
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


GENERALIZED HEDGE RATIO ESTIMATION WITH AN UNKNOWN MODEL

Jeffrey H. Dorfman*

and

Dwight R. Sanders

April 2004

Paper presented at the NCR-134 Conference on Applied Commodity Price
Analysis, Forecasting, and Market Risk Management

St. Louis, Missouri, April 19-20, 2004

Copyright 2004 by Jeffrey H. Dorfman and Dwight R. Sanders.
All rights reserved. Readers may make verbatim compies of this document for

for noncommercial purposes, provided that this copyright notice appears on all such copies.

∗ Jeffrey Dorfman is a professor in the Department of Agricultural & Applied Eco-
nomics, The University of Georgia, Athens GA 30602; email: jdorfman@agecon.uga.edu.
Dwight Sanders is an assistant professor in the Department of Agribusiness Economics at
Southern Illinois University, Carbondale IL 62901; email: DwightS@siu.edu. We wish to
thank Gary Koop and participants at the 2004 NCR-134 Conference for helpful discussions
and comments.



GENERALIZED HEDGE RATIO ESTIMATION WITH AN UNKNOWN MODEL

Practitioner’s Abstract

Myers and Thompson (1989) pioneered the concept of a generalized approach to esti-
mating hedge ratios, pointing out that the model specification could have a large impact
on the hedge ratio estimated. While a huge empirical literature exists on estimating hedge
ratios, the literature is lacking a formal treatment of model specification uncertainty. This
research accomplishes that task by taking a Bayesian approach to hedge ratio estimation,
where specification uncertainty is explicitly modeled. Specifically, we present a Bayesian
approach to hedge ratio estimation that integrates over model specification uncertainty,
yielding an optimal hedge ratio estimator that is robust to possible model specification
because it is an average across a set of hedge ratios conditional on different models. Model
specifications vary by exogenous variables (such as exports, stocks, and interest rates) and
lag lengths included. The methodology is applied to data on corn and soybeans and results
show the potential benefits and insights gained from such an approach.

Key Words: Bayesian Econometrics, Corn, Futures Markets, Hedge Ratios, Model Speci-
fication, Soybeans.

1. Introduction

Myers and Thompson (1989) pioneered the concept of a generalized approach to estimating
hedge ratios. They pointed out that the form of the equation to use in estimation is depen-
dent upon assumptions concerning the stochastic prices whose risks are being managed. A
huge literature exists on estimating hedge ratios under different model assumptions, adding
generalizations to ARCH or GARCH errors (Baillie and Myers, 1991), parameter estima-
tion uncertainty (Lence and Hayes, 1994), and many other features of model specification
(Witt, Schroeder, and Hayenga, 1987; Vukina, 1992).

However, the literature is lacking a formal treatment of model specification uncertainty
as the central issue in hedge ratio estimation. In Myers and Thompson’s original work,
they suggest that the optimal hedge ratio, β, should be estimated with an OLS regression:
pt = βft + αXt−1, where pt is the cash price level, ft is the futures price level, and Xt−1

is a vector of variables known at time t− 1 that help predict pt and ft. While Myers and
Thompson (1989) suggest that Xt−1 include lagged values of pt and ft, production, storage,
exports, and consumer income, they likewise admit that “model specification is somewhat
ad hoc with economic theory, hypothesis testing, and common sense used as guidelines” (p.
864). Furthermore, the authors readily acknowledge that model specification is perhaps
the most difficult aspect of estimating generalized hedge ratios.

This research seeks to formally address the specification problem by taking a Bayesian
approach to hedge ratio estimation, where model uncertainty is a given. Specifically,
we present a Bayesian approach to hedge ratio estimation that integrates over model
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specification uncertainty. This yields an optimal hedge ratio estimator that is robust to
possible model specification because it is an average across a set of hedge ratios conditional
on different models.

Formally, we consider a set of 64 possible model specifications and estimate the posterior
distribution of the optimal hedge ratio and the posterior odds in favor of the model for
each model in that set. The distributions and model odds are then used to construct the
marginal distribution of the optimal hedge ratio, integrating out the model uncertainty.
The integration with respect to the model uncertainty, which yields the marginal posterior
distribution, is accomplished by computing a weighted average of the 64 conditional (on
model specification) distributions where the weights are equal to the model odds. A single
optimal hedge ratio can then be chosen using any desired loss function; for example, a
quadratic loss function will produce a posterior point estimator for the hedge ratio equal
to the mean of the marginal posterior distribution.

