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Technical Analysis in Commodity Markets:
Risk, Returns, and Value

Abstract

Although there is little academic research that supports the usefulness of techni-
cal analysis, its use remains widespread in commodity markets. Much prior research
into technical analysis suffered from data-snooping biases. Using genetic program-
ming, ex ante optimal technical trading strategies are identified. Because they are
mechanically generated from simple arithmetic operators, they are free of the data-
snooping bias common in technical analysis research. These rules are clearly capable
of forecasting periods of high and low volatility, but rules generated for corn and
soybeans cannot consistently generate profits in the presence of transactions costs.
Rules generated for wheat futures produce profits that are weakly significant, both
statistically and economically.

Keywords: Technical Analysis, Genetic Algorithms, Commodity Markets, Futures
Markets

Technical analysis is a broad collection of methods and strategies which attempt to fore-
cast future prices on the basis of past prices or other observable market statistics, such
as volume or open interest. Based on this definition, technical analysis conflicts with
weak-form market efficiency, under which “efficiency with respect to an information set
. . . implies that it is impossible to make economic profits by trading on the basis of [that
information set],” (Malkiel) and the information set consists of precisely the information
which technical analysis purports to exploit.

Academia maintains a generally negative view of technical analysis, perhaps best typified
by Malkiel, “Obviously, I am biased against the chartist. This is not only a personal
predilection, but a professional one as well. Technical analysis is anathema to the aca-
demic world.” Although there are some that are more charitable toward technical analysis,
Campbell, Lo, and MacKinlay suggest that “perhaps some of the prejudice against techni-
cal analysis can be attributed to semantics.” Nevertheless, the study of technical analysis
has a long history in academia, with mixed results.

Early studies, such as Alexander and Fama and Blume identified and tested simple tech-
nical strategies using equity index data and found that although they may have some
predictive power, they were unable to consistently generate positive profits. Over the suc-
ceeding decades, similar conclusions were reached by many researchers, especially when
transactions costs were included in the analysis. There were a few articles which identified
profitable technical strategies, such as Sweeney and Osler 2.

Compared to the dozens of studies of technical analysis in the equity and foreign exchange
markets, there are relatively few studies of technical analysis in commodity futures mar-

2Spyros Skouras has compiled an exhaustive bibliography of academic studies through 1998. It is
available at http://www.santafe.edu/ spyros/tabiblio.htm
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kets. Lukac and Brorsen, and Lukac, Brorsen and Irwin (1988, 1988a, and 1989) are the
only studies of technical analysis in commodity futures markets.

There is little dispute that technical analysis is very common among practitioners. Ober-
lechner surveys foreign exchange traders on their use of technical analysis, and finds that
“Only a very small minority of foreign exchange traders demonstrate an exclusively fun-
damental or exclusively chartist overall forecasting approach.” This is consistent with the
previous survey research performed by Taylor and Allen, Menkhoff, and Lui and Mole.
Brorsen and Irwin find similar results for commodity trading advisors.

Using genetic programming, this paper develops optimal ex ante trading rules for various
commodity markets. Each trading rule is generated using two sequential futures contracts
of identical maturity month, and then tested using the next contract of identical maturity
for its out-of-sample performance. These tests reveal that these trading rules are quite
capable of forecasting periods of high and low returns. The trading strategies are capa-
ble of generating profits, but when transactions costs are included, these profits become
negligible.

This article has four sections. The first section explains the use of genetic programs in
constructing and optimizing technical trading strategies. The second section discusses the
evaluation of futures trading strategies and the data used. The third section presents the
results of these rules, while the fourth section offers a summary and conclusion.

1 Genetic Programs, Data-Snooping, and Technical

Analysis

Genetic programming is the subdiscipline of evolutionary algorithms in which complex
algorithms or programs are built from hierarchies of simple operators; they trace their ori-
gins to Koza. These programs are optimized according to a evolutionary process whereby
an initial population of random rules is generated, they are evaluated according to some
‘fitness’ function, and then ‘evolved’ through random combination to form a new genera-
tion of rules.

The use of genetic programs as technical trading strategies dates to Neely, Weller, and
Dittmarr, (NWD) and Allen and Karjalainen (AK). These researchers recognized that
genetic programming avoids the data-snooping biases inherent in earlier technical research.
In most prior technical analysis research, the performance of common trading rules is
evaluated using historical data. However, the fact that these rules are common or popular
is prima facie evidence that they have been profitable in the past. Evaluating these rules
using historical data is thus little more than ex post model-fitting.

Genetic programs avoid data-snooping because the rules constructed are drawn from the
space populated by combinations of simple arithmetic and logical operators. These rules
are mechanically optimized using historical data, and then tested using a different set of
historical data. Therefore, although the specification of these rules is dependent upon
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Figure 1: Simple Trinary Trading Rule

their historical performance, their merit is judged using data not available during their
construction.

The trading rules used in NWD and AK were binary, i.e. they could only indicate two
states for the investor. These states were variously mapped to trading positions of
long/short, long/neutral, or neutral/short. While binary positions may make sense in
equities, they are problematic in futures markets because there is no physical asset being
held, and short positions are taken as easily as long positions. Therefore, this article
proposes the use of trinary trading rules, in which the rule can indicate long, neutral, or
short positions.

