, one must adjust conϐidence intervals to incorporate error 
contained within the imputations. A popular statistical procedure for making 
such adjustments is called multiple imputation (MI) (Rubin 1987), but MI is 
considered to be inappropriate for use with data that have characteristics that 
are common in agricultural surveys (Kott 1995). Nonetheless, by applying MI, 
we demonstrate that an exhaustive imputation model can increase the accuracy 
of the imputations and thereby decrease the width of conϐidence intervals of 
the resulting econometric estimations.

To validate and expound upon conclusions drawn from our empirical 
analysis, we conduct a simulation study using complete cases from the ARMS 
data. We randomly “poke holes” in the complete cases and replace those 
data with imputations calculated using various methods and models. The 
simulation study veriϐies the quality of our preferred imputations in two ways. 
First, the simulations show that our preferred method reduces bias in the 
estimates of subsidy incidence and in standard errors. Interestingly, ISR with 
a parsimonious imputation model produced biased point estimates of key 
regression coefϐicients. Second, the simulations demonstrate that the precision 
of respective interval estimates may increase under the exhaustive imputation 
model. In addition, the simulation study illustrates the potential utility of MI in 
analyses of complex economic survey data.

Although we focus on the effects of imputation in USDA’s ARMS, our ϐindings 
are broadly applicable. Economic surveys generally suffer from item non-
response, and the imputation methods used by most statistical agencies are 
not well-suited to microdata analysis. Agencies that generate imputations in 
economic surveys such as the ARMS will be interested in the beneϐits of the 
broad imputation model we outline here, and researchers who are analyzing 
imputed data should be aware of the abilities and limitations of the imputation 
methods and models used. Researchers must be particularly careful when a 
relatively large percentage of the estimation sample includes data imputed 
by the statistical agency that collected it and should consider alternative 
imputation methodologies that incorporate relevant explanatory variables 
if the original imputation model fails to do so. In addition, our conclusions 
regarding the performance of speciϐic statistical machineries (the handful of 
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algorithms, including ISR) provide insight into the efϐicacy of similar algorithms 
used by many statistical agencies.

Direct Payments, Cash Rents, and the Value of Land

Farmers in the United States receive several types of federal payments, 
including subsidies for individual commodities, emergency and disaster relief, 
conservation program payments, and crop-speciϐic program payments (e.g., 
the peanut quota buyout). We focus solely on the Direct Payments commodity 
program because direct payments do not depend on market prices or current 
production.4 In 2008 (the year of our sample), total direct payments were 
about $5.2 billion in 2009 dollars (White and Hoppe 2012) while the average 
direct payment was about $19.57 per acre (Ifft et al. 2012). At the time, the U.S. 
average cash rental rate for crop land was about $96 per acre and the average 
value of crop land was $2,970 per acre (USDA 2008).

The direct payments are made annually and are based on the producer’s 
historical number of acres (the so-called “base acreage”) and the yields of 
the program crops in prior years. A farmer is allowed to determine the base 
acreage in several ways, but the simplest one is to use the average number of 
acres planted to that crop in the historical years (1998 through 2001 under 
current legislation). The payment to a given farmer is calculated as the product 
of a percentage of the base acreage (83.3 percent under the 2008 Farm Act), the 
farm’s gross income from selling the historical yield of that commodity, and the 
direct payment rate for the commodity. Landlords who share-rent their land 
to farmers participating in the program are eligible to receive direct payments 
while landlords who cash-rent the land are not.5 The farmer’s direct payment 
does not depend on the farm’s current acreage or yield for the crop although 
farm-level production tends to be highly correlated over time. Since the direct 
payment can be calculated in advance, economic theory suggests that landlords 
who cash-rent can extract higher rents for crop land that is associated with 
greater direct payments.

Following Roberts, Kirwan, and Hopkins (2003), we hypothesize that rent, 
ri ,  received for a unit of land i is a function of expected revenue (including 
government payments) associated with the land net of variable costs:

(1) ri = E[Σk(pk + ck)qki – Σjwj xji] + Σk DPki

where E is the expectation operator, pk is the market price received for 
commodity k, ck is the government payment (excluding the direct payment) 
received per unit of production of commodity k, qki is the quantity of 
commodity k produced on land unit i, xji is the quantity of input j (other than 
land) used on unit i, wj is the marginal cost of that input, and DPki is the direct 
payment received on land unit i for commodity k. Commodity payments that 

4 Because the value of such payments is known in advance, it is easier to measure the incidence of 
these subsidies relative to other types of subsidies since there is essentially no difference between 
observed payments and the payments recipients expected to receive when they negotiated prices 
and cash rental agreements for land. Several other studies have done the same (Roberts, Kirwan, 
and Hopkins 2003, Goodwin, Mishra, and Ortalo-Magné 2011, Ifft, Kuethe, and Morehart 2013). 
Thus, our focus on direct payments also facilitates comparisons with the existing literature.

