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Causality and Price Discovery: An Application of Directed Acyclic Graphs

Directed Acyclic Graphs (DAG’s) and Error Correction Models (ECM’s) are employed
to analyze questions of price discovery between spatially separated commodity markets
and the transportation market linking them together. Results from our analysis suggest
that these markets are highly interconnected but that it is the inland commodity market
that is strongly influenced by both the transportation and commodity export markets in
contemporaneous time. However, the commodity markets affect the volatility of the
transportation market over longer horizons. Our results suggest that transportation rates
are critical in the price discovery process lending support for the recent development of
exchange traded barge rate futures contracts.

Key Words: Barge Rate Futures, Directed Acyclic Graphs, Causation, Integration.

I Introduction

To date, a large amount of research has been undertaken to evaluate the extent to
which spatially separated markets are integrated. The popularity of the subject matter is
driven in part by the fact that finding continual deviations from the equilibrium level of
integration might imply that riskless arbitrage opportunities exist. However, despite the
fact that freight rates are notoriously volatile, and the fact that over 5.5 billion tonnes, or
98% of annual world trade is carried by sea, the role of the transportation market in
testing for integration within the marketing channel has been largely ignored in the
literature.! A few notable exceptions do exist. For instance, important research
undertaken by Geraci and Prewo (1977) confirmed that it is vital to include transportation
costs in the study of integration among spatially separated markets. Goodwin, Grennes
and Wohlegant (1990) conclude that failing to account for volatile freight rates can lead
to erroneous conclusions in empirical trade research. They carefully demonstrate this
point by finding stronger support for the Law of One Price only after they accounted for
shipment costs.

Only a handful of studies have directly isolated the effect that volatile freight
prices might have on the price discovery process. These include Haigh and Holt (2000),
Hauser and Neff (1990) and Haigh and Bryant (2001). While the first contribution
emphasized the importance of ocean freight volatility within the marketing channel, it
was the latter contributions that isolated the extent to which domestic freight volatility
(specifically volatile barge rates) contributed to the level uncertainty. However, both
studies failed however to discuss in any detail exactly how the prices were linked and did
not assess in any detail issues relating to causality among the markets.

Because of the importance of transportation rates in the price discovery process,
there has always been considerable amount of interest in developing a forward/futures
market for transportation services (Hauser and Buck, 1989). Indeed, in May of 1985 the
BIFFEX freight futures contract was launched at the London International Financial
Futures Exchange (LIFFE). The contract, based off an index of shipping prices compiled
by the Baltic Exchange was designed to hedge freight price risk in the dry-bulk sector of
the ocean shipping markets. Indeed, because of its uniqueness (it was the only futures
contract on a service) and because of its potential importance, several researchers have



investigated its use from a hedging standpoint. Examples include Thuong and Visscher
(1990), Kavussanos and Nomikos (1999, 2000) and Haigh and Holt (2000). These
studies invariably conclude that the BIFFEX market is not a particularly effective
hedging instrument and does not provide the price risk protection evidenced in other
futures markets. Each concludes that its weak performance as a hedging instrument is
due to the fact that the contract was based on an index of shipping routes making the
hedge less appealing and hence the trading volume lower. As anticipated, in June 2001
LIFFE announced that trading in the BIFFEX contract would cease in April 2002 because
of low trading volumes.” It seems therefore that there is no way to predict with any
degree of accuracy whether or not a new futures contract will be successful.

It may be possible however to provide some quantitative indicators of how
important that market is likely to be especially if it influential or highly influenced in the
price discovery process within a marketing channel.’ Indeed, the current study makes
significant contributions to this issue from several angles. Using recent high frequency
price data we adopt a new framework to analyze the relationship between inland grain
prices in Illinois, export grain prices at the U.S. Gulf and the barge market that links them
together. In particular, we analyze the degree of interdependence and direction of
causality at three time horizons: contemporary, short run and long run. To this end, we
employ Directed Acyclic Graph (DAG) theory which, to date, has been surprisingly
underutilized in both the economics and finance fields.* The unique methodology allows
us to examine the causal pattern of contemporary relationships among the innovations in
the three markets, based off of the familiar Error Correction Model (ECM). The ECM
approach (whose existence is dependent upon the notion of cointegration) and the
resulting innovation accounting techniques allow us to address both the short run and
long run causality. Critically, our DAG analysis allows us to address the construction of
the data-determined othoganization on contemporaneous innovation covariance, critical
in providing sound inference in innovation accounting (Swanson and Granger, 1997).
From a practical standpoint, the contemporary, short and long run information provides a
unique assessment of the degree of interconnectivity and direction of causation within the
marketing channel, important to physical traders in this marketplace.

It is also the objective of this study to focus on the importance of the barge market
and explain in detail its role in the price discovery mechanism of the export marketing
channel. Indeed, data Erovided by the United States Federal Grain Inspection Service
over the period May 6™ 1999 — May 3™ 2001 (the same time period analyzed in this
study) suggest a priori, the relative importance of the barge market. For instance, the
total amount of grain exported out of the U.S. within this time period was 258.84 million
tonnes of grain on 16586 different vessels to a total of 131 different countries. Of that
total number, 134.26 million tonnes (51.9% of the total) was shipped out of the U.S. Gulf
(the vast majority of which originated via barges along the Mississippi River) on 7187
different vessels to 101 different countries. > Isolating the importance of the barge market
is of particular interest here simply because trading in barge futures contracts for the
particular stretch of river analyzed in this study began at the St. Louis Merchants
exchange in December of 2000.°



The rest of the paper is organized as follows. Section II provides an overview of
the econometric methodologies employed in the paper. Section III describes the data,
and Section IV presents the empirical results. The last section, Section V, concludes.

