
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their 
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/


 
 

Causality and Price Discovery: An Application of Directed Acyclic Graphs 
 
 
 
 

Michael S. Haigh 

 

 

and 
 
 

David A. Bessler 
 
 
 
 

Paper presented at the NCR-134 Conference on Applied Commodity Price Analysis, 
Forecasting, and Market Risk Management 

St. Louis, Missouri, April 22-23, 2002 
 
 
 
 
 
 

Copyright 2002 by M.S. Haigh and D.A. Bessler.  All rights reserved. 
Readers may make verbatim copies of this document for non-commercial purposes by 

any means, provided that this copyright notice appears on all such copies. 
 
 
 
 
 
 

Haigh is an Assistant Professor (mhaigh@arec.umd.edu) in the Department of 
Agricultural and Resource Economics at the University of Maryland and Bessler is a 
Professor in the Department of Agricultural Economics at Texas A&M University. 

 



Causality and Price Discovery: An Application of Directed Acyclic Graphs 
 
Directed Acyclic Graphs (DAG’s) and Error Correction Models (ECM’s) are employed 
to analyze questions of price discovery between spatially separated commodity markets 
and the transportation market linking them together.  Results from our analysis suggest 
that these markets are highly interconnected but that it is the inland commodity market 
that is strongly influenced by both the transportation and commodity export markets in 
contemporaneous time.  However, the commodity markets affect the volatility of the 
transportation market over longer horizons.  Our results suggest that transportation rates 
are critical in the price discovery process lending support for the recent development of 
exchange traded barge rate futures contracts. 
 
Key Words: Barge Rate Futures, Directed Acyclic Graphs, Causation, Integration. 
 
I Introduction 

To date, a large amount of research has been undertaken to evaluate the extent to 
which spatially separated markets are integrated.  The popularity of the subject matter is 
driven in part by the fact that finding continual deviations from the equilibrium level of 
integration might imply that riskless arbitrage opportunities exist.  However, despite the 
fact that freight rates are notoriously volatile, and the fact that over 5.5 billion tonnes, or 
98% of annual world trade is carried by sea, the role of the transportation market in 
testing for integration within the marketing channel has been largely ignored in the 
literature.1  A few notable exceptions do exist.  For instance, important research 
undertaken by Geraci and Prewo (1977) confirmed that it is vital to include transportation 
costs in the study of integration among spatially separated markets. Goodwin, Grennes 
and Wohlegant (1990) conclude that failing to account for volatile freight rates can lead 
to erroneous conclusions in empirical trade research.  They carefully demonstrate this 
point by finding stronger support for the Law of One Price only after they accounted for 
shipment costs. 

 
Only a handful of studies have directly isolated the effect that volatile freight 

prices might have on the price discovery process.  These include Haigh and Holt (2000), 
Hauser and Neff (1990) and Haigh and Bryant (2001).  While the first contribution 
emphasized the importance of ocean freight volatility within the marketing channel, it 
was the latter contributions that isolated the extent to which domestic freight volatility 
(specifically volatile barge rates) contributed to the level uncertainty.  However, both 
studies failed however to discuss in any detail exactly how the prices were linked and did 
not assess in any detail issues relating to causality among the markets.  

 
Because of the importance of transportation rates in the price discovery process, 

there has always been considerable amount of interest in developing a forward/futures 
market for transportation services (Hauser and Buck, 1989).  Indeed, in May of 1985 the 
BIFFEX freight futures contract was launched at the London International Financial 
Futures Exchange (LIFFE).  The contract, based off an index of shipping prices compiled 
by the Baltic Exchange was designed to hedge freight price risk in the dry-bulk sector of 
the ocean shipping markets.  Indeed, because of its uniqueness (it was the only futures 
contract on a service) and because of its potential importance, several researchers have 
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investigated its use from a hedging standpoint.  Examples include Thuong and Visscher 
(1990), Kavussanos and Nomikos (1999, 2000) and Haigh and Holt (2000).  These 
studies invariably conclude that the BIFFEX market is not a particularly effective 
hedging instrument and does not provide the price risk protection evidenced in other 
futures markets.  Each concludes that its weak performance as a hedging instrument is 
due to the fact that the contract was based on an index of shipping routes making the 
hedge less appealing and hence the trading volume lower.  As anticipated, in June 2001 
LIFFE announced that trading in the BIFFEX contract would cease in April 2002 because 
of low trading volumes.2  It seems therefore that there is no way to predict with any 
degree of accuracy whether or not a new futures contract will be successful.   

 
It may be possible however to provide some quantitative indicators of how 

important that market is likely to be especially if it influential or highly influenced in the 
price discovery process within a marketing channel.3  Indeed, the current study makes 
significant contributions to this issue from several angles.  Using recent high frequency 
price data we adopt a new framework to analyze the relationship between inland grain 
prices in Illinois, export grain prices at the U.S. Gulf and the barge market that links them 
together.  In particular, we analyze the degree of interdependence and direction of 
causality at three time horizons: contemporary, short run and long run.  To this end, we 
employ Directed Acyclic Graph (DAG) theory which, to date, has been surprisingly 
underutilized in both the economics and finance fields.4  The unique methodology allows 
us to examine the causal pattern of contemporary relationships among the innovations in 
the three markets, based off of the familiar Error Correction Model (ECM).  The ECM 
approach (whose existence is dependent upon the notion of cointegration) and the 
resulting innovation accounting techniques allow us to address both the short run and 
long run causality.  Critically, our DAG analysis allows us to address the construction of 
the data-determined othoganization on contemporaneous innovation covariance, critical 
in providing sound inference in innovation accounting (Swanson and Granger, 1997).  
From a practical standpoint, the contemporary, short and long run information provides a 
unique assessment of the degree of interconnectivity and direction of causation within the 
marketing channel, important to physical traders in this marketplace.   