The methodology is applied to data on corn and soybeans. Model specifications vary by
exogenous variables (exports, stocks, and interest rates) and lag lengths included. Impor-
tantly, the research presents a different approach to estimating hedge ratios, which may
protect practitioners against model specification errors. In simulations using our applica-
tion, risk management performance of the optimal hedge ratio appears to be as good as
alternatives, although significant improvement is not found in this example. However, in
other commodities and situations hedgers may be able to improve their risk management
procedures by applying this new approach.

2. Literature Review and Problem Overview

Myers and Thompson (1989) generalized the estimation of optimal hedge ratios to account
for conditioning information that is available at the time a hedging decision is made.
The authors demonstrate that the traditional approach of using a simple regression of
cash price levels on futures price levels or cash price changes on futures price changes
are correct only under a very restrictive set of assumptions. A regression approach is
suggested where the cash price level is regressed against the futures price level plus a
set of conditioning variables. Myers and Thompson suggest the conditioning variables
include lags of futures and cash prices, plus any variables thought to influence prices
such as stocks, exports, and storage costs. In an example using corn and soybeans, the
authors show that the generalized optimal hedge ratio can vary substantially from the
unconditional ratio estimated with price levels; but, they argue that the unconditional ratio
estimated with price changes may provide a reasonable estimate of the generalized hedge
ratio. The authors urge researchers to extend the methodology to allow for conditional
heteroscedastic shocks, and to use out-of-sample data to compare performance among the
different approaches to estimating hedge ratios.

Baillie and Myers (1991) apply bivariate GARCH models to estimated time-varying opti-
mal hedge ratios. That is, the hedge ratio is defined as the conditional covariance between
cash and futures prices divided by the conditional variance of futures prices, where the time
variation in the conditional covariance matrix is modeled using a GARCH specification.
The authors find that hedge ratios are time-varying and nonstationary. Furthermore, the
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GARCH hedge ratios outperform constant (unconditional) hedge ratios in out-of-sample
tests. Despite this advance in estimation techniques, the authors do not generalize the
hedging regression in the sense of Myers and Thompson to include conditioning variables.

Researchers have extended the procedure of Baillie and Myers to areas such as simulta-
neously determined hedge ratios (Garcia, Roh, and Leuthold, 1995 ). While, others have
delved into whether hedge ratios should be estimated with price levels, price changes, or
returns (Witt, Schroeder, and Hayenga, 1987) or whether or not the use of hedge ratios
out-perform naive unit-for-unit hedging (Jong, De Roon, Veld, 1997; Collins, 2000). Still,
the use of the simple (unconditional) hedge ratio (usually estimated in price changes) is
pervasive in the literature (e.g., Ferguson and Leistikow, 1998). This may stem from the
inherent problems in specifying the generalized model of Myers and Thompson, and the
potential sensitivity of hedge ratios to model specification. Here, we pose one potential
solution to this dilemma.

By taking a Bayesian approach to hedge ratio estimation, model uncertainty is treated
similar to a parameter to be estimated and one can integrate over model specification
uncertainty. This yields an optimal hedge ratio estimator that is robust to possible model
specification because it is an average across a set of hedge ratios conditional on different
models. Such an approach was first undertaken empirically in economics by Poirier (1991),
who considerd 147 different macroeconomic models. Poirier tested important macroeco-
nomic hypotheses such as money neutrality while removing the potential influence of model
specification by deriving results that were averaged across a large set of possible models
differing in both included variables and identifying restrictions. An example of handling
model specification uncertainty with respect to agricultural price responses can be found
in Dorfman and Lastrapes (1996).

3. Modeling and Estimation Issues

In this section we will show the model specifications used, the methodology for handling
model specification uncertainty, and the process used to accomplish the Bayesian estima-
tion of the optimal hedge ratio. The important parts of the robust estimation approach
are the set of models considered and the assumptions made for the likelihood functions
and prior distributions of the unknown parameters. Given those details and the data,
Bayes’ Theorem leads us through a straightforward process which optimally combines this
(researcher-specified) information with the information in the data to yield the posterior
distributions of model odds, regression parameters, and any other features of interest in
our models. Further details for handling model choice and comparison in a Bayesian frame-
work using the approach here can be found in Koop (2003, pp38-43) which contains an
easy to follow exposition of the process.