5 Under a share-rent arrangement, the tenant gives the landlord a share of the crop as payment 
for use of the land. Under a cash-rent arrangement, the tenant pays the landlord a speciϐied amount 
of cash per acre.
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are tied to current production of the commodity can induce a greater supply, 
which may lead to a lower price for the commodity. Greater production may 
also induce an increase in the price of inputs other than land, wj. Thus, by 
equation 1, if commodity payment ck is increased, some of the increase may 
be captured by landlords and by other market participants if the commodity 
price, pk, falls and the cost of inputs, wj, rises (see Roberts, Kirwan, and Hopkins 
(2003) for a more thorough discussion). Since direct payments are not tied to 
current production, under equation 1 landlords will capture any increase in 
the direct payment by charging greater cash rents. In practice, direct payments 
may induce a supply response if, for example, farmers expect to be allowed to 
update the amount of base acreage in the future, as they were in 2002. In that 
case, landlords may not be able to capture 100 percent of an increase in direct 
payments.

We operationalize equation 1 by estimating the following equation, which is 
similar to equation 2 in Roberts, Kirwan, and Hopkins (2003):

(2) CRi / ARi = α0 + αn(NFIi / Ai) + αd(DPi / Ai) + XiαX + ui

where CRi is the farm’s cash rents for unit i, NFIi is net farm income excluding 
direct payments, DPi is direct payments, Xi is a vector of categorical variables, 
and ui is an error term. In this formulation, Ai and ARi are acreage variables 
(described in greater detail under sample selection and data for regression 
analysis) and αd is the coefϐicient of interest. As noted by Roberts, Kirwan, and 
Hopkins (2003), the coefϐicient αd may be biased in a linear regression of CRi on 
NFIi and DPi when using cross-sectional data for several reasons. Differences 
between expected and realized net farm income show up in the error term 
and bias αd toward zero. And since direct payments tend to be geographically 
correlated, estimates of αd may be biased because of unobserved geographic 
heterogeneity in factors such as yields. With panel data, we could control for 
unobserved heterogeneity with, for example, farm ϐixed effects.6 We have only 
cross-sectional data.7 However, our main goal is to assess the effect of various 
imputation methods on estimates of αd.

6 Some previous studies of the effects of government payments on cash rents and/or land values 
have used farm-level panel data. Roberts, Kirwan, and Hopkins (2003) used a farm-level panel 
constructed from the 1992 and 1997 Census of Agriculture. Neither the imputation methods used 
nor the ways in which the imputed data were identiϐied in those censuses have been made available 
to researchers. Furthermore, while the 2007 Census of Agriculture asked a separate question about 
direct payments, previous versions lumped direct payments together with other types of government 
payments. Thus it is not yet possible to construct a farm-level panel data set from the agricultural 
census that includes direct payments as a farm-level variable. Ifft, Kuethe, and Morehart (2013) used 
a ϐive-year rotating ϐield-level panel constructed from NASS’s annual June Area Survey (JAS). The 
JAS includes information about farm land values but does not include data on program payments. 
The authors obtained program payment information from Internal Revenue Service Form 1099 data 
aggregated at a county level. Information on the methods used for imputation in the JAS also has 
not been made available to researchers. Unfortunately, also, one cannot construct a farm-level panel 
data set from the ARMS data. To reduce the burden on respondents, the ARMS sampling procedure 
is designed to minimize the probability that a farm that was sampled in the last ARMS survey is 
sampled in the current one.

7 In theory, the bias in our estimators of αd and βd could be positive or negative depending on 
the correlation between unobserved geographic heterogeneity and the level of direct payment 
per acre. However, in practice, the bias seems to be positive. Roberts, Kirwan, and Hopkins (2003) 
constructed 40 estimates of the effect of government payments on cash rents (analogous to our 
coefϐicient αd) using three estimators, three samples, ϐive speciϐications with county ϐixed effects, 
and ϐive speciϐications without county ϐixed effects. In every case, they found that the estimate from 
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Following the same logic, the value of crop land should increase with both 
net farm income (excluding direct payments) and direct payments. We 
operationalize this by regressing the per-acre value of land rented from others 
(VLRi) on NFIi and DPi:

(3) VLRi / AVi = β0 + βn(NFIi / Ai) + βd(DPi / Ai) + XiβX + vi 

where AVi is another acreage variable (more fully described under sample 
selection and data for regression analysis) and vi is an error term. For the 
vector X, we use three categorical variables (farm type, farm sales class, and 
farm region) that form a framework for the strata of the ARMS data. We exclude 
interactions to avoid augmentation of the design matrix. As is standard practice, 
each categorical variable is input into the regression scheme as a sequence of 
binary variables (each indicating the category of the categorical variable).

Sample Selection and Data for Regression Analysis

Our data set is the 2008 ARMS survey, which is jointly designed and administered 
annually by NASS and ERS. The survey covers U.S. farming operations and 
their operators in the 48 contiguous states. In our model, when estimating the 
quantities given in equations 2 and 3, we limit the sample to farms that had 
nonzero values for crop land acreage, direct payments, cash rents paid, and 
acres rented.

The amount of direct payment received is an ARMS survey variable that is 
to be scaled by an acreage variable, A, that identiϐies the number of acres of 
the farm associated with the appropriate payment program. It is unclear which 
ARMS variable should be used as A; the two best options are crop land acres 
and acres operated. For the empirical analysis, we use the total crop acreage 
of the farm, which will yield the most economically meaningful estimations. In 
the simulation study (the purpose of which is to gauge the efϐicacy of various 
procedures rather than to produce meaningful estimations), on the other hand, 
the results are based on direct payments being scaled by both crop land acres 
and acres operated.