I Econometric Methods

A considerable amount of research has attempted to evaluate the degree of
interconnectivity between markets employing time-series techniques appropriate for non-
stationary and cointegrated data. In particular, much work on applied cointegration
analysis has relied on Johansen’s multivariate approach (Johansen, 1988, 1991; Johansen
and Juselius, 1990). Examples of papers employing such techniques include Chowdhury
(1991) and Goodwin and Piggott (2001).

Because of the advantages of the Johansen methodology, this technique is adopted
in the ensuing analysis. First, assume an n-dimensional vector of nonstationary time
series, Y, (n =3 here) that is generated by an autoregressive form depicted as:

sz = a)+zHin—i +8l 2 (1)
& ~ Niid(0,%)

where Yis an n x lvector of the I(1) variables (the prices in the export marketing
channel), I is an » x n matrix of parameters, @wis a vector of constants, and ¢ is a

random error term. Johansen and Juselius (1990) prove that eq. (1) can be rewritten as
error-correction representation as follows:

AY = ir{AYH +I1Y_, +¢,, (2)
with
F‘:—(I—HI—HZ—_H‘)(Zzlk_l): (3)
and
M=-{/-1,-..117, 4)

Equation (2) is nothing more than Vector Autoregression (VAR) (in first
differences), with an inclusion of the lagged-level component, which is known as the
Error Correction Term. The combination is simply known as an Error Correction Model
(ECM). Since ¢, is stationary, the rank of the ‘long-run’ matrix, I1, determines how

many linear combinations of Y are stationary. It is commonly known that the rank of any

matrix is equal to the number of characteristic roots that are not equal to zero, and so the
rank of IT determines the number of cointegrating vectors. Should the rank of IT be
positive and less than #, then cointegration is said to be present. Should this be the case,
then there exist matrices ¢f', with dimensions n x r, (where r is the number of

cointegrating relationships), such that IT may be factored as af'. The [ matrix is a

matrix of cointegrating parameters and the matrix « is a matrix of weights (also known as
the speed of adjustment parameters) with which each cointegrating vector enters the n



equations. Testing hypothesis, and examining the cointegrating space associated with
L can help identify the long-run structure and provide rich information on the long-run

relationships and market structure of the prices. Indeed, hypothesis testing allows us to
determine whether some markets may be excluded from the long run relations.’

The short run dependencies among the prices can also be identified through
hypothesis testing on o and I . Hypothesis testing on « (the short run adjustment to the

long run relationships) can be conducted in a similar way to that used for hypothesis
testing on . The «avector is the measure of the average speed of convergence towards

the long-run equilibrium and plays a crucial role in analyzing how each of the price series
will respond to deviations from the long-run equilibrium relationship. These tests permit
the researcher to make inferences regarding the short run adjustment processes of each
series. It also enables the researcher the ability to test whether a particular market is
weakly exogenous with regard to other markets (if those market prices are unresponsive
to the deviation from long-run relationships).

The parameters associated with I' define the short-run adjustment to the changes

of the process (Juselius, 1995). Hypothesis tests can also be conducted on these matrices.
However, as is the case of standard VAR’s, the individual coefficients associated with the
ECM can be somewhat difficult to interpret, particularly those associated with the short-
run dynamics captured within I' . Consequently, innovation accounting techniques may

be the best way to describe the short run structure and interdependencies among the
prices within the export marketing channel (Swanson and Granger, 1997). Therefore,
given the ECM, impulse response analysis can be undertaken (based on an equivalent
levels VAR) to summarize the short run dynamic interrelationships among the prices.
Undertaking the impulse response analysis in this way addresses the necessity of
imposing the cointegrating relationships into the system, which has very recently been
proven to be crucial in yielding consistent impulse responses and forecast error
decompositions (Philips, 1998).

However, the basic problem of the orthoganalization of residuals from the ECM
remains somewhat unresolved. Most studies employing ECM or VAR’s have yet to fully
address the problem associated with the contemporaneous relationships among variables.
Despite this, innovation accounting techniques require that a causal assumption about
contemporaneous correlation be made. Early work in this area employed the Choleski
factorization, with more recent applications concentrating on a ‘structural’ factorization
suggested by Bernanke (1986) and Sims (1986) simply because researchers may not view
the world may not be viewed as being recursive (Cooley and Leroy (1985)). However,
the problem with both the Bernanke (1986) and Sims (1986) approach is that it is
assumed that the researcher has knowledge of the correct structural model (which is
unlikely to be the case). As such, following Spirtes et al, 1993 in this study we examine
the contemporaneous relationships among the variables based on the variance covariance
matrix from the innovations (residuals) from the ECM by employing DAG’s. It is to a
brief explanation of DAG theory that we now turn.



Directed Acyclic Graphs

Consider first the non-time sequence asymmetry in causal relations. For a causally
sufficient set of three variables X, Y and Z, illustrate a causal fork, X causes Y and Z, as:
Y <X = Z. Here the unconditional association between Y and Z is nonzero (as bothY
and Z have a common cause in X), but the conditional association between Y and Z given
knowledge of the common cause X, is zero: common causes screen off associations
between their joint effects. Illustrate the inverted causal fork, X and Z cause Y, as: X2
Y €Z. Here the unconditional association between X and Z is zero, but the conditional
association between X and Z given the common effect Y is not zero: common effects do
not screen off association between their joint causes. This screening off phenomina is
captured in the literature of directed graphs.®

Variables connected by a line are said to be adjacent. If we have a set of variables
{V,W,X,Y,Z}: (i) the undirected graph contains only undirected lines (e.g., V— W); (ii)
a directed graph contains only directed lines (e.g., W — X); (ii1) an inducing path graph
contains both directed lines and bi-directed lines (X <> Y); (iv) a partially oriented
inducing path graph contains directed lines ( — ), bi-directed lines ( <> ), non-directed
lines (0—o0) and partially directed lines ( 0— ). A directed acyclic graph is a graph
that contains no directed cyclic paths (an acyclic graph contains no directed path from a
variable that returns to the same variable). Only acyclic graphs are used in the paper.