3.1. Assumptions and Statistical Mechanics
First, we need to describe the process by which Bayesian statistics handles model specifica-
tion uncertainty. To begin the estimation process, define the set of models to be considered,
M = {Mj , j = 1, . . . ,M}, here all assumed to be linear regression models:

y = Xjβj + εj , j = 1, . . . ,M, (3.1)
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where y is the vector of observations on the dependent variable assumed for simplicity
here not to vary across models, Xj is the matrix of regressors for the jth model considered,
εj is the random error term vector for the jth model, and j indexes the models in the
set of M models considered. Given that the dependent variable is here assumed identical
in all models, the differences in models are all confined to the regressor matrix X which
is allowed to vary both in the number of regressors, kj , and in the particular regressors
included (which could include variation in variables included and/or transformations of
variables such as logs versus levels).

The prior distributions on the regression parameters βj are specified as

p(βj) ∼ N(b0j , σ
2
j V0j), j = 1, . . . ,M, (3.2)

where N stands for the (multivariate) normal distribution, b0j is the prior mean of the jth
model’s regression parameters and σ2

j V0j is the prior covariance matrix. The term σ2
j also

needs a prior distribution which is specified more easily for its inverse as

p(σ−2
j ) ∼ G(s−2

0j , d0j), j = 1, . . . ,M, (3.3)

where G stands for the gamma distribution, s−2
0j is the prior mean for the inverse error

variance, and d0j is the prior degrees of freedom parameter which controls the tightness (or
informativeness) of the prior distribution–higher values of d0j imply a more informative
prior (Koop, 2003).

The likelihood function for each model is assumed to follow a standard form based on
identically and normally distributed random error terms εj . While there is some evidence
of commodity prices following non-normal distributions and having nonconstant variances
(cf. Baillie and Myers, 1991), this assumption allows analytical derivation of the form
of each model’s posterior distribution and of the model’s marginal posterior odds. The
likelihood function is therefore specified in the form

Lj(y|βj , σ
2
j , Xj) = (2πσ2

j )−n/2exp{−0.5(y −Xjβj)′σ−2(y −Xjβj)}, j = 1, . . . ,M. (3.4)

Given the prior distributions and likelihood functions above, the joint posterior distribution
for βj and σ2

j is given by

p(βj , σ
2
j |y, Xj) ∼ NG(bpj , Vpj , s

2
pj , dpj), j = 1, . . . ,M, (3.5)

where
Vpj = (V −1

0j + X ′
jXj)−1, (3.6)

bpj = Vpj(V −1
0j b0j + (X ′

jXj)β̂j), (3.7)

dpj = d0j + nj , (3.8)

and

s2
pj = d−1

pj [d0js
2
0j + (nj − kj)s2

j + (β̂j − b0j)′(V0j + (X ′
jXj)−1)−1(β̂j − b0j)], (3.9)
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where NG stands for the joint normal-gamma distribution, β̂j and s2
j are the standard

OLS quantities and nj and kj are the rows and columns of Xj , respectively.

Most research interest focuses on the posterior estimate of βj or a subset of those regression
parameters (like the optimal hedge ratio). Because of this focus, it makes sense to derive
the marginal posterior distribution of βj by integrating out the variance parameter σ2

j to
yield

p(βj |y, Xj) ∼ t(bpj , s
2
pjVpj , dpj), j = 1, . . . ,M, (3.10)

where t stands for the multivariate Student’s t-distribution. The marginal posterior distri-
bution of a particular element of βj also follows a t-distribution with posterior mean and
variance as in the multivariate distribution above.

Now, introduce the apparatus for handling model specification uncertainty. Begin with a
discrete prior weight on each model,

p(Mj) = µj ,
M∑

j=1

µj = 1. (3.11)

These weights may be uninformative in the sense of treating all models equally or may
be weighted to display a preference for certain models. In the uninformative case, µj =
1/M,∀j. Next, using the above results on the posterior distributions shown in (3.5), derive
the marginal likelihood functions by integrating out the parameter uncertainty to leave a
conditional likelihood for each model,

p(yj |Mj) = cj [|Vpj |/|V0j |]1/2(dpjs
2
pj)

−dpj/2, (3.12)

where

cj =
Γ(dpj/2)(d0js

2
0j)

d0j/2

Γ(d0j/2)πn/2
, (3.13)

and Γ(·) is the Gamma function. Combining these two equations, (3.11) and (3.12), one
can derive the posterior probability of each model

p(Mj |yj) ∝ µj [|Vpj |/|V0j |]1/2(dpjs
2
pj)

−dpj/2 = µjp(yj |Mj), j = 1, . . . ,M. (3.14)

Normalizing the values in (3.14) by dividing each value by the sum across all M models will
ensure that the posterior model probabilities will sum to unity. Denote these normalized
posterior probabilities by

ωj =
µjp(yj |Mj)∑M

j=1 µjp(yj |Mj)
, j = 1, . . . ,M. (3.15)

These posterior model probabilities are the key to the handling of model uncertainty.