We use the ARMS variable Cash Rent Paid for Land and Buildings as a measure 
of rents, and that variable is scaled by AR, the number of acres rented. We 
measure NFI as follows. First we subtract direct payments and cash rents paid 
from the ARMS variable Net Farm Income, which ERS constructs from other 
farm-level revenue and cost variables. That quantity also must be scaled by A. 
The dependent quantity in equation 3 is calculated by dividing VLR (represented 
by the ARMS variable Market Value of Land Rented from Others) by AV, which is 
the sum of Acres Cash-Rented, Acres Share-Rented, and Acres Rented for Free.

NASS imputes data for about 150 ARMS variables that may be missing 
values. Table 1 presents the total number of observations, the number of 
missing values, and the number of missing values as a percentage of total 
observations for the key variables in our analysis, including DP and VLR. 
Table 1 also lists missingness rates for the variables used in the exhaustive 
ISR model. The percent missing varies considerably, from only 1 percent for 
ARMS’s Income from Federal Crop Insurance to 43 percent for Government 
Payments Received by Landlord. It is also important to note the variables that 

the speciϐication with county ϐixed effects was lower than the estimate without county ϐixed effects.
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are not included in Table 1. Most of the acreage variables (e.g., Acres Cash-
Rented, Acres of Crop Land, and Acres Share-Rented) are not imputed by NASS; 
they are fully observable (have no missing values) in the ARMS data set. Cash 
Rent Paid for Land and Buildings is also not eligible for computer imputation 
by NASS.

Estimation for Regression Analysis

Both NASS and our study use imputation to create a complete data set, and we 
now describe how the coefϐicients in equations 2 and 3 are estimated using that 
data set. The ARMS’s design weights are crucial to analysis of its data. Letting 
wi represent the calibrated design weight for unit i, we prefer to estimate the 
regression coefϐicients with weighted least squares while using wi

* = wi × Ai as the 
weights. However, the ARMS data tend to be highly skewed (Robbins, Ghosh, and 
Habiger 2013), and per-acre versions of the pertinent variables are highly skewed 
as well. This skewness results in several extreme observations that have a large 
inϐluence on the values of coefϐicients found using least squares. To compensate 
for these inϐluential observations, Roberts, Kirwan, and Hopkins (2003) removed 
the largest 1 percent of each relevant variable as outliers. We instead employ 
robust regression (Huber and Ronchetti 2009) in which outliers are iteratively 
reweighted (as opposed to being discarded) to reduce their inϐluence. We use 
the package RLM in R to calculate regression coefϐicients (the algorithm returns 
estimates of all regression coefϐicients and their standard errors), and we input 
the vector of wi as prior weights into the algorithm.

We calculate our estimates using MI, which includes an assumption that 
the imputation method randomly samples from a predictive distribution. 
Therefore, the imputation process can be repeated to create m imputed data 
sets for which the imputations are assumed to be independent across the 
data sets. After creating m data sets, we use the estimation process previously 
described to determine values for all of the regression coefϐicients and their 
respective variances (i.e., standard errors squared) for each imputed data set.

Table 1. Number of Observed and Missing Values for Selected ARMS 
Variables
  Observations
ARMS   Number Percent
Item Variable Name Total Missing Missing

855 Market value of land rented from others 10,495 2,185 17
525 Direct and countercyclical payments received 9,342 329 3
520 Direct payments as percent of item 525 8115 931 10
552 Income from federal crop insurance 1,544 24 1
543 Government payments received by landlord 1,719 1,297 43
852 Value of other farm buildings 15,298 940 5
854 Value of land 17,365 2,556 13
878 Value of inputs owned on January 1 8,523 540 6
883 Value of tractors owned 18,398 1,188 6

Source: ARMS (2008).
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We pool information across data sets using Rubin’s combining formulas 
for MI (Rubin 1987). Let β represent a regression coefϐicient of interest and 

[k] represent the estimated value of β found using the kth completed data set. 
The MI point estimate of β thus is  = [k] / m. Let v( [k]) represent the 
estimated variance of [k]. The quantity is called within-imputation variance and 
represents a point estimate of the variance of  had there been no missingness. 
A conϐidence interval for β is calculated using the total variance of , which is 
calculated as T = ( [k]) + (1 + [1 / m])B where B is the between-imputation 
variance and is calculated as the sample variance of [k]. The between-
imputation variance provides a measure of the error of the imputations and is 
included to ensure that imputation error factors into the interval estimate.

The Imputer’s Model: Iterative Sequential Regression 
with Varying Depth of Input

Our preferred method of imputation is ISR (Robbins et al. 2011b), which was 
developed speciϐically for use with ARMS and designed with the ϐlexibility to 
include a wide range of input data. A similar procedure (Robbins and White 
2011) was shown to improve econometric analysis of ARMS data relative to 
older methods, and Robbins, Ghosh, and Habiger (2013) describe the procedure 
in detail and give several illustrations of the utility of the method. Our focus is 
to study the effect of the imputer’s model on the value of regression coefϐicients 
estimated from the models in equations 2 and 3.