DAG?’s represent conditional independence as implied by the recursive product
decomposition:

Pr(v,v,,v,,..,v, ) = ﬁPr(v‘, | pa.) (5)

where Pr denotes the probability. The symbol pa; refers to the realization of some subset
of the variables that precede (come before in a causal sense) v, in order (v,,v,...,v,). The

symbol [] refers to the product (multiplication) operator. Pearl (1986) proposes d-
separation as a graphical characterization of conditional independence. Verma and Pearl
(1988) give a proof of this proposition. That is, d-separation characterizes the conditional
independence relations given by equation (5). If we formulate a DAG in which the
variables corresponding to pa; are represented as the parents (direct causes) of V;, then the
independencies implied by equation (5) can be read off the graph using the criterion of d-
separation (defined in Pearl (1995)).

Definition: Let X, Y and Z be three disjoint subsets of vertices [variables] in a
directed acylic graph G, and let p be any path between a vertex [variable] in X and a
vertex [variable] in Y, where by 'path’' we mean any succession of edges, regardless of
their directions. Z is said to block p if there is a vertex w on p satisfying one of the
following: (i) w has converging arrows along p, and neither w nor any of its descendants
are on Z, or, (ii) w does not have converging arrows along p, and w is in Z. Further, Z is
said to d-separate X from Y on graph G, written (X LY | Z)g, if and only if Z blocks
every path from a vertex [variable] in X to a vertex [variable] in Y.



Geiger, Verma and Pearl (1990) demonstrate that there is a one-to-one
correspondence between the set of conditional independencies, X L Y | Z, implied by
equation (5) and the set of triples (X, Y, Z) that satisfy the d-separation criterion in graph
G. If G is a directed acyclic graph with variable set V, A and B are in V, and H is also in
V, then G linearly implies the correlation between A and B conditional on H is zero if
and only if A and B are d-separated given H.

Spirtes, et al. (1999) show the connection between directed graphs and the
counterfactual random variable model (the random assignment experimental model) of
Rubin (1978) and Holland (1986). First, one needs to focus on observational data a
causally sufficient set of variables. This means that there are no omitted variables that in
fact cause any two of the included variables under study. If variable X causes both Y
and Z and we leave X out of the analysis, then an apparent causal flow from Y to Z (or
vice versa) may be due to the fact that X causes both Y and Z, so the causal flow
identified as running from Y to Z would be spurious (Suppes 1970). Second, one needs
to constrain herself to causal flows that respect a causal Markov condition. That is to
say, if X causes Y and Y causes Z, we can factor the underlying probability distribution
on X, Y and Z as Pr(X,Y,Z) = Pr(X)Pr(Y|X)Pr(Z|Y). Finally, the probabilities, Pr, we
attempt to capture by graph G are faithful to G if X and Y are dependent if and only if
there is an edge between X and Y.

The causal sufficiency condition suggests that one find a sufficiently rich set of
theoretically relevant variables upon which to conduct her analysis. Failure to include a
relevant variable may lead one to put a line between two variables when in fact both are
effects of an omitted third variable. Failure of the Markov condition has been noted in
quantium mechanical experiments (see Spirtes, Glymour and Scheines 1993). Failure to
require the condition would require us to ignor statistical dependency even in
experimental designs (Spirtes, Glymour and Scheines 1993, p. 64). The faithfulness
condition can be violated if parameter values just happen to be of the correct magnitude
to cancel one another. If, for example the following two equations describe the
underlying model that generates X, Y, and Z:

X=10Y + 2Z+ &x
Z=-5Y + toy4

where ex and g€z are uncorrelated noise terms, each not correlated with its associated
right hand side variables (ex is not correlated with Y or Z and ¢z is not correlated with
Y). If this is the “deep parameter” representation of the “true” generating process on X,
Y and Z, it has a directed acyclic graphical representation with no conditional

independence relations (dropping the noise terms):
X «—Y

\,/



Yet, X and Y will be uncorrelated. If we rely on correlation and partial
correlation stucture based on observational data on X, Y and Z to remove edges between
variables, we would mistakenly remove the edge between X and Y, even though the data
generating process requires it to be present. The exact off-setting of parameter values in
the “true” model, while possible, seems unlikley. Slight variations in any of the linear
coefficients show X and Y to be correlated, so that the correlation structure in the model
is unstable (Glymour 1997, p. 209). [Of course the experimentalist can find the causal
model behind X and Y by breaking the connection between Y and Z through random
assignment in a controlled experiment].

Spirtes, Glymour and Scheines (1993) have applied the notion of d-separation into
an algorithm (PC Algorithm) for building directed graphs. PC algorithm is a sequential
set of commands that begin with an unrestricted graph where every variable is connected
with every other variable and proceeds step-wise to remove lines between variables and
to direct "causal flow.” The algorithm is described in detail in Spirtes, Glymour, and
Scheines (1993, p.117).