 
It is also the objective of this study to focus on the importance of the barge market 

and explain in detail its role in the price discovery mechanism of the export marketing 
channel.  Indeed, data provided by the United States Federal Grain Inspection Service 
over the period May 6th 1999 – May 3rd 2001 (the same time period analyzed in this 
study) suggest a priori, the relative importance of the barge market.  For instance, the 
total amount of grain exported out of the U.S. within this time period was 258.84 million 
tonnes of grain on 16586 different vessels to a total of 131 different countries.  Of that 
total number, 134.26 million tonnes (51.9% of the total) was shipped out of the U.S. Gulf 
(the vast majority of which originated via barges along the Mississippi River) on 7187 
different vessels to 101 different countries. 5 Isolating the importance of the barge market 
is of particular interest here simply because trading in barge futures contracts for the 
particular stretch of river analyzed in this study began at the St. Louis Merchants 
exchange in December of 2000.6 
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 The rest of the paper is organized as follows.  Section II provides an overview of 
the econometric methodologies employed in the paper.  Section III describes the data, 
and Section IV presents the empirical results.  The last section, Section V, concludes. 
 
II Econometric Methods 
 A considerable amount of research has attempted to evaluate the degree of 
interconnectivity between markets employing time-series techniques appropriate for non-
stationary and cointegrated data.  In particular, much work on applied cointegration 
analysis has relied on Johansen’s multivariate approach (Johansen, 1988, 1991; Johansen 
and Juselius, 1990).  Examples of papers employing such techniques include Chowdhury 
(1991) and Goodwin and Piggott (2001).  
 
 Because of the advantages of the Johansen methodology, this technique is adopted 
in the ensuing analysis.  First, assume an n-dimensional vector of nonstationary time 
series, Y , (n = 3 here) that is generated by an autoregressive form depicted as: t
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where is an n x 1vector of the I(1) variables (the prices in the export marketing 
channel), is an n x n matrix of parameters, 

tY

iΠ ω is a vector of constants, and tε is a 
random error term.  Johansen and Juselius (1990) prove that eq. (1) can be rewritten as 
error-correction representation as follows: 
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 Equation (2) is nothing more than Vector Autoregression (VAR) (in first 
differences), with an inclusion of the lagged-level component, which is known as the 
Error Correction Term.  The combination is simply known as an Error Correction Model 
(ECM).  Since tε is stationary, the rank of the ‘long-run’ matrix, Π , determines how 
many linear combinations of Y are stationary. It is commonly known that the rank of any 
matrix is equal to the number of characteristic roots that are not equal to zero, and so the 
rank of  determines the number of cointegrating vectors.  Should the rank of 

t

Π Π  be 
positive and less than n, then cointegration is said to be present. Should this be the case, 
then there exist matrices 'αβ , with dimensions n x r, (where r is the number of 
cointegrating relationships), such that Π  may be factored as 'αβ .  The β  matrix is a 
matrix of cointegrating parameters and the matrix α is a matrix of weights (also known as 
the speed of adjustment parameters) with which each cointegrating vector enters the n 
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equations.  Testing hypothesis, and examining the cointegrating space associated with 
β can help identify the long-run structure and provide rich information on the long-run 
relationships and market structure of the prices.  Indeed, hypothesis testing allows us to 
determine whether some markets may be excluded from the long run relations.7   
 
 The short run dependencies among the prices can also be identified through 
hypothesis testing on α  and Γ . Hypothesis testing on i α  (the short run adjustment to the 
long run relationships) can be conducted in a similar way to that used for hypothesis 
testing on β . The α vector is the measure of the average speed of convergence towards 
the long-run equilibrium and plays a crucial role in analyzing how each of the price series 
will respond to deviations from the long-run equilibrium relationship.  These tests permit 
the researcher to make inferences regarding the short run adjustment processes of each 
series.  It also enables the researcher the ability to test whether a particular market is 
weakly exogenous with regard to other markets (if those market prices are unresponsive 
to the deviation from long-run relationships).   
 
 The parameters associated with iΓ  define the short-run adjustment to the changes 
of the process (Juselius, 1995).  Hypothesis tests can also be conducted on these matrices. 
However, as is the case of standard VAR’s, the individual coefficients associated with the 
ECM can be somewhat difficult to interpret, particularly those associated with the short-
run dynamics captured within Γ .  Consequently, innovation accounting techniques may 
be the best way to describe the short run structure and interdependencies among the 
prices within the export marketing channel (Swanson and Granger, 1997).  Therefore, 
given the ECM, impulse response analysis can be undertaken (based on an equivalent 
levels VAR) to summarize the short run dynamic interrelationships among the prices.  
Undertaking the impulse response analysis in this way addresses the necessity of 
imposing the cointegrating relationships into the system, which has very recently been 
proven to be crucial in yielding consistent impulse responses and forecast error 
decompositions (Philips, 1998).   

i

 
 However, the basic problem of the orthoganalization of residuals from the ECM 
remains somewhat unresolved.  Most studies employing ECM or VAR’s have yet to fully 
address the problem associated with the contemporaneous relationships among variables.  
Despite this, innovation accounting techniques require that a causal assumption about 
contemporaneous correlation be made.  Early work in this area employed the Choleski 
factorization, with more recent applications concentrating on a ‘structural’ factorization 
suggested by Bernanke (1986) and Sims (1986) simply because researchers may not view 
the world may not be viewed as being recursive (Cooley and Leroy (1985)).  However, 
the problem with both the Bernanke (1986) and Sims (1986) approach is that it is 
assumed that the researcher has knowledge of the correct structural model (which is 
unlikely to be the case).  As such, following Spirtes et al, 1993 in this study we examine 
the contemporaneous relationships among the variables based on the variance covariance 
matrix from the innovations (residuals) from the ECM by employing DAG’s. It is to a 
brief explanation of DAG theory that we now turn. 
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Directed Acyclic Graphs 