ISR involves two primary phases: transformation and imputation. The 
transformation phase applies robust transformations that were designed 
speciϐically for ARMS data and were used in Robbins, Ghosh, and Habiger (2013). 
Note that the ARMS data predominantly consist of skewed semicontinuous 
variables (i.e., variables that are positive, continuous, and highly skewed apart 
from a large mass at zero). Such variables are handled by ϐirst creating dummy 
(0/1) variables that indicate whether the variable is positive and then by treating 
all observed zeroes in the original semicontinuous variables as missing. Since 
survey enumerators are usually able to determine whether a respondent should 
have positive values for each item, all of the values originally coded as missing are 
treated as being positive—a longstanding characteristic of machine imputation 
in the ARMS. As a result, all of the dummy variables are fully observed. Next, 
a density-based transformation (here, as in Robbins, Ghosh, and Habiger 
(2013), the transformation is of a skew normal density family) is applied to the 
continuous portions of the variables, which ensures approximate normality 
(following transformation) of all of the variables with missing values.

The second phase is a form of data augmentation (Tanner and Wong 
1987, Little and Rubin 2002) that uses the MCMC algorithm to iteratively 
draw imputations from a predictive model. A key characteristic of the data 
augmentation phase is that it jointly models all of the variables that require 
imputation. Speciϐically, letting X1, . . . , Xp (where the index now denotes the 
variable) represent the variables (there are p of them) that have missing values 
following transformation and letting Z denote a set of fully observed covariates, 
the ISR constructs a joint model for pertinent ARMS variables using the fact that 
the joint distribution of the variables that have missing values can be expressed 
as a product of conditional distributions. That is,

(4) P(X1, . . . , Xp | Z) = Πp
j=1 P(Xj | Z, X1, . . . , Xj–1)
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where P(·) denotes general notation for a distribution function. This formula 
allows the imputer to specify the form of each conditional distribution occurring 
in the righthand side of the equation. Here, we assume the linear form

(5) Xj = γj,0 + γj Z + γj,1 X1 + . . . + γj, j–1 Xj–1 + εj 

for j = 1, . . . , p where γj represents a vector of regression parameters that 
correspond to the fully observed variables and εj represents a standard 
normal error. One advantage of using this expression for imputation of high-
dimensional economic data is that the imputer has the liberty to remove 
variables from inclusion in any of the conditional linear models.

Like most data augmentation methods, ISR uses a Bayesian model to place 
distributional assumptions on parameter values. Within each iteration of the 
MCMC are two steps. In the ϐirst (the I step), ISR samples imputations, and 
in the second (the P step), it samples parameter values. In this description, 
“sampling” is used in a Bayesian (or Monte Carlo) sense in that the imputations 
and parameter values are sampled by simulating values from theoretical 
probability distributions. In the regression, θ represents the set of all model 
parameter values, χmis represents the missing portion of the data, χobs 
represents the observed portion of the data, and χ   and θ(t) denote the values 
of χmis and θ, respectively, at the tth iteration. P(·) represents general notation 
for a distribution function. The I step of the (t + 1)th iteration samples updated 
imputations using

 χ  ∽ P χ   χobs , θ
and the P step samples updated parameters values using

 .

The form of 

 P  χ  | χobs , θ  and P  θ(t)
  χ  , χobs  

can be determined using the models expressed in equations 4 and 5 with the 
assumption of a noninformative prior for parameters in each conditional model. 
After a ϐixed number of iterations (b), the process is stopped and { , χobs} 
is returned as the imputed data set. To generate multiple imputations, the 
Markov chain can be extended to sample one more set of imputations after 
each additional c iteration beyond the bth iteration (see Schafer (1997), among 
others). Here, we use b = 500 and c = 250, which have been shown to be 
sufϐicient for the ARMS data by prior analysis.

As is evident from its description, ISR is a rather costly process computationally. 
Each imputed data set requires hundreds to thousands of iterations of the 
MCMC algorithm plus several imputed data sets must be created to implement 
MI. In addition, there are 30,000 to 40,000 data units included in this process. 
Incorporating hundreds of the available ARMS variables into the model used 
for imputation results in an algorithm that takes weeks (or months) to run even 
when using sophisticated computing, time that agencies involved do not have.

With such a vast amount of computation time at stake, how does one select 
the scope of input for use in the imputation model? Is it sufϐicient to use only 
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variables that are relevant for the analysis? Or are marked gains produced 
when the scope of the imputation model is broadened? Consequently, we apply 
the ISR method under three input regimes (i.e., imputer’s models):
The deϔicient model uses only the three categorical variables incorporated 

into equations 2 and 3 as covariates for imputation.

Table 2. Explanatory Variables in the Exhaustive Iterative Sequential 
Regression Imputation Models
  Imputation Model

 ARMS   Value of
 Item Variable Name Cash Rents Rented Land

 21 Acres cash rented  
 23 Acres share rented  
 26 Total acres operated  
 30 Total crop land acres  
 39 Acres covered, federal insurance  
 44 Cash rent paid for land and buildings  
 47 Farm type  
 54 Count of landlords  
 501 Major grains, cash sales  
 502 Other grains and oilseeds, cash sales  
 503 Tobacco and cotton, cash sales  
 511 Cattle and calves, cash sales  
 — Direct payments  
 — Adjusted net farm income  
 — Region  
 — Gross value of sales  
 — Cash crop sales  
 — Fertilizer expenses  
 — Tax expenses  
 — Calibrated design weights  
 — Design weights, crop land acres  
 477 CRP / CREP / WRP paymentsa  
 552 Income from federal crop insurance  
 543 Government payments received by landlord  
 852 Value of other farm buildings  
 854 Value of land  
 878 Value of inputs owned on January 1  
 883 Value of tractors owned  

a CRP stands for Conservation Reserve Program, CREP for Conservation Reserve Enhancement Program, 
and WRP for Wetlands Reserve Program.
Notes: Variables without item numbers are constructed from other variables in the survey questionnaire. 
Adjusted net farm income is net farm income less direct payments. 
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The parsimonious model uses only the information that is directly relevant 
to the analyst’s models (i.e., all of the variables in equations 2 and 3 but no 
others) as input into the imputation procedure. 