5



3.2. Robust Bayesian Parameter Estimation: Accounting for Model Uncertainty
Given the normalized posterior model probabilities, the next step is to derive the marginal
posterior distribution, removing the conditioning on the model specification. This is done
by integrating over the models in the set M, essentially creating a single posterior distribu-
tion for β that is a weighted average of the posteriors for each model specification. Thus,
the full marginal posterior distribution of the regression parameters, β, accounting for all
the possible models, is a mixture distribution, in this case, a mixture of t-distributions:

p(β|y, X) ∼
M∑

j=1

ωjt(bpj , s
2
pjVpj , dpj). (3.16)

Note that the subscript has been dropped from the parameter vector β since we are no
longer conditioning on the model specification.

If a point estimate of β is desired as opposed to the entire posterior distribution, a Bayesian
uses a loss function to derive the optimal point estimator given the distribution of the
parameters of interest (cf. Zellner, 1971). If one uses a quadratic loss function,

L(β̄) = (β̄ − β)′(β̄ − β), (3.17)

where β̄ is the chosen point estimator and β is the unknown vector being estimated, then
the optimal point estimator is the vector that minimizes the expected value of the loss
function in (3.17) where the expectation is taken with respect to the posterior distribution
shown in (3.16). Thus, the optimal estimator β̄ is the solution to

argminβ̄ E[L(β̄)] =
∫

(β̄ − β)′(β̄ − β)p(β|y, X)dβ. (3.18)

The optimal estimator with respect to the quadratic expected loss shown above is the mean
of the posterior distribution given in (3.16). Given the symmetry of the t-distribution,
the mean of this mixture distribution is the weighted average of the individual means
where the weights are the {ωj} that represent the posterior model probabilities. Thus, the
optimal estimator accounting for the model specification uncertainty under the expected
loss described in (3.18) is given by

β̄ =
M∑

j=1

ωjbpj , (3.19)

recalling that bpj is the mean of each model’s posterior distribution as given in (3.10) which
is the optimal estimator β̄j for the quadratic loss function. This is the estimator used in
this paper; researchers can easily employ different loss functions better suited to particular
applications to derive alternative estimators which are optimal for the loss functions so
employed. For example, an absolute loss function results in the posterior median being
the optimal point estimator. In applications such as hedging, the loss function could also
be designed to provide an estimator with optimal characteristics relative to the potential
costs from hedging with an incorrect hedge ratio.

6



4. The Data

In this application, we assume that hedges are held for one month in the nearby corn and
soybean futures markets. The cash prices are those reported for Central Illinois by the
Illinois Agricultural Statistics Service. Cash and futures prices are collected on the last
business day of each month.

The conditional variables include corn exports, soybean stocks (at mills), soybean crush-
ings, interest rates, and lags of the cash and futures prices. Note the lagged futures prices
are carefully drawn for each expiring contract such that for any given observation at time
t, the lags at time t − n represent the expiring contract. That is, the data is constructed
such that at time t, the nearby futures price and lagged futures price represent the same
contract. The data spans from January 1975 through April 2003, resulting in 340 obser-
vations.

5. Empirical Results

5.1. The Models and Priors
Given the data described above, we considered 64 distinct models for each commodity.
All models have the cash price as the dependent variable. The contemporaneous futures
price and twelve monthly dummy variables to model seasonality are included in all models
as regressors. Two exogenous variables were considered for inclusion in each model. For
the corn model, they are corn exports and interest rates; for soybeans, soybean stocks
and soybean crushings. The inclusion of none, one, or both exogenous variables gives four
possible specifications with respect to exogenous variables.

To account for possible dynamic effects in the stochastics of the cash and future prices,
including possible nonstationarity, up to three lagged values of both prices were considered
for inclusion. The lags were only included in order; for example, for the cash price the
options were: no lags, [pt−1], [[pt−1, pt−2], and [pt−1, pt−2, pt−3]. That is, no “holes” were
allowed in the lag structure. This uncertainty over lagged prices in the model adds four
possible lag specifications for the cash price and four possible lag specifications for the
futures price.

Allowing all possible combinations of these three dimensions of model specification yields
the (4 × 4 × 4 =) 64 total model specifications for each commodity studied here. Since
all models contain twelve monthly dummies and the current futures price, the smallest
model has 13 regressors and the largest has 21 (the 13 always included plus two exogenous
variables, 3 lagged cash prices, and 3 lagged futures prices). Some of the models are nested
within others, some are not. Thus, classical statistics does not have an exact or Fisher-
type test for deciding among or ranking these models, making this set of models a good
application for the Bayesian approach.