Briefly, the algorithm (we will summarize only the generic aspects of PC
algorithm) begins with a complete undirected graph G on the vertex set X. The complete,
undirected, graph shows an undirected line between every variable of the system (every
variable in X). Lines between variables are removed sequentially based on zero
correlation or partial correlation (conditional correlation). The conditioning variable(s)
on removed lines between two variables is called the sepset of the variables whose line
has been removed (for vanishing zero order conditioning information the sepset is the
empty set). Edges are directed by considering triples X — Y — Z, such that X and Y are
adjacent as are Y and Z, but X and Z are not adjacent. Direct lines between triples: X
—Y—ZasX—>Y <« ZifYisnotinthe sepsetof Xand Z. If X > Y, Y and Z are
adjacent, X and Z are not adjacent, and there is no arrowhead at Y, then orient Y — Z as
Y — Z. If there is a directed path from X to Y, and a line between X and Y, then direct
X—Y)as: X Y.

In applications, Fisher’s z is used to test whether conditional correlations are
significantly different from zero. Fisher’s z can be applied to test for significance from
zero; where:

(o, j | K)ym) = B*/"_ A 4%%}, ©)

1= pG, jlk])

and 7 is the number of observations used to estimate the correlations, po(i, j| k)is the

population correlation between series i and j conditional on series k (removing the
influence of series k on each i and j), and |k| is the number of variables in k (that we
condition on). If i,j and k are normally distributed and r(i,j|k) is the sample conditional
correlation of i and j given k, the distribution of z(p(i,j|k),n)—z(r(i,j|k),n)is
standard normal. PC algorithm and its more refined extensions are marketed as the
software TETRAD II (Scheines, et al 1994).



Monte Carlo studies with small sample sizes suggest that Tetrad II works well, if
the researcher applies an inverse relationship between sample size and significance level
on line removal test. They recommend when sample size falls below 100 observations
researchers use significance levels as high as .20 (Sprites, et. al. 1993, Chapter 5). As
sample size grows above 100, the suggestion is to drop the applied significance level to
more traditional values (e.g., .10 or .05).

Applications of directed graphs in economics and finance are not commonplace.
Recently, however, Swanson and Granger (1997) suggested a similar procedure to sort-
out causal flow on innovations from a vector autoregression (VAR). Their procedure
considers only first order conditional correlation, and involves more subjective insight by
the researcher to achieve a "structural recursive ordering."

I Description of the Data

The data for this study cover a two-year time period, from May 6™, 1999 to May
32001, totaling 520 daily observations for each of the time-series. The mid point of the
original daily closing Illinois and Gulf soybean bid prices were provided by the Illinois
Department of Agriculture and the USDA Agricultural Marketing Service respectively.
Grain barge rate data covering the same period were also collected for the stretch of river
beginning south of Peoria. Specifically, first, weekly barge rate information was
collected from the USDA, Agricultural Marketing Service, Transportation and Marketing
Division. This weekly rate (Wednesday quote) reflects the current rate as a percent of the
historic benchmark tariff rate (southbound barge freight call session basis trading
benchmark (July 1979)). From this figure the dollar per ton rate was obtained by
multiplying the quoted rate (a percentage of the benchmark rate) by the historic
benchmark rate associated with the south of Peoria region. Such a data series was used
Haigh and Bryant (2001). Then daily rate data was also collected from a large grain
trading company that transports grain on a daily basis along this stretch of the river. The
data cannot be shared for confidentiality reasons, but to ensure its reliability the
Wednesday daily price from the grain trading company was correlated with the USDA
price. Because both series were found to be highly correlated ( p = 0.983) the daily grain

and daily barge rates were used throughout.’

Summary statistics on all the prices are presented in Table 1. As one might
expect, the average (mean) grain price at the Gulf is greater than that at Illinois, with the
difference being slightly greater than the barge rate linking the two together. Indeed,
Figure 1 Panel A plots the daily grain prices at Illinois and the Gulf, and illustrates their
strong correlation (p = 0.970). The spread (Gulf — Illinois) and the barge rate are

presented in Panel B. This graph also illustrates the strong degree of interconnectivity
between these price series commanding a strong correlation of p = 0.949. As can be
seen in Table 1 the degree of volatility varies among the price series with the grain price
series exhibiting identical levels of uncertainty (as measured by the Coefficient of
Variation). Interestingly, barge rate volatility is several times as great as the grain price
volatility. Haigh and Byrant (2001) also found the excess volatility found in this market
(relative to other markets). The discussion above indicates that the barge prices and the



grain prices are linked together. However, it does not provide detailed evidence on the
dynamics of these linkages as well as on the existence of causation among them. It is
those issues that we now turn to.

v Empirical Application

In order to implement our ECM we first check the order of integration of each of
the price series within the marketing channel. As can be seen from Table 2, each series is
integrated of the first order confirming that the analyses will be conducted on the
differenced price series. The ECM was then estimated using the maximum likelihood
technique outlined by Johansen and Juselius (1990). The lag length order was selected
based on the Schwarz-loss criterion, (as shown in Table 3). Consequently, our ECM is as
follows:

AY =TAY +I1Y  +¢, (7)

-1 -1 t

where IT is a (3 x 3) matrix of coefficients relating lagged levels of grain and barge
prices measured at time t, I'is a (3 x 3) matrix of coefficients relating changes in grain
and barge prices lagged one period to current changes in the prices and ¢ isa (3 x 1)

vector of innovations (residuals).'” As previously mentioned, if we find that IT is of
reduced rank (0 < r < p) (where p = 3 here) we can test the individual elements of
S'against zero in the factorization off'=11. We can also investigate the possibility of

weak exogeneity of each of the series (testing whether each element of the « vector is
equal to zero). Therefore, given this feature, equation (7) can be written as:

AY =TAY  +af'Y  +¢ . (8)

Table 3 (top panel) presents the decision rule based on the trace tests for the
number of cointegrating vectors. Using critical values provided by Osterwald-Lenum
(1992) we first fail to reject the null hypotheses on r < land so the ECM is modeled with
one cointegrating vector. The lower part of Table 3 explores some exploratory tests on
the long run structure of interdependence between the prices. Indeed, our purpose is to
make a more definitive statement about the nature of the cointegrating vector. In
particular, the middle panel explores the possibility that one of the three series is not in
the cointegrating space. Under the null hypothesis that price i is not present in the
cointegrating space, the test statistic is distributed chi-squared with one degree of
freedom. We firmly reject the null for each series. With respect to the short-run
adjustment toward the long run relationships, a, we also test for weak exogeneity on
each market. For each market we test for whether or not it responds to perturbations in
the cointegrating space. Recall our long run relationship is represented by
I1Y, , =af'Y, . Perturbations in the long run equilibrium are given by 'Y, | and so the

question of interest is whether or not an entire row of aequals zero. Testing this
suggests that a price corresponding to that particular row is not responding to the long-
run information from the rest of the prices. Under the null hypothesis that a price does
not respond to shocks in the long-run equilibrium, the test statistic is also distributed chi-



squared with one degree of freedom. Inspection of the lower panel of Table 3 suggests
that both the Illinois and Gulf markets are weakly exogenous and the barge market does
all the adjusting to the long-run equilibrium. Accordingly, the following factorization of
IT into af'is given below in equation (9) where each element has been normalized on

the Illinois price:

.000
(.000)
~3.474

aff= [1.000 +.066 —1.061]. )

(—6.304)
.000

| (.000)

Perturbations in this equilibrium relationship are then represented as z; = Illinois -
.066(Barge)-1.061(Gulf), where z, represents stationary deviations in the long-run
equilibrium between the two sets of prices. The ¢ — statistic associated with the barge
market suggests that the transportation market does respond to the export marketing
channel equilibrium. Put simply, if the price of the Illinois market is high relative to its
long-run equilibrium, the barge market responds downwards in period ¢ + 1. This is an
especially intuitive result given that one would expect the demand for barges to decrease
(and hence prices fall) if the price of grain in Illinois increased.

The other part of the ECM framework that isolates the short run dynamics is
through the I’ matrix, a (3 x 3) matrix of coefficients relating changes in prices lagged
one period to current prices. The estimated coefficients associated with this matrix are:

—.112 -.024 .057
(-.820) (-1.930) (.392)
167 218 011
= . (10)
(.298) (4.348) (.018)
155 -.000 -.193

(1.222) (-.039) (-1.418)]

Casual inspection of the reported ¢ — statistics associated with this matrix suggests
that the dominant market is the barge market. The coefficient associate with the lagged
differences from the barge market is significant on itself and the Illinois market.
Interestingly changes in the Illinois and Gulf markets in period # - 1 enter no market in
period ¢ with a statistically significant coefficient.

As previously mentioned, the short run patterns of response and strengths of the
relationships among the prices that make up the export marketing channel are quite
difficult to decipher by focusing on the individual coefficients separately, either through

10



the speed of adjustment parameters, ¢, or through the short run dynamics matrix, I'. A

more suitable way to summarize the dynamic relationships between these markets is
through well-known innovation accounting techniques, applied to the ECM outlined in
equation (7). However, as previously mentioned, crucial to such analysis is the method
used to treat contemporaneous innovation. In this study we adopt the factorization
known as the “Bernanke ordering”. Write the innovation (residual) vector (v, ) from the

ECM as Av, =¢,, where Ais a 3 x 3 matrix and ¢, is a 3 x 1 vector of orthogonal

shocks. As illustrated by Doan (1992, 8 — 10), if there is no combination of i and j (i #)
for matrix A where both {au}and {aﬂ} are non-zero where {aﬁ} is an element 7,j of
matrix A in this instance. Here we employ the DAG algorithm presented in Spirtes et al.
(1993) in order to place zeros in the A matrix. Swanson and Granger (1997) made a

similar suggestion.

Innovations from our ECM give us the contemporaneous innovation correlation
matrix, X (representing the innovations as v,). The equation below (11) presents the

lower triangular elements of the correlation matrix on innovations (v ) from equation (7)
where the entries are presented in the order, Illinois, Barge and Gulf:

1.00
S(P) =|-.084 1.00 . (11)
919 .049 1.00

DAG theory points out that the off-diagonal elements of the scaled inverse of the
X(v,) matrix are in fact the negatives of the partial correlation coefficients between the

corresponding pair of variables given the remaining variable(s) in the matrix (Whittaker
1990, p.4). The off-diagonal elements of the scaled inverse of the X(V,) matrix, denoted

by Z7(V,), where the * indicates that we have scaled the inverse matrix:

1.00
() =|-.327 1.00 . (12)
927 321 1.00

For example, the partial correlation between innovations in prices in the Illinois
market and the barge market, given innovations in the Gulf market is -.327. Under the
assumption of multivariate normality, Fishers z statistic can be applied to test for
significance from zero (see Equation (6)). In this case, the correlation between Illinois
and the barge market (-.327) is significantly different from zero at all conventional
significance levels (with an associated p - value = .000). Interestingly, in this case all
conditional partial correlations are significantly different from zero. That is, the partial
correlation between the Illinois market and the Gulf market given innovations in the
barge market is .927 (p - value of .000) and the partial correlation between the barge
market and the Gulf market given innovations in the Illinois market is .321 (again a p-
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value of .000). Curiously, the partial correlations between the Illinois and the barge
market and the Gulf and the barge market are of the intuitively correct sign. That is, one
would expect an increase in Illinois prices to cause a decrease in barge prices (less
demand for barges given the higher price of grain for export), a result found previously
when we standardized the cointegrating vector on the Illinois price. Moreover we find
here that an increase in Gulf prices tends to cause an increase in barge prices; a result
consistent with the notion that increase in demand for barges would drive these prices
upwards given the higher export prices at the Gulf.