Consider first the non-time sequence asymmetry in causal relations. For a causally 
sufficient set of three variables X, Y and Z, illustrate a causal fork, X causes Y and Z, as: 
Y X  Z.  Here the unconditional association between Y and Z is nonzero (as bothY 
and Z have a common cause in X), but the conditional association between Y and Z given 
knowledge of the common cause X, is zero: common causes screen off associations 
between their joint effects.  Illustrate the inverted causal fork,  X and Z cause Y,  as:  X  
Y Z.   Here the unconditional association between X and Z is zero,  but  the conditional 
association between X and Z given the common effect Y is not zero:  common effects do 
not screen off association between their joint causes.  This screening off phenomina is 
captured in the literature of directed graphs. 8  

 
Variables connected by a line are said to be adjacent.  If we have a set of variables 

{V,W,X,Y,Z}: (i) the undirected graph contains only undirected lines (e.g., V  W); (ii) 
a directed graph contains only directed lines  (e.g., W → X);  (iii) an inducing path graph 
contains both directed lines and bi-directed lines (X ↔ Y); (iv) a partially oriented 
inducing path graph contains directed lines ( → ),  bi-directed lines  ( ↔ ),  non-directed 
lines  (oo)  and  partially directed lines ( o→ ).   A directed acyclic graph is a graph 
that contains no directed cyclic paths (an acyclic graph contains no directed path from a 
variable that returns to the same variable).  Only acyclic graphs are used in the paper. 
  DAG’s represent conditional independence as implied by the recursive product 
decomposition: 
 

)|Pr(),...,,,Pr(
1321 ii

n

in pavvvvv
=
Π=        (5) 

 
where Pr denotes the probability.  The symbol pai refers to the realization of some subset 
of the variables that precede (come before in a causal sense) iν  in order ( nv νν ...,, 21 ).  The 
symbol ∏ refers to the product (multiplication) operator. Pearl (1986) proposes d-
separation as a graphical characterization of conditional independence. Verma and Pearl 
(1988) give a proof of this proposition.  That is, d-separation characterizes the conditional 
independence relations given by equation (5).  If we formulate a DAG in which the 
variables corresponding to pai are represented as the parents (direct causes) of Vi, then the 
independencies implied by equation (5) can be read off the graph using the criterion of d-
separation (defined in Pearl (1995)). 
 

Definition:  Let X, Y and Z be three disjoint subsets of vertices [variables] in a 
directed acylic graph G, and let p be any path between a vertex [variable] in X and a 
vertex [variable] in Y, where by 'path' we mean any succession of edges, regardless of 
their directions. Z  is said to block p if there is a vertex w on p satisfying one of the 
following:  (i) w has converging arrows along p, and neither w nor any of its descendants 
are on Z, or, (ii) w does not have converging arrows along p, and w is in Z.  Further, Z is 
said to d-separate X from Y on graph G, written   (X ⊥Y | Z)G , if and only if Z blocks 
every path from a vertex [variable] in X to a vertex [variable] in Y. 
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Geiger, Verma and Pearl  (1990) demonstrate that there is a one-to-one 

correspondence between the set of conditional independencies, X ⊥ Y | Z, implied by 
equation (5) and the set of triples (X, Y, Z) that satisfy the d-separation criterion in graph 
G. If G is a directed acyclic graph with variable set V,  A and B are in V, and H is also in 
V, then G linearly implies the correlation between A and B conditional on H is zero if 
and only if A and B are d-separated given H.   
 

Spirtes, et al. (1999) show the connection between directed graphs and the 
counterfactual random variable model (the random assignment experimental model) of 
Rubin (1978) and Holland (1986). First, one needs to focus on observational data a 
causally sufficient set of variables.  This means that there are no omitted variables that in 
fact cause any two of the included variables under study.    If variable X causes both Y 
and Z and we leave X out of the analysis, then an apparent causal flow from Y to Z (or 
vice versa) may be due to the fact that X causes both Y and Z, so the causal flow 
identified as running from Y to Z would be spurious (Suppes 1970).  Second, one needs 
to constrain herself to causal flows that respect a causal Markov condition.  That is to 
say, if X causes Y and Y causes Z, we can factor the underlying probability distribution 
on X, Y and Z as Pr(X,Y,Z) = Pr(X)Pr(Y|X)Pr(Z|Y).  Finally, the probabilities, Pr, we 
attempt to capture by graph G are faithful to G if X and Y are dependent if and only if 
there is an edge between X and Y.    

 
The causal sufficiency condition suggests that one find a sufficiently rich set of 

theoretically relevant variables upon which to conduct her analysis.  Failure to include a 
relevant variable may lead one to put a line between two variables when in fact both are 
effects of an omitted third variable.  Failure of the Markov condition  has been noted in 
quantium mechanical experiments (see Spirtes, Glymour and Scheines 1993).  Failure to 
require the condition would require us to ignor statistical dependency even in 
experimental designs (Spirtes, Glymour and Scheines 1993, p. 64).  The faithfulness 
condition can be violated if parameter values just happen to be of the correct magnitude 
to cancel one another.  If, for example the following two equations describe the 
underlying model that generates X, Y, and Z: 

 
X =  10Y  +  2Z +  εX 

Z =  - 5Y  +   εZ 
 
where  εX  and εZ   are uncorrelated noise terms, each not correlated with its associated 
right hand side variables (εX is not correlated with Y or Z and εZ is not correlated with 
Y).  If this is the “deep parameter” representation of the “true” generating process on X, 
Y and Z, it has a directed acyclic graphical representation with no conditional 
independence relations (dropping the noise terms): 
              X                      Y 
 
 
 
                        Z 
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Yet,  X and Y will be uncorrelated.  If we rely on correlation and partial 
correlation stucture based on observational data on X, Y and Z to remove edges between 
variables, we would mistakenly remove the edge between X and Y, even though the data 
generating process requires it to be present.   The exact off-setting of parameter values in 
the “true” model, while possible,  seems unlikley. Slight variations in any of the linear 
coefficients show X and Y to be correlated, so that the correlation structure in the model 
is unstable (Glymour 1997, p. 209). [Of course the experimentalist can find the causal 
model behind X and Y by breaking the connection between Y and Z through random 
assignment in a controlled experiment].  
 