Given these 64 models for each commodity, and the data described in section 4 above,
only the prior distributions still need specification to allow completion of the estimation
process. The models each receive equal prior weights; that is, µj = 1/64 ∀j. The
priors on the regression parameters follow distributions as described in equations (3.2) and
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(3.3). The dimension of the priors depends on the exact model specification, but priors on
parameters associated with specific regressors do not change with model specification (i.e.,
if the variable is in the model, its prior is the same every time). The largest model, with
all possible regressors included, is used to detail the prior. The order of regressors for the
purposes of displaying these priors is [ft, X1,t−1, X2,t−1, pt−1, pt−2, pt−3ft−1, ft−2, ft−3, D],
where D is the matrix holding the 12 monthly dummies.

For the corn model, the prior means are set to

b0 = [0.95, 0.3,−0.025, 0.9, 0, 0,−1.0, 0 . . . , 0]′, (5.1)

where nonzero prior means are employed only for (in order) the hedge ratio, the two
exogenous variables (corn exports, then interest rate), and the first lags of both cash and
future prices. Thus, the prior hedge ratio is 0.95, corn exports are assumed, a priori, to
increase the cash price while higher interest rates lower it, and the price dynamics of the
prior are for high, positive autocorrelation in cash prices and a unit root in the futures
prices. The prior variance matrix V0j is a k-dimensional diagonal matrix with ones on the
diagonal except for the five elements with nonzero prior means. The diagonal elements for
those five parameters are set to 0.01, 0.25, 4.0, 0.25, and 0.25, respectively.

For the soybean model, the prior means are set to

b0 = [0.95,−0.2,−0.2, 0.9, 0, 0,−1.0, 0 . . . , 0]′, (5.2)

where nonzero prior means are employed only for the same five regressors. The prior hedge
ratio is again set equal to 0.95 and identical price dynamics are assumed. The priors on the
exogenous variables assume higher stocks and crush both lower the cash price. The prior
variance matrix V0j is again a k-dimensional diagonal matrix with ones on the diagonal
except for the five elements with nonzero prior means. The diagonal elements for those
five parameters are set to 0.01, 0.25, 0.25, 0.25, and 0.25, respectively.

For both models, the remaining prior parameters are set to

s2
0j = 1, d0j = 15, j = 1, . . . ,M. (5.3)

This completes the specification of all features of the estimation process. To derive the
results, the marginal posterior distribution of the regression parameters βj is computed
using the above prior values for each model according to equation (3.10), yielding a poste-
rior mean conditional on each model specification. The posterior model weights for all the
models are then calculated using equations (3.12) and (3.15). These two sets of results are
combined according to (3.19) to arrive at the marginal posterior point estimator β̄. The
optimal hedge ratio, accounting for all the model specification uncertainty, is simply the
coefficient from β̄ on ft.

Because of the prior distributions chosen and the specification of the likelihood function,
all the results in this application can be derived analytically. Thus, numerical methods
were not necessary to approximate the posterior distribution of the regression parameters
or to compute the model odds. However, if other likelihood functions (with assumptions of
non-normal residuals) or priors were used, numerical methods would allow approximation
of the analogs to all the expressions here and the same general process to be followed.
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5.2. Posterior Model Probabilities
The first results worth investigating are the posterior model probabilities. If the ωj are
concentrated tightly over one (or similar) models, then model specification uncertainty is
not a significant problem in estimating hedge ratios. However, if the model probabilities
are spread over many models, model specification for hedge ratio estimation needs more
attention. Obviously, after examining the model odds, we also need to determine if hedge
ratios vary across model specifications because if estimated hedge ratios are (relatively)
constant across specifications, then model specification does not matter.

For corn, 19 models receive at least 1% of the posterior model probabilities, indicating
significant model specification uncertainty. In fact, six models have posterior probabilities
of over 5% and the most likely model has only a 16.6% posterior probability in its favor.
This most likely model has no exogenous variables, one lag of cash price and one lag of
the future price.

For soybeans, only five models have at least 1% of the posterior model probabilities and
two models combine for 80% of the probability, suggesting much less model specification
uncertainty than for corn. The most likely model has 49.4% of the posterior probability
and contains soybean stocks and no lagged prices at all.