DAG?’s as given in Spirtes et. al (1993) provides an algorithm for removing edges
between different markets but also directs causal flow of information between markets.
The algorithm starts with a complete undirected graph (like the one shown in the top
panel of Figure 2) where innovations in every market are connected with innovations in
every market. The algorithm then starts to remove edges based on simple correlations.
Indeed, in this analysis, it was found that the sample correlation between the Gulf market
and the barge market could be removed in contemporaneous time ( p, .= .0486 with a p -

value of .2681). However, the sample correlation between the Gulf price and Illinois and
the barge price and Illinois could not be removed. As such, only the edges connecting the
barge market to Illinois and the Gulf market and Illinois remain. The next step of
removing edges is based on the partial correlations. Here, correlations between the Gulf
price and the Illinois price conditional on the barge rate and between the barge rate and
the Illinois price conditional on the Gulf price are found to be non-zero. Accordingly, we
can not remove the edges Illinois — Barge and Illinois — Gulf.

Edge removal, based on correlations and partial correlation results in the triple:
Gulf — Illinois — Barge, using the notation from Figure 2. Since the edge between Gulf
and Barge was removed using the unconditional correlation test (recall p, ;= .0486 with

a p - value of .2681), we can direct this remaining triple as: Gulf — Illinois <—Barge, as
we show in Panel B of Figure 2. Here, Illinois is a collider — receiving information from
both the Gulf market and the barge market. As such (as a collider) it opens up the
information flow between the Gulf and barge markets. Recall from Equation 12, the
conditional correlation between the Gulf market and the barge market is .321 and has a p
— value of .000.

Forecast error decompositions and impulse responses (one standard deviation
shocks from the ECM’s) based on the DAG’s are provided in Table 4 and Figure 3
respectively. The forecast error decompositions allows us to consider which prices
within the export marketing channel are statistically exogenous or endogenous relative to
each other at differing forecast horizons. One particular price series within the system
would be considered to be statistically exogenous if most of the variance of its forecast
error could be attributed to its own innovations rather than originating from one of the
other price series within the system. Indeed, a truly exogenous price series should
explain 100% of its forecast error variance at all forecast horizons. As can be seen from
Table 4 we analyze a forecast horizon up to 14 days — more than enough time for a barge
to travel from this part of the Illinois River (South of Peoria) to the U.S. Gulf. The
impulse responses, which allow us to evaluate the dynamic paths of adjustment of each of
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the prices to shocks in the data series, are illustrated in Figure 3. They too allow a 14-day
window.

The first column in the output for the forecast error decompositions is the
standard error of the forecast for each particular price series. The remaining columns
illustrate the error decompositions. As usual, each row should add up to 100 (but may
not here due to rounding). As can be seen, the Illinois market is very heavily influenced
by the Gulf market whereby the Gulf explains 84.78% of the variation in the Illinois
market after just one-day. Recall, our results from the DAG analysis suggest that the
Gulf market ‘causes’ the Illinois market in contemporaneous time, and apparently
continues to do so in the short run (1 day) out to the longer term of 14 days, where it still
explains over 78%. The barge market has some influence on the Illinois market, although
its effect is not as large as the Gulf’s. Indeed, the barge market explains about 1.6% of
the variation after 1 day and finishes at about 3.9% after 14 days. Once again, this result
is consistent with the DAG analysis. There, the barge market ‘caused’ the Illinois market
in contemporaneous time. The remaining portion of the variation is attributed to the
Ilinois market itself (13.6% after 1 day and about 17.7% after 14 days).

Perhaps the most interesting finding is associated with the forecast error
decompositions associated with the barge market. Consistent with the DAG graphs
analysis, the barge market is not influenced by either the Illinois or the Gulf markets in
the very short run (1 day). Indeed, after 1 day the barge market is exogenous, as it
explains 100% of its own variation. Over time, however, a different pattern emerges.
While some of the variation can be explained by the Gulf market at time passes, the vast
majority of the variation of the barge rate can be attributed to the Illinois market. Indeed,
after the 14 days have passed about 58% of the variation can be attributed to the Illinois
market. Clearly, over time, the barge market is susceptible to large volatility shocks
arising from the very market that it serves.

The Gulf market is also 100% exogenous in the short run a result consistent with
the direction of causality in the DAG analysis. Indeed, as time passes, while not being
completely exogenous, very little of the variation in the market is being explained by the
domestic influences of the Illinois market and the barge market that connects the two
together. It seems to be a plausible hypothesis therefore that the Gulf market is being
influenced by other global factors, but it in turn affects the Illinois market which then
influences the barge market as time passes. Put another way, the Gulf price does not
seem to influence the barge rate directly, but rather its informational effect is transmitted
through the Illinois market and then onto the barge market shortly thereafter.