 Spirtes, Glymour and Scheines (1993) have applied the notion of d-separation into 
an algorithm (PC Algorithm) for building directed graphs.  PC algorithm is a sequential 
set of commands that begin with an unrestricted graph where every variable is connected 
with every other variable and proceeds step-wise to remove lines between variables and 
to direct "causal flow.” The algorithm is described in detail in Spirtes, Glymour, and 
Scheines (1993, p.117).   
 
  Briefly, the algorithm (we will summarize only the generic aspects of PC 
algorithm) begins with a complete undirected graph G on the vertex set X.  The complete, 
undirected, graph shows an undirected line between every variable of the system (every 
variable in X).  Lines between variables are removed sequentially based on zero 
correlation or partial correlation (conditional correlation).   The conditioning variable(s) 
on removed lines between two variables is called the sepset of the variables whose line 
has been removed (for vanishing zero order conditioning information the sepset is the 
empty set).   Edges are directed by considering triples X  Y  Z, such that X and Y are 
adjacent as are Y and Z, but X and Z are not adjacent.   Direct lines between triples:  X 
 Y  Z as X → Y ← Z if Y is not in the sepset of X and Z.  If  X → Y, Y and Z are 
adjacent, X and Z are not adjacent, and there is no arrowhead at Y, then orient Y  Z as 
Y → Z.  If there is a directed path from X to Y, and a line between X and Y, then direct  
(X  Y) as: X →Y. 
 

 In applications, Fisher’s z is used to test whether conditional correlations are 
significantly different from zero.  Fisher’s z can be applied to test for significance from 
zero; where: 

 









−
+





 −−=

|)|,(1
|)|,(1|ln3||

2
1)),|,((

kji
kjiknnkjiz

ρ
ρρ ,    (6) 

 
and n is the number of observations used to estimate the correlations, )|,( kjiρ is the 
population correlation between series i and j conditional on series k (removing the 
influence of series k on each i and j), and |k| is the number of variables in k (that we 
condition on).  If i,j and k are normally distributed and r(i,j|k) is the sample conditional 
correlation of i and j given k, the distribution of ))),|,(( nnkjiz − ),|,(( kjirzρ is 
standard normal.  PC algorithm and its more refined extensions are marketed as the 
software TETRAD II (Scheines, et al 1994). 
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 Monte Carlo studies with small sample sizes suggest that Tetrad II works well, if 
the researcher applies an inverse relationship between sample size and significance level 
on line removal test.  They recommend when sample size falls below 100 observations 
researchers use significance levels as high as .20 (Sprites, et. al. 1993, Chapter 5).  As 
sample size grows above 100, the suggestion is to drop the applied significance level to 
more traditional values (e.g., .10 or .05). 
 

Applications of directed graphs in economics and finance are not commonplace.  
Recently, however, Swanson and Granger (1997) suggested a similar procedure to sort-
out causal flow on innovations from a vector autoregression (VAR).  Their procedure 
considers only first order conditional correlation, and involves more subjective insight by 
the researcher to achieve a "structural recursive ordering." 

 
III Description of the Data  

The data for this study cover a two-year time period, from May 6th, 1999 to May 
3rd 2001, totaling 520 daily observations for each of the time-series.  The mid point of the 
original daily closing Illinois and Gulf soybean bid prices were provided by the Illinois 
Department of Agriculture and the USDA Agricultural Marketing Service respectively.  
Grain barge rate data covering the same period were also collected for the stretch of river 
beginning south of Peoria.  Specifically, first, weekly barge rate information was 
collected from the USDA, Agricultural Marketing Service, Transportation and Marketing 
Division.  This weekly rate (Wednesday quote) reflects the current rate as a percent of the 
historic benchmark tariff rate (southbound barge freight call session basis trading 
benchmark (July 1979)).  From this figure the dollar per ton rate was obtained by 
multiplying the quoted rate (a percentage of the benchmark rate) by the historic 
benchmark rate associated with the south of Peoria region.  Such a data series was used 
Haigh and Bryant (2001).  Then daily rate data was also collected from a large grain 
trading company that transports grain on a daily basis along this stretch of the river.  The 
data cannot be shared for confidentiality reasons, but to ensure its reliability the 
Wednesday daily price from the grain trading company was correlated with the USDA 
price.  Because both series were found to be highly correlated ( ρ  = 0.983) the daily grain 
and daily barge rates were used throughout.9   

 
Summary statistics on all the prices are presented in Table 1.  As one might 

expect, the average (mean) grain price at the Gulf is greater than that at Illinois, with the 
difference being slightly greater than the barge rate linking the two together.  Indeed, 
Figure 1 Panel A plots the daily grain prices at Illinois and the Gulf, and illustrates their 
strong correlation ( ρ  = 0.970).  The spread (Gulf – Illinois) and the barge rate are 
presented in Panel B.  This graph also illustrates the strong degree of interconnectivity 
between these price series commanding a strong correlation of ρ  = 0.949.  As can be 
seen in Table 1 the degree of volatility varies among the price series with the grain price 
series exhibiting identical levels of uncertainty (as measured by the Coefficient of 
Variation).  Interestingly, barge rate volatility is several times as great as the grain price 
volatility.  Haigh and Byrant (2001) also found the excess volatility found in this market 
(relative to other markets).  The discussion above indicates that the barge prices and the 
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grain prices are linked together.  However, it does not provide detailed evidence on the 
dynamics of these linkages as well as on the existence of causation among them.  It is 
those issues that we now turn to. 