The 64 models are too many to display the individual model weights in a meaningful
table, so instead we present in Table 1 the marginal probabilities of each model specifi-
cation feature (such as probability of one lag of cash price, etc.). Each of these marginal
model feature posterior probabilities is the sum of the individual model posterior prob-
abilities that share the named model specification feature (such as all models with both
exogenous variables included). Given our set of models considered, each of these marginal
probabilities contains 16 separate models, but the results reported include overlap; that
is, the probability of models with corn exports but not interest rates includes some of the
same models as the probability of models with a single lag of futures price. The results
in Table 1, columns 2 and 4 contain these marginal probabilities for each model feature.
The values are to be interpreted as the posterior support in favor of the models containing
that feature. For example using the first row of column 2, we would say that 56.6% of the
posterior support is placed on corn models with no exogenous variables implying that such
models are slightly favored relative to all the possible models with one or two exogenous
variables.

The results for the corn model (Table 1, column 2) clearly show posterior support in favor
of either no exogenous variables or the inclusion of the interest rate. Models with one lag
of cash price are most favored, with considerable support for two lags as an alternative.
The same is true for lags of the futures price. The results for the soybean model (Table
1, column 4) show strong posterior support for the inclusion of soybean stocks, with no
exogenous variables as a strong second option. The soybean results show overwhelming
posterior support for the exclusion of all cash and futures price lags with approximately
92% support in favor of leaving out all lagged prices. Overall, the model probability results
show more uncertainty over the corn model features than the soybean model.
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5.3. Optimal Hedge Ratios
Moving on to the estimated hedge ratios, the results in Table 1 make clear that the optimal
hedge ratio does vary with model specification. Table 2 displays the marginal posterior
results for both commodities. For corn, we see the optimal hedge ratio after accounting
for model specification uncertainty is 0.941 with a range over the 64 models from 0.900
to 0.990. Checking Table 1 shows that the most important aspect of model specification
with respect to the corn hedge ratio is due to the presence or absence of lagged prices.
Columns 3 and 5 in Table 1 display the optimal hedge ratios conditional on a particular
model specification feature. If no price lags are present, the conditional hedge ratio goes up
over 0.98. As long as at least one lagged price (cash or futures) is present, the conditional
hedge ratio falls back into the neighborhood of 0.94, right where the optimal hedge ratio
lies. With a range from 0.900 to 0.990, clearly these conditional hedge ratios hide much of
the variation across individual models, but they are useful for identifying the features of
model specification that have the most influence on the estimated hedge ratios.

For the soybean model, the results in Table 2 show an optimal hedge ratio equal to 0.985
with a range from 0.918 to 0.991. The results in Table 1 show the conditional soybean
hedge ratio moves much more with conditioning on different model specification features
than in the case of corn. The presence or absence of exogenous variables matters as does the
presence/absence of both lagged cash and futures prices. Once lagged prices are included,
the number of lags does not impact the conditional hedge ratios. Again, the conditional
hedge ratios hide the full variation in hedge ratios estimated across all 64 models. Here,
with soybeans, we find that the estimated hedge ratio is sensitive to a wider range of model
specification issues. Interestingly, while the soybean hedge ratio is more sensitive to model
specification, the results reveal less uncertainty about the correct model for soybeans with
two models dominating the posterior model probabilities.

Examining the posterior standard deviation of the optimal hedge ratios in Table 2 reveals
them to be very small relative to the hedge ratios (0.006 and 0.005, respectively, for corn
and soybeans). This implies statistical precision on the order of ±0.01 suggesting we have
successfully identified the central tendency of the hedge ratio relative to the variation in
both the model specification and the data.

5.4. Risk Reduction Performance
Following the suggestion of Myers and Thompson and the methodology of Baillie and My-
ers, the Bayesian hedge ratios are compared with traditional hedge ratios from various
models in an out-of-sample simulation. The hedge ratios are estimated first with monthly
data from 1975 through December of 1999, then the effectiveness of monthly hedges are
simulated using data for 2000. The models are then re-estimated adding twelve more
months of data (through December of 2000), and the resulting hedge ratios used for sim-
ulated hedging in 2001, and so forth. The result is 40 simulated monthly hedges from
January 2000 through April 2003.

A total of seven hedge ratios are compared in the simulations. Standards for comparison
are provided by the traditional constant hedge ratio (estimated with price levels) and a
näıve one-to-one hedge. Along with the optimal Bayesian hedge ratio presented in this
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paper, four other hedge ratios are considered from the 64 models estimated. These four
are the largest and smallest hedge ratios estimated from an individual model among the
set considered and the hedge ratios from the models that receive the largest and smallest
posterior probability weight in the model specification part of our process.