The exhaustive model incorporates variables for information that is not 
directly relevant to the analyst’s model as input. The variables used in this 
model are given in Table 2.

We follow Schenker et al. (2006) and use sample weights as predictors for 
imputation in the exhaustive model. Robbins et al. (2011b) illustrated that 
incorporating such weights can impr ove the reliability of weighted estimations. 
Since product weights (w*

i )  are used in the estimation procedure, those 
are included in the regression as predictors for both the exhaustive and the 
parsimonious imputation models. We are interested in determining whether 
the parsimonious model is sufϐicient for estimation and whether improvements 
are gained using the exhaustive model.

Rudimentary Procedures: NASS and Approximate Bayesian Bootstrap

ISR was designed in 2011 to replace the method used by NASS to create the 
ofϐicial imputations. The prior method (hereafter referred to as the NASS 
procedure) used a stratum-based form of conditional mean imputation. 
Speciϐically, NASS created a donor pool for a missing value of variable Y by 
collecting all positive and observed values of Y for farms observed to have 
the same values for sales class, farm type, and region (the three variables 
used as ϐixed effects in the analyst’s models) as the farm with the missing 
value of Y. The imputation was set as the mean of the donor pool, and fall-
back groupings were used when the donor pool was not sufϐiciently large. 
We refer the reader to Banker (2007) for a more detailed description of this 
method.

Drawbacks of the NASS procedure are many (see Miller, Robbins, and 
Habiger (2010) for further details regarding the drawbacks) and range from 
its limited scope of input to its incorporation of mean imputation. Conditional-
mean imputation distorts the marginal distributions of the imputed variables, 
leading to downward-biased estimates of the variance of the variable (e.g., 
Little and Rubin 2002, Schafer and Graham 2002). Robbins and White (2011) 
and Robbins, Ghosh, and Habiger (2013) illustrated that the NASS procedure 
has little utility compared to more sophisticated procedures such as ISR, which, 
when used in conjunction with ARMS data, has been shown to preserve all of 
the characteristics of marginal distributions as well as all relevant aspects of 
the joint distribution (neither is achieved by NASS’s method). As a result, ISR 
exceeds the ability of the NASS procedure in estimating large numbers and 
types of parameters, including means (when missingness is not completely 
random), variance components, and regression parameters.

However, several questions regarding the utility of ISR and the procedures 
associated with it remain. One relates to the utility of MI with complex survey 
data that has been subjected to imputation via ISR. Hence, we consider an 
approximate Bayesian bootstrap (ABB) extension (Rubin and Schenker 1986) 
of the NASS procedure to gauge the utility of its imputation strategy when 
implemented in conjunction with MI to compare the efϐicacy of ISR when 
used with MI. We use the same donor pools for the ABB method, but each ABB 
imputation is a random draw from the donor pool.
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When estimating equations 2 and 3, we expect that the ISR method using 
the parsimonious and exhaustive models will provide better imputations than 
the ISR method using the deϐicient model, the NASS imputation method, and 
the ABB imputation method, which use only three explanatory variables: sales 
class, farm type, and region—the same categorical variables that we include on 
the righthand side of equations 2 and 3. Any variation in direct payment per acre 
that is independent of sales class, farm type, and region will not be captured by 
those methods. Parsimonious and exhaustive ISR imputation models, on the 
other hand, include all of the variables of interest from equations 2 and 3—
measures of cash rents, land values, net farm incomes, and direct payments.

Empirical Results

We produce ϐive imputed data sets, one for each method—NASS, ABB, and the 
three ISR models. For the NASS imputations, we use the ofϐicial 2008 ARMS 
imputations (which were not randomly sampled and thus are not conducive to 
MI). For the other four, we generate ten imputations for each missing item and 
method, resulting in ten complete data sets. We then estimate equations 2 and 3 
separately for each data set to produce regression coefϐicients and standard 
errors for each of the ten data sets for each method. Finally, we apply Rubin’s 
combining formulas to pool the results from each method’s ten data sets and 
calculate interval estimates of the regression coefϐicients for each method.

Table 3 presents our estimates of pertinent quantities related to estimation 
of αd in equation 2 (cash rents per acre) for each imputation method:  (the 
MI point estimate of αd), se( ) (the square root of the within-imputation 
variance of the MI estimate of , which quantiϐies the standard error of  
under complete data), B (the between-imputation variance), and LMI and UMI 
(the upper and lower bounds, respectively, of the MI interval estimate of αd as 
found with 95 percent conϐidence). Recall that B is a quantity that measures 
the variability induced into the estimate of αd by the imputations. Therefore, 
a comparatively smaller value of B indicates that the imputations are more 
accurat e (contain less error).