Focusing our attention on the impulse responses in Figure 3 we see an identical
pattern emerge. For instance, the left-hand panel of the chart illustrates the response of
each market to a shock in the Illinois market. While the Illinois and Gulf markets are
somewhat affected by a shock from the Illinois market, it is the barge market that is most
heavily influenced, a finding consistent with the error decompositions. Indeed, it is only
after about the 14 days that the barge market stabilizes, yet still remains affected. Clearly
a shock from the Illinois market creates considerable volatility in the barge industry,
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which could, if unhedged, be extremely detrimental to physical traders in this industry.
Interestingly, the sign of the shock is as one might expect (negative), a result consistent
with the finding of a negative conditional correlation between the markets. That is, an
increase in Illinois prices should correspond with a decrease in barge rates (as explained
previously). Note also that while the barge rate is affected by the Illinois price over time,
it starts out at zero, a finding consistent with the DAG analysis whereby the Illinois
market does not affect the barge market in contemporaneous time. This can also be said
about the affect of the Illinois market on the Gulf market. An innovation in the barge
market has almost no affect the Gulf market (bottom graph of the middle panel), just like
the innovation in the Illinois market had no affect. Once again, the Gulf market can be
deemed to be exogenous to the other domestic linkages. However, as shown by the top
graph in the middle panel, the Illinois market is somewhat affected by the barge market,
and the sign of the response (negative) is, once again, consistent with earlier intuition.

The last panel of the impulse response graph illustrates the response of the inland
markets to a shock in the Gulf market. As can be seen by the top graph, the Illinois
market is immediately and strongly affected by a shock originating out of the Gulf. This
is a result found previously in both the contemporaneous analyses (the DAG framework)
and the forecast error decompositions. A shock to the Gulf market also has an affect on
the barge market that feeds it. However, consistent with the contemporaneous analysis, it
does not have an immediate affect. However, as time passes, the barge market reacts
positively, an intuitively pleasing result.

\% Concluding Remarks

In recent years there has been a plethora of research looking at the level of
interconnectivity between different yet related markets, but to date, no study has analyzed
the degree of interconnectivity within a marketing channel in a truly dynamic manner.

In this study, we apply Directed Acyclic Graphs (DAG’s) to make causal
statements in contemporaneous time. Applying DAG’s to the heretofore well-understand
Error Correction Model allows us to address issues surrounding dynamic patterns of price
discovery using both forecast error decompositions and impulse responses.

Our results illustrate that regardless of which method is used to analyze the
dynamic relationships between the markets information from the Gulf market is critical in
the price discovery process in contemporaneous time, the short run and out into the
longer term. While the globally influenced Gulf market does not heavily influence the
barge market that connects it to its inland grain source at Illinois in contemporaneous
time, it is somewhat affected as time passes. However, it is the Illinois market that is
immediately influenced by the Gulf. This affect seems to ripple through to the
transportation market as time passes reversing the direction of causation from the barge
market influencing the Illinois market in contemporaneous time to the Illinois market
heavily influencing the barge market out into the longer term. It seems therefore, that
over the longer term both the domestic and international markets heavily influence the
barge market and shocks to these markets can greatly influence rates, negatively, or
positively depending upon where the shock originates. These shocks, whether they
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originate from the Gulf or inland cause excess volatility in the barge market, which could
be detrimental to unhedged physical traders in this marketing channel.

This paper has therefore, not only shed light on the degree of interconnectivity
between several important markets using unique econometric methods but also sheds
some light on the importance of the barge market critical in linking markets together.
Our results seem to support the existence of the newly developed barge rate futures
contract, but like so many other futures contracts that are designed, time can only tell
whether the market will be successful.
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Table 1. Descriptive statistics and correlation analysis on daily prices

Illinois Barge Gulf
Mean 172.98 8.915 186.34
Median 170.15 8.584 184.28
Standard deviation 10.806 2.228 10.369
()Y 0.056 0.250 0.056
m, -0.181 -0.531 -0.503
m, 0.377 0.505 0.186
Min 147.17 5.336 161.11
Max 202.95 16.008 213.41
Unconditional Correlations

Illinois Barge Gulf
Illinois 1
Barge -0.3268 1
Gulf 0.9700 -0.1003 1

Summary statistics are presented for daily grain and barge prices for the period 6™ May 1999 —
3 May 2001. CV represents the Coefficient of Variation and m,and m, represent sample

skewness and kurtosis respectively.
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Table 2. Augmented Dickey-Fuller (ADF) tests for order of integration on prices
Test is on the estimated coefficient 6;from the following prototype model:

K
AX, =60, +0,X,  + Z,BkAXt_k

k=1

Price K [ HO:I(1) vs. HA: I(0) | HO: I(2) vs. HA: I(1)
ADF ADF

Illinois [0 |-2.354 -24.190

Barge 1 -3.158 -18.960

Gulf 0 |-2.341 -23.728

Critical values are taken from Fuller (1976). They are —2.57 (10%),
-2.88%* (5%) and —3.46 (1%). Therefore, based on these results are
series are I(1). The optimal lag length (K) was based on the Schwarz
Bayesian Criterion (1978).