In the spirit of a risk minimizing hedge, the simulation procedure calculates the variability
in the portfolio consisting of a cash position and the optimal futures hedge. For corn and
soybeans, variability is measured in cents per bushel as the change in cash price minus the
change in the optimal hedge value. This approach closely reflects the change in economic
value of the hedgers overall position. The standard deviation and risk reduction relative
to an unhedged position are presented in Table 3.

For corn the monthly standard deviation falls from 13.00 cents per bushel to 4.00 cents
per bushel for the Bayesian optimal hedge, a 90.5% reduction in risk (variance) from the
unhedged position (results are shown in Table 3). All of the corn hedge ratios reduce risk
by similar amounts, ranging from 89.7% for the Bayesian least likely model to a high of
91.1% for the unitary hedge ratio. In fact, there is no statistical difference in the risk
reduction performance across the seven hedge ratios(tested using F-tests).

Soybean hedges reduced risk from 26.08 cents per bushel for an unhedged position to 8.87
cents for the Bayesian optimal hedge ratio. Again, given the similarity of the hedge ratios,
it is not surprising that the performance across hedge ratios is very similar. The monthly
standard deviation of the hedged positions is very close to 9 cents per bushel for all seven
hedge ratios (Table 3). The Bayesian minimum hedge ratio actually provides the greatest
risk reduction at 89.2% while the unitary hedge ratio is the least effective with an 88.1%
reduction in risk from an unhedged position. The optimal hedge ratio has a risk reduction
performance in the middle of the seven hedge ratios tested. Again, the different hedge
ratios do not produce statistically different risk reduction levels using F-tests for equality
of variance.

The presented results are consistent with those of Baillie and Myers in that for some
commodities, such as corn and soybeans, more advanced hedge ratio estimation techniques
may not significantly increase hedge effectiveness. This may or may not be the case with
less standardized commodities (such as slaughter cattle) or when estimating cross-hedge
ratios (such as hedging cottonseed meal with soybean meal futures).

In the presented results, it is noteworthy that the one-for-one textbook hedge is the most
effective out-of-sample for corn and does not produce statistically different results for
soybeans. The results are particularly interesting in corn, where the Bayesian minimum
hedge ratio averaged 0.900 over the simulation period. In this case, over a three year
period, using a hedge ratio of 0.90 and 1.00 did not produce statistically different results.
This is consistent with Jong, Roon, and Veld, who find that näıve one-for-one hedging may
perform equally well to estimated ratios in practice.

5.5. The Impact of the Priors
Many researchers criticize Bayesian approaches due to the influence of subjective prior
information on the posterior distribution (and through that, the ”estimators”). The prior
distribution effects the posterior distribution in two ways: through the prior mean and the
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prior variances. Obviously, changing the prior mean will change the posterior mean since
the posterior mean is a weighted average of the prior mean and the standard, likelihood
based estimator as shown in equation (3.7). Sensitivity analysis not reported in detail here
showed that changes in the prior means did indeed result in changes in the point estimator
for the optimal hedge ratio, with the estimated soybean hedge ratio varying from about
0.95 to 0.99 as the prior means for all parameters were varied over a fairly wide range of
values (such as from 0.50 to 1.00).

The impact of the prior means is reasonable and easy to evaluate since their effects are fairly
transparent and the prior means should always be clearly stated by Bayesian researchers.
Evaluation of the role of prior variances is somewhat harder to determine from simple
inspection. In particular, the prior mean matters less if the prior variances are large
enough to allow the data to contribute the majority of the information in the posterior
distribution. If changes in the prior variances do not result in disproportionate changes in
the posterior distribution, than one might reasonably conclude that the prior’s influence
on the posterior distribution is reasonable. To evaluate our prior, we repeated the analysis
for corn and soybeans with four different prior variance matrices, all scalar mulitples of the
base prior distribution. The results of this sensitivity analysis for soybeans are presented
in Table 4 with similar results obtained for corn. From the small changes in the results
that occurs with fairly large changes in the prior variances, we conclude that the prior
distribution used here is performing satisfactorily.

6. Conclusions

Since Myers and Thompson (1989) raised the important question of model specification’s
influence on estimated hedge ratios, much work has been done on estimating hedge ratios
while little has been done on solving the issue of model specification uncertainty in hedging
models. We have returned to this important topic and introduced a systematic approach to
model specification uncertainty using Bayesian inference to treat the uncertainty like other
uncertain parameters. This allows the model specification uncertainty to be integrated out
of the estimation and inference problems and marginal statistical inferences to be made
that optimally account for the relative probabilities of the different models considered.
The approach also allows for inference concerning the uncertain model specification it-
self, providing probability measures of support for various models, variables, and dynamic
specifications. These empirical results can guide future researchers in the direction of the
models which enjoyed the most support from previous research.