Table 3. Regressions of Cash Rents per Acre on Direct Payment per Acre 
and Adjusted Net Farm Income per Acre
  Imputation Method

 ISR

 (1) (2) (3) (4) (5)
Quantity NASS ABB Deϐicient Parsimonious Exhaustive

 0.7610 0.6351 0.5392 0.7489 0.7542
se( ) 0.0357 0.0331 0.0305 0.0354 0.0358
B — 0.0020 0.0019 0.0010 0.0003
LMI — 0.5158 0.4245 0.6519 0.6740
UMI — 0.7543 0.6538 0.8459 0.8346

Note: Estimates of regression coefϐicients and standard errors were combined across the ten imputed 
data sets using Rubin’s combining formulas. Observations were weighted by the product of total acres 
and the sampling weight.
Source: ARMS (2008).
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Table 3 demonstrates that the imputation method chosen can inϐluence the 
estimated coefϐicient for the direct payment. For instance, the NASS procedure 
and exhaustive ISR model produce similar values of  while the ABB method 
yields a noticeably different result. Only 10 percent of the direct payment data 
(and none of the cash rent data) is imputed, so perhaps the small difference 
between the NASS estimate and the exhaustive ISR estimate should not be 
surprising. Habiger, Robbins, and Ghosh (2010) showed that NASS imputations 
induced a downward bias into estimates of sample variances and covariances 
whereas ABB imputations only added bias to estimates of covariance. As a result, 
the NASS method may inadvertently preserve ratios of sample covariances to 
sample variances (such ratios are used in calculating regression coefϐicients 
via least squares). Table 3 also shows that the exhaustive and parsimonious 
ISR imputations yield similar values of  and se( ). The primary distinction 
between the results is the values of B. The exhaustive model yields a small 
between-imputation variance (in fact, the conϐidence interval corresponding to 
the exhaustive model is contained within the conϐidence interval corresponding 
to the parsimonious model), suggesting that the imputations from the more 
comprehensive model contain less error. Note also that the point estimates of 
αd under the ABB method and the deϐicient ISR model lie outside the interval 
estimates for that parameter from the parsimonious and exhaustive ISR 
models. This result illustrates that the choice of imputation method and model 
can profoundly inϐluence the inferences drawn.

Table 4 provides results for quantities relevant to the estimation of βd 
in equation 3 (per-acre value of land rented from others), which mimic 
those presented in Table 3. The values of d show even greater sensitivity to 
imputation method than values of —perhaps because of the increase in the 
missingness rate (in equation 2, the dependent variable has no missing values 
while 17 percent of the farms have missing values for the dependent variables 
in equation 3). Furthermore, there is again evidence that imputations created 
using the exhaustive ISR model contain the least error. 

Both tables illustrate the signiϐicant impact that choice of imputation method 
can have on estimates of the interactions between farm subsidies and cash rents 

Table 4. Regressions of the Per-Acre Value of Land Rented from Others on 
Direct Payment per Acre and Adjusted Net Farm Income per Acre
  Imputation Method

 ISR

 (1) (2) (3) (4) (5)
Quantity NASS ABB Deϐicient Parsimonious Exhaustive

d 16.78 16.51 15.08 18.13 19.47
se( d) 0.902 0.994 0.929 1.046 1.030
B — 1.887 1.021 0.905 0.585
LMI — 12.86 12.19 15.21 16.85
UMI — 20.17 17.96 21.05 22.07

Note: Estimates of regression coefϐicients and standard errors were combined across the ten imputed 
data sets using Rubin’s combining formulas. Observations were weighted by the product of total acres 
and the sampling weight.
Source: ARMS (2008).
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and land values, especially when a relatively large percentage of the data is 
imputed. But which estimates are closer to the truth? While we caution against 
interpreting any single estimate as the truth, we note that our estimates from 
the exhaustive ISR model are similar to estimates from other studies that used 
much larger panel data sets and employed a more complete set of controls. For 
example, Goodwin, Mishra, and Ortalo-Magné (2011) used farm-level data from 
the ARMS survey and county-level data from a variety of sources and found 
that a one-dollar increase in direct payment is associated with a $0.72 increase 
in cash rents, which is comparable to our estimate of $0.75 per acre but is not 
economically signiϐicantly different from the estimate of $0.76 per acre using 
the NASS procedure. Using ϐield-level panel data from the JAS and county-level 
data on federal payments to farms, Ifft, Kuethe, and Morehart (2013) found that 
an extra dollar of a decoupled payment (which included any direct payment) 
is associated with an increase in land value of $17.72 per acre under their 
preferred speciϐication. That estimate is well within the 95 percent conϐidence 
interval ($16.85– $22.07) for our preferred-method estimate of $19.47 per acre 
based on the exhaustive ISR model. In contrast, our estimate using the NASS 
imputations ($16.78 per acre) is outside the 95 percent conϐidence interval for 
the estimate from our preferred method.