 
 

IV Empirical Application 
In order to implement our ECM we first check the order of integration of each of 

the price series within the marketing channel.  As can be seen from Table 2, each series is 
integrated of the first order confirming that the analyses will be conducted on the 
differenced price series.  The ECM was then estimated using the maximum likelihood 
technique outlined by Johansen and Juselius (1990).  The lag length order was selected 
based on the Schwarz-loss criterion, (as shown in Table 3).  Consequently, our ECM is as 
follows: 

 
tttt YYY ε+Π+Γ∆=∆ −− 11 ,        (7) 

 
where  is a (3 x 3) matrix of coefficients relating lagged levels of grain and barge 
prices measured at time t, Γ is a (3 x 3) matrix of coefficients relating changes in grain 
and barge prices lagged one period to current changes in the prices and 

Π

tε is a (3 x 1) 
vector of innovations (residuals).10  As previously mentioned, if we find that  is of 
reduced rank (0 < r < p) (where p = 3 here) we can test the individual elements of 

'

Π

β against zero in the factorization Π='αβ . We can also investigate the possibility of 
weak exogeneity of each of the series (testing whether each element of the α vector is 
equal to zero).  Therefore, given this feature, equation (7) can be written as: 
 

tttt YYY εαβ ++Γ∆=∆ −− 11 ' .        (8) 
 
Table 3 (top panel) presents the decision rule based on the trace tests for the 

number of cointegrating vectors.  Using critical values provided by Osterwald-Lenum 
(1992) we first fail to reject the null hypotheses on r ≤ 1and so the ECM is modeled with 
one cointegrating vector.  The lower part of Table 3 explores some exploratory tests on 
the long run structure of interdependence between the prices.  Indeed, our purpose is to 
make a more definitive statement about the nature of the cointegrating vector.  In 
particular, the middle panel explores the possibility that one of the three series is not in 
the cointegrating space.  Under the null hypothesis that price i is not present in the 
cointegrating space, the test statistic is distributed chi-squared with one degree of 
freedom.  We firmly reject the null for each series.  With respect to the short-run 
adjustment toward the long run relationships, α , we also test for weak exogeneity on 
each market.  For each market we test for whether or not it responds to perturbations in 
the cointegrating space.  Recall our long run relationship is represented by 

11 ' −− =Π tt YY αβ .  Perturbations in the long run equilibrium are given by 1' −tYβ  and so the 
question of interest is whether or not an entire row of α equals zero.  Testing this 
suggests that a price corresponding to that particular row is not responding to the long-
run information from the rest of the prices.  Under the null hypothesis that a price does 
not respond to shocks in the long-run equilibrium, the test statistic is also distributed chi-
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squared with one degree of freedom.  Inspection of the lower panel of Table 3 suggests 
that both the Illinois and Gulf markets are weakly exogenous and the barge market does 
all the adjusting to the long-run equilibrium.  Accordingly, the following factorization of 

 into Π 'αβ is given below in equation (9) where each element has been normalized on 
the Illinois price: 
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Perturbations in this equilibrium relationship are then represented as zt = Illinois - 

.066(Barge)-1.061(Gulf), where zt represents stationary deviations in the long-run 
equilibrium between the two sets of prices.  The t – statistic associated with the barge 
market suggests that the transportation market does respond to the export marketing 
channel equilibrium.  Put simply, if the price of the Illinois market is high relative to its 
long-run equilibrium, the barge market responds downwards in period t + 1.  This is an 
especially intuitive result given that one would expect the demand for barges to decrease 
(and hence prices fall) if the price of grain in Illinois increased.   

 
The other part of the ECM framework that isolates the short run dynamics is 

through the matrix, a (3 x 3) matrix of coefficients relating changes in prices lagged 
one period to current prices.  The estimated coefficients associated with this matrix are: 

Γ

 



























=

(-1.418)   (-.039)  
.193-     .000-     
(.018)   (4.348)    

.011      .218       
(.392)  (-1.930)   
.057      .024-     

.       (10) 

 
Casual inspection of the reported t – statistics associated with this matrix suggests 

that the dominant market is the barge market.  The coefficient associate with the lagged 
differences from the barge market is significant on itself and the Illinois market.  
Interestingly changes in the Illinois and Gulf markets in period t - 1 enter no market in 
period t with a statistically significant coefficient.  
 
 As previously mentioned, the short run patterns of response and strengths of the 
relationships among the prices that make up the export marketing channel are quite 
difficult to decipher by focusing on the individual coefficients separately, either through 
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the speed of adjustment parameters, iα or through the short run dynamics matrix, Γ .  A 
more suitable way to summarize the dynamic relationships between these markets is 
through well-known innovation accounting techniques, applied to the ECM outlined in 
equation (7).  However, as previously mentioned, crucial to such analysis is the method 
used to treat contemporaneous innovation.  In this study we adopt the factorization 
known as the “Bernanke ordering”.  Write the innovation (residual) vector ( tν ) from the 
ECM as tt εν =A , where is a 3 x 3 matrix and A tε  is a 3 x 1 vector of orthogonal 
shocks.  As illustrated by Doan (1992, 8 – 10), if there is no combination of i and j (i ≠ j) 
for matrix where both A { }ija and { } jia are non-zero where { } ija is an element i,j of 
matrix in this instance. Here we employ the DAG algorithm presented in Spirtes et al. 
(1993) in order to place zeros in the matrix.  Swanson and Granger (1997) made a 
similar suggestion.  

A
A

  
Innovations from our ECM give us the contemporaneous innovation correlation 

matrix,  (representing the innovations as Σ iν ).  The equation below (11) presents the 
lower triangular elements of the correlation matrix on innovations (ν̂ ) from equation (7) 
where the entries are presented in the order, Illinois, Barge and Gulf: 

 
















−=Σ

1.00   .049   919.
1.00  084.

00.1
)ˆ( tν .        (11) 

 
DAG theory points out that the off-diagonal elements of the scaled inverse of the 

)ˆ( tνΣ matrix are in fact the negatives of the partial correlation coefficients between the 
corresponding pair of variables given the remaining variable(s) in the matrix (Whittaker 
1990, p.4). The off-diagonal elements of the scaled inverse of the )ˆ( tνΣ matrix, denoted 
by , where the * indicates that we have scaled the inverse matrix: )ˆtν(

*Σ
 
















−=Σ

1.00   .321   927.
1.00  327.