Table 3. Cointegration analysis of prices

Trace tests on order of cointegration®
Awrace test statistic Ho: critical value
103.96 r=0 29.68
14.21 r<1 15.41
4.93 r<2 3.76
Tests for exclusion from the cointegrating vector’

Ho: x., value
Ilinois B,=0 79.25
Barge £,=0 79.17
Gulf £.=0 78.85
Tests for weak exogeneity”

Ho: Z., value
Illinois a,=0 1.11
Barge a,=0 7.57
Gulf a.=0 1.85

2
“Tests are on eigenvalues with the IT matrix. The Ay statistic is - N( Zln(l —4,)), where
i=r+l
A; are ordered (largest to smallest) eigenvalues on I1. Critical values for the A, statistics
(at the 10% level) are from Osterwald-Lenum (1992). The optimal lag length (k) is based
on the Schwarz Bayesian Criterion (1978). The sample size (N) is equal to 520.
®Tests are based on the following: T = N(In(1-Ag) — In(1-Ay), where Ag is the eigenvalue
calculated with the restriction and Ay the eigenvalue calculated without the restriction.
With one cointegrating vector the critical y, value is 3.84. Based upon these results all

prices in the marketing channel appear to be a part of the cointegrating relationship, and
both the Gulf and the Illinois prices are weakly exogenous.
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Table 4. Forecast error decompositions

Steps ahead (days) | Std. Error | Illinois | Barge | Gulf
(Illinois)

1 0.013 13.622 | 1.598 84.781
2 0.018 11.586 | 3.689 84.725
3 0.022 12.101 | 4.335 83.564
7 0.033 14.465 | 4.545 82.138
14 0.047 17.655 |[3.933 78.412
(Barge)

1 0.056 0.000 100.00 | 0.000
2 0.086 1.990 97.786 | 0.224
3 0.109 6.195 93.263 | 0.542
7 0.171 31.405 ] 66.670 | 1.924
14 0.245 58.334 |38.510 |[3.156
(Gulf)

1 0.012 0.000 0.000 100.00
2 0.017 0.432 0.004 99.563
3 0.020 0.356 0.032 99.611
7 0.031 0.386 0.051 99.560
14 0.043 0.415 0.057 99.527

The decompositions for each step ahead are given for a Bernanke
factorization of contemporaneous covariances, which treats each
price series as exogenous in contemporaneous time. The justification
for this is based on the DAG on observed innovations from the error
correction model shown in equation (7). The decompositions may

not sum to one hundred in each row due to rounding.
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Figure 1. Daily price data. The sample period is 6™ May 1999 — 3" May 2001 (520 observations):

Panel A. U.S. Gulf and Illinois Soybean Prices ( p= 0.970).

220

200 A I“I‘\
v.l“\J \/\/\ /\L\'\MX

WA
A l\,\,y\/
180 | /,,/MM A

160

b\
o .
V\/\iﬁ’ﬂw \\\\\ ,,‘\ IIILAV"‘-’\I \X\II\I"'I V\V\/, A\“/‘/\[u’\'!«rl \'/A

1'/1/\/'

140

Y M
e NV
,\vi J//M\l \ \/—'\,M\ J

Gulf

— — — - Illinois

\\gat
NJVN{V“ \M

Yas

\M'\AN\ A‘/\“\N\I\

Myrri

/

1 50 100 150 200 250 300
Day

350

400

450 500

Panel B. Gulf-Illinois Soybean Price Spread and Mississippi Barge Rate ( o = 0.949).
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Figure 2. Undirected and Directed Acyclic Graphs

Panel A. Complete undirected graph.
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Figure 3. Impulse responses over 14 days from one standard deviation shocks.
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Endnotes

! Source: Baltic Exchange, London, UK.

? Over its life, the BIFFEX contract has generated a varying degree of trading interest.
For instance, at is peak in 1988 the volume reached 97335 contracts (or about 383
contracts per day). However, since November 1999, when the underlying index was
changed for the last time (it has been changed a total of 13 times to try and generate
trading interest) trading volume only reached an average of 17 contracts a day. Indeed,
according to Carlton (1984), 31% of futures contracts introduced in the United States
between 1921 and 1983 died within their first two years of trading.

3 See Carlton (1984) for a description of the important features that a commodity traded
on a futures exchange should possess in order to be successful.

* Only a handful of papers have employed DAG analysis in economics. Examples
include: Bessler and Akleman (1998) and Bessler and Fuller (2000).

> For soybeans in particular, which are analyzed in this study, the total tonnage exported
out of the U.S. from all ports in this time period was 57.93 million tonnes on a total of
3864 vessels to 44 different countries. However, 40.07 million of those tonnes (or 69.2%
of the total) left the U.S. Gulf at New Orleans from the Mississippi River on a total of
1686 vessels to 39 different countries.

6 Unlike the BIFFEX futures contract, the barge futures contract is not based on an index
of prices. Full details on the newly developed barge rate futures contract can be found at
the Exchange web site: www.merchants-exchange.com. To date, only one paper has
attempted to analyze the feasibility of a futures market for barge freight (Hauser and
Buck, 1989). That research, except for some static regression techniques, analyzed the
potential role of the market in a largely qualitative manner. The research did recommend
that a barge futures contract be developed.

7 In particular, if we denote A,4,,...,4 and A),4.,...,4" as the ordered characteristic roots

of the unrestricted and restricted models respectively, then to test the restrictions on S,
we can form the test statistic: 7 [In(1-2)) — (1—2)]. Asymptotically, this has a

" distribution with the number of degrees of freedom equaling the number of restrictions
placed on f. Large values of A relative to A (for i <r ) imply a reduced number of

cointegrating vectors. Therefore, the restriction embedded in the null hypothesis is
binding if the calculated test statistic exceeds the tabulated y’value.

¥ Orcutt (1952), Simon (1953), Richenbach (1956), and Papineau (1985) offer similar
expressions of asymmetries in causal relations. For a description of various causal
asymmetries see Hausman (1998).

? These data (like all data used by the authors) are available upon request. A small
number of price quotes were missing in each of these markets. On these days, the
missing observations were replaced with the most recent price, thus constructing a price
series consistent with a random walk.

"' We excluded the constant from inside the ITmatrix due to its statistical insignificance.
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