What then is the value of ISR imputation methodology for applied researchers 
and policymakers? According to the results in Table 3, the additional 
computational cost associated with the exhaustive ISR method may not be 
worthwhile when a relatively small percentage of the data is imputed (e.g., 
10 percent or less) and only one or two key variables contain imputed data. On 
the other hand, as shown in Table 4, a larger percentage of imputed data and the 
presence of imputed data in both the dependent variable and a key explanatory 
variable could make the exhaustive ISR method worthwhile. Our estimate of 
the per-acre value of land under the parsimonious ISR model ($18.13 per acre) 
is closer to the estimate by Ifft et al. using their preferred method than to our 
estimate under the NASS procedure. Furthermore, for the results shown in 
Table 4, all three ISR models provide tighter 95 percent conϐidence intervals 
than the ABB method, which used the same donor pools as the NASS method. 
Intuitively, then, the estimates based on the ISR imputations have a smaller 
degree of uncertainty due to imputations for missing data. Estimates based on 
single imputations using the NASS method give researchers and policymakers 
a false sense of certainty because they fail to account for uncertainty associated 
with the imputation process.

Simulations

Tables 3 and 4 indicate that different imputation methods and models can yield 
substantially different estimates of regression coefϐicients. However, we do 
not know which value is closest to the truth. To provide guidance as to which 
estimates are most trustworthy, we execute a jackknife-type simulation study 
using the 2008 ARMS data to compare benchmark values of the parameters to 
the ones estimated using each imputation method.

Since the ARMS data set contains missing values for a number of variables, 
we cannot calculate benchmark coefϐicient values using only observed data. 
One option is to remove units that have a non-response in at least one pertinent 
variable. However, that approach yields a sample size that is too small because 
of the large number of variables used in this study. Therefore, we ϐirst generate a 
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single set of imputations (using a method described later) that we use to create 
the completed benchmark data set of regression coefϐicients. We then randomly 
“poke holes”—introduce missing values—in 50 percent of the observations 
of cash rents and of value of land rented in the benchmark data set without 
regard for which values were missing originally. This missingness mechanism 
thus is “missing completely at random” (MCAR) (Little and Rubin 2002). For 
each missing value, we create an imputation using each of the methods in the 
study. Then, for each of the ϐive completed data sets, we calculate MI points 
and interval estimates using our previous estimation procedures. That entire 
process is then repeated 249 times, generating 250 data sets with imputed 
values standing in for the simulated missing ones. Finally, we calculate values 
for each of the quantities listed in Tables 3 and 4 for each method.

Earlier exploratory studies similar to the one presented here and conducted 
using only fully observed ARMS data indicate that ISR is preferable to more 
rudimentary methods. Furthermore, other exploratory studies that used 
benchmark data that contained imputations derived via the NASS method also 
indicated that ISR was preferable. Therefore, to create the benchmark data set, 
we use ISR with a range of inputs that exceeds the inputs in our exhaustive 
model. Note, however, that the observed missingness rate of DP and VLR is 
much lower than the missingness rate we impose in the simulation study so the 
imputation method used to create the benchmark data set will not be of great 
consequence (this belief was veriϐied by exploratory studies).

We are interested in determining how well each imputation method 
maintains the benchmark values for the regression coefϐicients and respective 
standard errors. Letting θ denote a quantity of interest (such as αd, βd, or the 
corresponding standard errors), we calculate 

 Δ(θ)( j)
 = 100( ( j) – ) / ,

which represents the percent change in θ when (j) is the value of θ estimated 
from the jth data set with simulated missingness and  is the value of θ 
calculated from the benchmark value. 

We present the results as box plots for the 250 values of Δ(θ)(j) for each 
imputation method and relevant quantities of interest. In each plot, the vertical 
axis represents the percentage difference between estimates from the multiply 
imputed completed data and the corresponding estimate from the benchmark 
data. The thick dark line in each plot depicts averages of 100-percentage-point 
differences for a given imputation, and the upper and lower ends of the boxes 
show the upper and lower quartiles.

Our results for the cash rent model (equation 2) are presented in Figure 1. 
The lefthand plots in Figure 1 show the coefϐicients on direct payments 
(i.e., θ = αd) and the righthand plots show the estimated standard errors of . 
Corresponding results for the model of value of land rented (equation 3) are 
presented in Figure 2. As previously mentioned, both ϐigures provide results for 
direct payments scaled by crop land acres and acres operated. 

The results shown in the ϐigures mirror the patterns seen in Tables 3 and 4. 
The ϐigures thus verify the efϐicacy of the exhaustive ISR model and speciϐic 
deϐiciencies of the other methods. Speciϐically, Figure 1 shows that the 
parsimonious ISR results in biased estimates of αd. This is not particularly 
surprising. As mentioned earlier, the model in formula 2 incorporates 
complexities such as sample design weights and per-acre forms of dependent 
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and response variables that are not directly incorporated into the imputation 
procedure in the simulation. However, by expanding the depth of inputs and 
thereby garnering more accurate imputations, we can improve the reliability 
of estimates of the regression coefϐicients while using the same general 
imputation method.

We are also interested in gauging the appropriateness of the conϐidence 
intervals derived using MI in the simulation study so we monitor quantities 
that are speciϐic to MI while running the simulations. Speciϐically, we track the 
value of the between-imputation variance, B, and the width of the 95 percent 
conϐidence interval estimated using MI for each method for each of the 250 runs 
of the simulation. Also of interest is the portion of runs in which the benchmark 

Figure 1. Box Plots of Percentage Differences between Cash Rent Model 
Estimates from Multiply Imputed Data and Fully Observed Data by 
Imputation Method
Note: Methods plotted: (1) NASS, (2) ABB, (3) ISR deϐicient model, (4) ISR parsimonious model, (5) ISR 
exhaustive model. For the plots in the top (bottom) row, estimators are calculated after scaling direct 
payments by crop land acres (acres operated).
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value of the regression coefϐicient falls within the interval estimated using MI. 
We refer to that portion of runs as the estimated coverage probability of the 
interval estimate and denote it as . Table 5 provides the results of this analysis 
for the cash rent model and Table 6 provides the results for the land value 
model. The tables give average between-imputation variances and conϐidence 
interval widths across the 250 runs plus estimated coverage probabilities 
of the 95 percent conϐidence interval for the coefϐicients on direct payment 
(αd and βd). As in Figures 1 and 2, these results are for direct payments scaled 
by crop land acres and acres operated.