The Bayesian robust estimation approach was applied to data for corn and soybeans.
Optimal hedge ratios were computed, along with the posterior probabilities of individ-
ual models and model specification features. The individual hedge ratios were relatively
variable, while the optimal hedge ratios integrating over model uncertainty were quite
statistically precise. The model specification results also identified which features of the
model specification had significant impacts on the estimated hedge ratio. We found that
for corn, the specification of exogenous variables was crucial to the posterior support of
the model, but it was the presence or absence of lagged prices that had the biggest impact
on the level of the estimated hedge ratio. For soybeans, we found that all aspects of model
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specification had the potential to significantly impact the estimated hedge ratio. At the
same time, the process identified few credible models for soybeans, with two out of the
64 models gathering 80% of the posterior probability. For corn, many models enjoyed
relatively comparable posterior support.

The wide range of both the estimated hedge ratios make clear that model specification
is an important issue in hedging models and that Myers and Thompson were right to
raise the issue. The approach taken here allows a researcher to avoid choosing a single,
potentially incorrect, model specification. This is an important ability given that the
empirical results show the estimated hedge ratio can change 10% depending on which
model is selected. By incorporating 64 possible models and integrating across that model
specification uncertainty, the resulting optimal hedge ratios are not only robust but quite
stable.

We believe that the approach demonstrated here has great potential to provide better (more
robust) estimators of hedge ratios and other important economic parameters. Given that
hedge ratios are designed to reduce risk, the ability to reduce the risk of estimation biases
due to model specification seems attractive. While the risk reduction performance of the
optimal hedge ratio was not significantly better than that of other hedge ratios, it was not
worse either. With other commodities where the estimated hedge ratios vary more across
models, using the optimal hedge ratio may make a bigger difference in risk reduction. We
also think the information contained in the posterior probabilities of the individual models
and the model specification features can help guide researchers for future investigations
concerning hedging models and what factors influence price levels in commodity markets.
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Table 1: Model Feature Posterior Probabilities

Corn Model Corn Model Soybean Model Soybean Model
Feature Post. Prob. Hedge Ratio Post. Prob. Hedge Ratio

no x 0.566 0.941 0.369 0.977
X1 0.005 0.940 0.504 0.990
X2 0.424 0.941 0.079 0.981

both X 0.004 0.940 0.048 0.990
no p lags 0.027 0.984 0.918 0.987

pt−1 0.574 0.940 0.009 0.957
pt−2 0.288 0.940 0.062 0.956
pt−3 0.111 0.940 0.011 0.956

no f lags 0.027 0.984 0.918 0.987
ft−1 0.502 0.939 0.011 0.957
ft−2 0.357 0.941 0.061 0.956
ft−3 0.114 0.941 0.011 0.956

Note: For corn X1 = corn exports, X2 = interest rate. For soybeans, X1

= soybean stocks, X2 = soybean crush.
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Table 2: Optimal Hedge Ratios

Corn Soybean

Optimal Hedge Ratio 0.941 0.985
Standard deviation 0.006 0.005

Minimum Hedge Ratio 0.900 0.918
Maximum Hedge Ratio 0.990 0.991
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Table 3: Risk Reduction Performance of Alternative Hedge Ratios

Corn Model Corn Model Soybean Model Soybean Model
Standard Percent Standard Percent

Hedge Ratio Deviation Reduction Deviation Reduction

No Hedge 13.00 0.0 26.08 0.0
Optimal 4.00 90.5 8.87 88.4

Maximum 3.90 91.0 8.94 88.3
Minimum 4.18 89.7 8.58 89.2

Most Likely 3.97 90.7 8.87 88.4
Least Likely 3.93 90.9 8.80 88.6

Constant 3.91 90.9 8.85 88.5
Unitary 3.88 91.1 9.01 88.1

Note: Standard deviation is measured with price changes over monthly
horizons in cents per bushel.
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Table 4: Sensitivity Analysis of the Prior Variances

Posterior Weight Posterior Weight
Multiple of Optimal on Most Likely on Models with No

Base Variance Hedge Ratio Model Exogenous Variables

0.5 0.979 0.595 0.626
1.0 0.983 0.429 0.464
2.0 0.984 0.334 0.420
5.0 0.979 0.482 0.540
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