00.1
)ˆ(*

tν .        (12) 

 
For example, the partial correlation between innovations in prices in the Illinois 

market and the barge market, given innovations in the Gulf market is -.327.  Under the 
assumption of multivariate normality, Fishers z statistic can be applied to test for 
significance from zero (see Equation (6)).  In this case, the correlation between Illinois 
and the barge market (-.327) is significantly different from zero at all conventional 
significance levels (with an associated p - value = .000).  Interestingly, in this case all 
conditional partial correlations are significantly different from zero.  That is, the partial 
correlation between the Illinois market and the Gulf market given innovations in the 
barge market is .927 (p - value of .000) and the partial correlation between the barge 
market and the Gulf market given innovations in the Illinois market is .321 (again a p-
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value of .000).  Curiously, the partial correlations between the Illinois and the barge 
market and the Gulf and the barge market are of the intuitively correct sign.  That is, one 
would expect an increase in Illinois prices to cause a decrease in barge prices (less 
demand for barges given the higher price of grain for export), a result found previously 
when we standardized the cointegrating vector on the Illinois price.  Moreover we find 
here that an increase in Gulf prices tends to cause an increase in barge prices; a result 
consistent with the notion that increase in demand for barges would drive these prices 
upwards given the higher export prices at the Gulf.  

 
DAG’s as given in Spirtes et. al (1993) provides an algorithm for removing edges 

between different markets but also directs causal flow of information between markets.  
The algorithm starts with a complete undirected graph (like the one shown in the top 
panel of Figure 2) where innovations in every market are connected with innovations in 
every market.  The algorithm then starts to remove edges based on simple correlations.  
Indeed, in this analysis, it was found that the sample correlation between the Gulf market 
and the barge market could be removed in contemporaneous time ( GB ,ρ = .0486 with a p -
value of .2681). However, the sample correlation between the Gulf price and Illinois and 
the barge price and Illinois could not be removed.  As such, only the edges connecting the 
barge market to Illinois and the Gulf market and Illinois remain.  The next step of 
removing edges is based on the partial correlations. Here, correlations between the Gulf 
price and the Illinois price conditional on the barge rate and between the barge rate and 
the Illinois price conditional on the Gulf price are found to be non-zero.  Accordingly, we 
can not remove the edges Illinois  Barge and Illinois  Gulf.  
  

Edge removal, based on correlations and partial correlation results in the triple: 
Gulf  Illinois  Barge, using the notation from Figure 2.  Since the edge between Gulf 
and Barge was removed using the unconditional correlation test (recall GB ,ρ = .0486 with 
a p - value of .2681), we can direct this remaining triple as: Gulf → Illinois ←Barge, as 
we show in Panel B of Figure 2.  Here, Illinois is a collider – receiving information from 
both the Gulf market and the barge market.  As such (as a collider) it opens up the 
information flow between the Gulf and barge markets.  Recall from Equation 12, the 
conditional correlation between the Gulf market and the barge market is .321 and has a p 
– value of .000. 

 
Forecast error decompositions and impulse responses (one standard deviation 

shocks from the ECM’s) based on the DAG’s are provided in Table 4 and Figure 3 
respectively.  The forecast error decompositions allows us to consider which prices 
within the export marketing channel are statistically exogenous or endogenous relative to 
each other at differing forecast horizons.  One particular price series within the system 
would be considered to be statistically exogenous if most of the variance of its forecast 
error could be attributed to its own innovations rather than originating from one of the 
other price series within the system.  Indeed, a truly exogenous price series should 
explain 100% of its forecast error variance at all forecast horizons.  As can be seen from 
Table 4 we analyze a forecast horizon up to 14 days – more than enough time for a barge 
to travel from this part of the Illinois River (South of Peoria) to the U.S. Gulf.  The 
impulse responses, which allow us to evaluate the dynamic paths of adjustment of each of 
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the prices to shocks in the data series, are illustrated in Figure 3.  They too allow a 14-day 
window.   
 

The first column in the output for the forecast error decompositions is the 
standard error of the forecast for each particular price series.  The remaining columns 
illustrate the error decompositions.  As usual, each row should add up to 100 (but may 
not here due to rounding).  As can be seen, the Illinois market is very heavily influenced 
by the Gulf market whereby the Gulf explains 84.78% of the variation in the Illinois 
market after just one-day.  Recall, our results from the DAG analysis suggest that the 
Gulf market ‘causes’ the Illinois market in contemporaneous time, and apparently 
continues to do so in the short run (1 day) out to the longer term of 14 days, where it still 
explains over 78%.  The barge market has some influence on the Illinois market, although 
its effect is not as large as the Gulf’s.  Indeed, the barge market explains about 1.6% of 
the variation after 1 day and finishes at about 3.9% after 14 days.  Once again, this result 
is consistent with the DAG analysis.  There, the barge market ‘caused’ the Illinois market 
in contemporaneous time.  The remaining portion of the variation is attributed to the 
Illinois market itself (13.6% after 1 day and about 17.7% after 14 days).   
 

Perhaps the most interesting finding is associated with the forecast error 
decompositions associated with the barge market.  Consistent with the DAG graphs 
analysis, the barge market is not influenced by either the Illinois or the Gulf markets in 
the very short run (1 day).  Indeed, after 1 day the barge market is exogenous, as it 
explains 100% of its own variation.  Over time, however, a different pattern emerges.  
While some of the variation can be explained by the Gulf market at time passes, the vast 
majority of the variation of the barge rate can be attributed to the Illinois market.  Indeed, 
after the 14 days have passed about 58% of the variation can be attributed to the Illinois 
market. Clearly, over time, the barge market is susceptible to large volatility shocks 
arising from the very market that it serves. 
 