The results of this analysis conϐirm those presented in Tables 3 and 4: 
increasing the scope of an imputation model decreases the between-imputation 

Figure 2. Box Plots of Percentage Differences between Value-of-Rented-
Land-Model Estimates from Multiply Imputed Data and Fully Observed 
Data by Imputation Method
Note: Methods plotted: (1) the NASS method, (2) ABB, (3) ISR deϐicient model, (4) ISR parsimonious 
model, (5) ISR exhaustive model. For the plots in the top (bottom) row, estimators are calculated after 
scaling direct payments by crop land acres (acres operated).
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variance (and, thus, the width of resulting interval estimates), which is 
indicative of more accurate imputations. Note that there is a discrepancy in 
between-imputation variance values from Tables 3 and 4 and Tables 5 and 6, 
a result of the fact that the missingness rates imposed in the simulation are 
much larger than the ones observed empirically. Higher missingness rates tend 
to yield higher values of between-imputation variance.

Table 6. Results for Multiple Imputation of Simulated Missingness for the 
Value-of-Land-Rented Model
  Imputation Method

 ISR

   (2) (3) (4) (5)
Quantity ABB Deϐicient Parsimonious Exhaustive

Acreage Measure: Acres Operated

 B 7.311 5.764 5.326 4.639
 Width 15.22 13.13 13.19 12.29
  0.9880 0.8040 0.9320 0.9560

Acreage Measure: Crop Land Acres

 B 4.326 3.658 3.783 2.952
 Width 11.71 10.62 11.25 10.11
  0.9800 0.9720 0.9640 1.0000

Note: Information provided includes average between-imputation variance (B) and interval width as 
well as estimated coverage probability ( ) of the 95 percent conϐidence interval. Results are given using 
two separate acreage variables to scale direct payments.

Table 5. Results for Multiple Imputation of Simulated Missingness for the 
Cash-Rents Model
  Imputation Method

 ISR

   (2) (3) (4) (5)
Quantity ABB Deϐicient Parsimonious Exhaustive

Acreage Measure: Acres Operated

 B 0.0033 0.0023 0.0038 0.0014
 Width 0.3259 0.2655 0.3470 0.2273
  0.0000 0.0000 0.3880 0.9280

Acreage Measure: Crop Land Acres

 B 0.0017 0.0011 0.0026 0.0008
 Width 0.2396 0.1908 0.2944 0.1961
  0.0000 0.0000 0.6120 0.9400

Note: Information provided includes average between-imputation variance (B) and interval width as 
well as estimated coverage probability ( ) of the 95 percent conϐidence interval. Results are given using 
two separate acreage variables to scale direct payments.
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The results presented in Tables 5 and 6 also illustrate that conϐidence intervals 
calculated using MI with imputations sampled from the exhaustive ISR model 
are likely to observe the appropriate coverage (i.e.,  ≈ 0.95). This observation 
is of particular interest since the theory that validates the MI interval estimates 
does not hold in these circumstances because of lack of congeniality between 
the imputer’s and analyst’s models.

Conclusions

We investigate the effect of various imputation methods on regression 
coefϐicient estimates and standard errors in two models of the effect of 
direct payments on cash rents and the market value of land using data from 
the ARMS. We replace NASS’s single imputations with multiple imputations 
created using the ABB method plus the recently developed ISR method 
applied with three levels of input. We ϐind that regression coefϐicient 
estimates and standard errors differ signiϐicantly based not only on the 
imputation method used but also on the depth of the imputation model used 
in ISR. Our comparison of estimates using the ofϐicial USDA imputations with 
estimates using our preferred imputation method and model—exhaustive 
ISR—points to an additional $52.64 in land value per acre associated with 
direct payments. At a national level, that could translate to a $13.7 billion 
increase in land valuations associated with direct payments.

We also simulate missing data in fully observed cases and compare 
regression coefϐicient estimates and standard errors based on ABB and ISR 
multiple imputations to estimates based on the original fully observed cases. 
We ϐind that the ISR method consistently produces regression coefϐicient 
estimates and standard errors with signiϐicantly less bias than those based 
on ABB imputations. Furthermore, we make the surprising observation 
that parsimonious ISR may produce biased point estimates of regression 
coefϐicients while no such bias is seen in the exhaustive imputations. Likewise, 
the exhaustive imputation model yields interval estimates that have a higher 
level of precision (i.e., a smaller width) and appropriate coverage probabilities. 
These observations lead us to conclude that an exhaustive imputation model 
is indeed worth the computational cost in many cases. Furthermore, use of 
an exhaustive imputation model may speed up the rate of convergence of the 
Markov chain, thereby allowing for fewer MCMC iterations, which may help 
compensate for the increased computational time required by an exhaustive 
model to some degree.
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