The Gulf market is also 100% exogenous in the short run a result consistent with 
the direction of causality in the DAG analysis.  Indeed, as time passes, while not being 
completely exogenous, very little of the variation in the market is being explained by the 
domestic influences of the Illinois market and the barge market that connects the two 
together.  It seems to be a plausible hypothesis therefore that the Gulf market is being 
influenced by other global factors, but it in turn affects the Illinois market which then 
influences the barge market as time passes.  Put another way, the Gulf price does not 
seem to influence the barge rate directly, but rather its informational effect is transmitted 
through the Illinois market and then onto the barge market shortly thereafter.   
 
 Focusing our attention on the impulse responses in Figure 3 we see an identical 
pattern emerge.  For instance, the left-hand panel of the chart illustrates the response of 
each market to a shock in the Illinois market.  While the Illinois and Gulf markets are 
somewhat affected by a shock from the Illinois market, it is the barge market that is most 
heavily influenced, a finding consistent with the error decompositions.  Indeed, it is only 
after about the 14 days that the barge market stabilizes, yet still remains affected. Clearly 
a shock from the Illinois market creates considerable volatility in the barge industry, 
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which could, if unhedged, be extremely detrimental to physical traders in this industry. 
Interestingly, the sign of the shock is as one might expect (negative), a result consistent 
with the finding of a negative conditional correlation between the markets.  That is, an 
increase in Illinois prices should correspond with a decrease in barge rates (as explained 
previously).  Note also that while the barge rate is affected by the Illinois price over time, 
it starts out at zero, a finding consistent with the DAG analysis whereby the Illinois 
market does not affect the barge market in contemporaneous time.  This can also be said 
about the affect of the Illinois market on the Gulf market.  An innovation in the barge 
market has almost no affect the Gulf market (bottom graph of the middle panel), just like 
the innovation in the Illinois market had no affect.  Once again, the Gulf market can be 
deemed to be exogenous to the other domestic linkages.  However, as shown by the top 
graph in the middle panel, the Illinois market is somewhat affected by the barge market, 
and the sign of the response (negative) is, once again, consistent with earlier intuition.   
 

The last panel of the impulse response graph illustrates the response of the inland 
markets to a shock in the Gulf market.  As can be seen by the top graph, the Illinois 
market is immediately and strongly affected by a shock originating out of the Gulf.  This 
is a result found previously in both the contemporaneous analyses (the DAG framework) 
and the forecast error decompositions.  A shock to the Gulf market also has an affect on 
the barge market that feeds it.  However, consistent with the contemporaneous analysis, it 
does not have an immediate affect.  However, as time passes, the barge market reacts 
positively, an intuitively pleasing result. 
 
V Concluding Remarks 

In recent years there has been a plethora of research looking at the level of 
interconnectivity between different yet related markets, but to date, no study has analyzed 
the degree of interconnectivity within a marketing channel in a truly dynamic manner.   
  

In this study, we apply Directed Acyclic Graphs (DAG’s) to make causal 
statements in contemporaneous time.  Applying DAG’s to the heretofore well-understand 
Error Correction Model allows us to address issues surrounding dynamic patterns of price 
discovery using both forecast error decompositions and impulse responses. 
 

Our results illustrate that regardless of which method is used to analyze the 
dynamic relationships between the markets information from the Gulf market is critical in 
the price discovery process in contemporaneous time, the short run and out into the 
longer term.  While the globally influenced Gulf market does not heavily influence the 
barge market that connects it to its inland grain source at Illinois in contemporaneous 
time, it is somewhat affected as time passes.  However, it is the Illinois market that is 
immediately influenced by the Gulf.  This affect seems to ripple through to the 
transportation market as time passes reversing the direction of causation from the barge 
market influencing the Illinois market in contemporaneous time to the Illinois market 
heavily influencing the barge market out into the longer term.  It seems therefore, that 
over the longer term both the domestic and international markets heavily influence the 
barge market and shocks to these markets can greatly influence rates, negatively, or 
positively depending upon where the shock originates.  These shocks, whether they 
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originate from the Gulf or inland cause excess volatility in the barge market, which could 
be detrimental to unhedged physical traders in this marketing channel. 
 

This paper has therefore, not only shed light on the degree of interconnectivity 
between several important markets using unique econometric methods but also sheds 
some light on the importance of the barge market critical in linking markets together.  
Our results seem to support the existence of the newly developed barge rate futures 
contract, but like so many other futures contracts that are designed, time can only tell 
whether the market will be successful.   
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Table 1.  Descriptive statistics and correlation analysis on daily prices 
 Illinois Barge Gulf 
Mean 172.98 8.915 186.34 
Median 170.15 8.584 184.28 
Standard deviation 10.806 2.228 10.369 
CV 0.056 0.250 0.056 

3m  -0.181 -0.531 -0.503 

4m  0.377 0.505 0.186 
Min 147.17 5.336 161.11 
Max 202.95 16.008 213.41 
Unconditional Correlations 
 Illinois Barge Gulf 
Illinois 1   
Barge -0.3268 1  
Gulf 0.9700 -0.1003 1 
    
Summary statistics are presented for daily grain and barge prices for the period 6th May 1999 – 
3rd May 2001.  CV represents the Coefficient of Variation and and represent sample 
skewness and kurtosis respectively. 

3m 4m
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Table 2.  Augmented Dickey-Fuller (ADF) tests for order of integration on prices  
Test is on the estimated coefficient θ1from the following prototype model: 

∑
=

∆++=∆
K

1k
k-tk1-t10t X  X    X βθθ  

Price K HO: I(1) vs. HA: I(0) 
ADF 

HO: I(2) vs. HA: I(1) 
ADF 

Illinois 0 -2.354 -24.190 
Barge 1 -3.158 -18.960 
Gulf 0 -2.341 -23.728 

Critical values are taken from Fuller (1976). They are –2.57 (10%), 
-2.88* (5%) and –3.46 (1%). Therefore, based on these results are  
series are I(1). The optimal lag length (K) was based on the Schwarz  
Bayesian Criterion (1978). 
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Table 3.  Cointegration analysis of prices 
Trace tests on order of cointegrationa 
λtrace test statistic HO: critical value 
103.96 r = 0 29.68 
14.21 r ≤ 1 15.41 
4.93 r ≤ 2 3.76 
   
Tests for exclusion from the cointegrating vectorb 
 HO: 2

)1(χ  value 
Illinois 

Iβ  = 0 79.25 
Barge 

Bβ = 0 79.17 
Gulf 

Gβ =0 78.85 
Tests for weak exogeneityb 
 HO: 2

)1(χ  value 
Illinois 

Iα =0 1.11 
Barge 

Bα  = 0 7.57 
Gulf 

Gα = 0 1.85 

aTests are on eigenvalues with the Π matrix. The λtrace statistic is -  where 

λ

∑
+=

−
2

1
)),1ln((

ri
iN λ

i are ordered (largest to smallest) eigenvalues on Π.  Critical values for the λtrace statistics 
(at the 10% level) are from Osterwald-Lenum (1992). The optimal lag length (k) is based 
on the Schwarz Bayesian Criterion (1978). The sample size (N) is equal to 520. 
bTests are based on the following: T = N(ln(1-λR) – ln(1-λU), where λR is the eigenvalue 
calculated with the restriction and λU the eigenvalue calculated without the restriction.  
With one cointegrating vector the critical 2

)1(χ
 value is 3.84. Based upon these results all 

prices in the marketing channel appear to be a part of the cointegrating relationship, and 
both the Gulf and the Illinois prices are weakly exogenous. 
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Table 4. Forecast error decompositions 
Steps ahead (days) Std. Error Illinois Barge Gulf 
(Illinois)     
1 0.013 13.622 1.598 84.781 
2 0.018 11.586 3.689 84.725 
3 0.022 12.101 4.335 83.564 
7 0.033 14.465 4.545 82.138 
14 0.047 17.655 3.933 78.412 
(Barge)     
1 0.056 0.000 100.00 0.000 
2 0.086 1.990 97.786 0.224 
3 0.109 6.195 93.263 0.542 
7 0.171 31.405 66.670 1.924 
14 0.245 58.334 38.510 3.156 
(Gulf)     
1 0.012 0.000 0.000 100.00 
2 0.017 0.432 0.004 99.563 
3 0.020 0.356 0.032 99.611 
7 0.031 0.386 0.051 99.560 
14 0.043 0.415 0.057 99.527 

The decompositions for each step ahead are given for a Bernanke  
factorization of contemporaneous covariances, which treats each  
price series as exogenous in contemporaneous time.  The justification  
for this is based on the DAG on observed innovations from the error 
correction model shown in equation (7).  The decompositions may  
not sum to one hundred in each row due to rounding.  
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Figure 1.  Daily price data.  The sample period is 6th May 1999 – 3rd May 2001 (520 observations): 

ρPanel A.  U.S. Gulf and Illinois Soybean Prices ( = 0.970). 
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Figure 2.  Undirected and Directed Acyclic Graphs 
 
Panel A.  Complete undirected graph. 
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Panel B.  Directed graph (lines are significant at the 10% level). 
 
 

    Illinois 
 
 
 
 
             Barge 
 
 
 
 

           Gulf 
 
 
 

 25



Figure 3.  Impulse responses over 14 days from one standard deviation shocks. 
Innovation to: 
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Endnotes 
                                                           
1  Source: Baltic Exchange, London, UK. 
2 Over its life, the BIFFEX contract has generated a varying degree of trading interest.  
For instance, at is peak in 1988 the volume reached 97335 contracts (or about 383 
contracts per day).  However, since November 1999, when the underlying index was 
changed for the last time (it has been changed a total of 13 times to try and generate 
trading interest) trading volume only reached an average of 17 contracts a day. Indeed, 
according to Carlton (1984), 31% of futures contracts introduced in the United States 
between 1921 and 1983 died within their first two years of trading. 
3 See Carlton (1984) for a description of the important features that a commodity traded 
on a futures exchange should possess in order to be successful. 
4 Only a handful of papers have employed DAG analysis in economics.  Examples 
include: Bessler and Akleman (1998) and Bessler and Fuller (2000). 
5 For soybeans in particular, which are analyzed in this study, the total tonnage exported 
out of the U.S. from all ports in this time period was 57.93 million tonnes on a total of 
3864 vessels to 44 different countries.  However, 40.07 million of those tonnes (or 69.2% 
of the total) left the U.S. Gulf at New Orleans from the Mississippi River on a total of 
1686 vessels to 39 different countries. 
6 Unlike the BIFFEX futures contract, the barge futures contract is not based on an index 
of prices.  Full details on the newly developed barge rate futures contract can be found at 
the Exchange web site: www.merchants-exchange.com.  To date, only one paper has 
attempted to analyze the feasibility of a futures market for barge freight (Hauser and 
Buck, 1989). That research, except for some static regression techniques, analyzed the 
potential role of the market in a largely qualitative manner. The research did recommend 
that a barge futures contract be developed. 
7 In particular, if we denote  and as the ordered characteristic roots 
of the unrestricted and restricted models respectively, then to test the restrictions on β , 

we can form the test statistic: T . Asymptotically, this has a 

distribution with the number of degrees of freedom equaling the number of restrictions 
placed on β .  Large values of relative to (for i ≤ r ) imply a reduced number of 
cointegrating vectors.  Therefore, the restriction embedded in the null hypothesis is 
binding if the calculated test statistic exceeds the tabulated value. 
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8 Orcutt (1952), Simon (1953), Richenbach (1956), and Papineau (1985) offer similar 
expressions of asymmetries in causal relations.  For a description of various causal 
asymmetries see Hausman (1998). 
9 These data (like all data used by the authors) are available upon request.  A small 
number of price quotes were missing in each of these markets.  On these days, the 
missing observations were replaced with the most recent price, thus constructing a price 
series consistent with a random walk. 
10 We excluded the constant from inside the Πmatrix due to its statistical insignificance. 
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