Figure 1 is an example of a simple trading rule as they are used in this study. XR is a
root node that requires two subnodes, which for this rule are the inequality operators >
and <. The real values 500 and 10000, as well as the data VOL (volume) and CPR (closing
price) are terminal nodes, nodes which do not have subnodes. XR is a trinary operator
whose state is a function of the states of its subnodes (in this case, the subnodes are >
and <), as displayed in table 1, where long, neutral, and short positions are indicated by
1, 0, and -1, respectively. Rule 1 indicates a long position should be taken if the closing
price is above 500 but the volume is greater than 10,000; a short position should be taken
if the reverse is true, and no position should be taken if both or neither are true.

Table 1: State of XR given the subnode states

XR Subnode 1 Subnode 2
0 TRUE TRUE

1 TRUE FALSE

-1 FALSE TRUE

0 FALSE FALSE

The choice of nodes in building the genetic programs is similar to those used in NWD and
AK. Terminal nodes (those that take no arguments) may be real [-10,10], boolean (TRUE,
FALSE), or return price data: OPR, HPR, LPR, CPR, VOL, and OI represent the opening, high,
low, and closing price, and the daily volume and open interest. Function nodes can be
the arithmetic operations, +, −, ×, and ÷, boolean operators, IF-THEN-ELSE, AND, OR,
NOT, inequalities, <, >, square, square root, and the 1-norm (distance). Additionally, four
functions are included that operate on lagged data, each of which requires two arguments,
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Table 2: Nesting of Common Technical Indicators within Functional/Terminal Node Sets.

Technical Indicator Nested in Node Sets
AK Current

Trend Lines - X
Support/Resistance X∗ X
Channel Line - X
Percentage Retracements X X
Speedlines X X
Gaps - X
Head and Shoulders - -
Double Tops/Bottoms - -
Triangles - -
Moving Average X X
Envelopes X X
Bollinger Bands X∗ X
Momentum X X
RSI X X
Stochastics - X
% R - X
MACD X X
Candlesticks - X

∗ Although these indicators can be based only on closing prices, high and low prices are
most commonly used.

a data series (OPR, HPR, LPR, or CPR) and a real value, k, which indicates the number of
prior observations over which to operate. LAG returns the k-day lagged price, MIN and
MAX return the minimum and maximum values over the k days periods, and AVG returns
the k-day average. MND and MXD are similar to MIN and MAX except that they return the
number of days since the lowest (highest) value in the last k days. Table 2 lists the first
eighteen technical trading indicators in Murphy. The set of rules that can be constructed
using the operator set in this article encompasses most common technical rules, and is
significantly expanded from NWD and AK.

The evolutionary process used to generate optimal trading rules is the defining charac-
teristic of genetic programming. To start the process, a population of rules is randomly
generated. Each of these rules is evaluated for its ‘fitness’–such as high profitability or low
risk. With a probability proportional to each rule’s fitness rank in the population, rules
are chosen to participate in genetic operations, such as recombination, and the resulting
rules constitute the next generation of rules. This three-step process (evaluate, select,
operate) is repeated until convergence or the maximum number of iterations is reached.

In this study, only two genetic operators are used to create rules. In reproduction, rules
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Figure 2: Recombination of Two Technical Trading Rules

from the parent generation are inserted into the child generation unchanged. In recombi-
nation, two parent rules are chosen, and sub-trees are randomly chosen from each parent
rule and exchanged. Figure 1 shows the recombination of two parent rules into two child
rules. While many other genetic operations have been proposed, reproduction and re-
combination are the two most common, and additional rules typically offer little benefit.
(Koza)

Because rules are selected for operation based upon their fitness, the specification of the
fitness measure is crucial for the success of genetic programming. Two fitness measures
are used to generate the rules in this study, gross profitability and the ratio of profitability
to maximum intermediate loss. These two criteria will be explained in the next section.

Initially, 10,000 randomly-generated rules are created. The 1,000 fittest are retained to
make up the first generation. Each successive generation consists of the fittest rule from
the previous generation, 99 randomly-chosen rules are inserted unaltered (reproduction),
and the remaining 900 are the product of recombination of randomly-chosen pairs. Anal-
ogously to the evolutionary process, rules are not truly randomly chosen. Instead, the
probability that a rule will be chosen for insertion or recombination is a function of its
fitness. Specifically, the probability is a function of a rule’s rank within the population,

pi =
r3
i∑

j r3
j

(1)

where pi is the probability that the ith rule will be chosen, where i is the ordinal rank of
the rule, with i = N the most fit, and i = 1 the least fit.

In order to prevent over-fitting, the rules are generated using two sets of futures price data,
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as in Allen and Karjalainen. Rules are evaluated for selection and operation based upon
their fitness in ‘training’ data, which are one year’s worth of prices for a given commodity
futures contract of a given expiration month. After each generation is evaluated using the
training data, the fittest rule is applied to the ‘selection’ data, which is also one year’s
price data, of the same maturity month as the training data, but from the following
maturity year. If this rule is fitter than the previous rules evaluated with selection data,
it is retained.

Because GP cannot guarantee convergence, either locally or globally, the quality of a
solution is a monotonic function of its computational cost; as larger populations of larger
rules are allowed to evolve longer, the probability of convergence increases. Balancing this
need is the time required for estimation. The population size is 1000 rules, each of which
is constrained to 100 nodes. In the initial rule generation, the rules are constrained to be
no more than seven levels deep, but in recombination, the rules can grow to be 16 levels
deep. To further improve the results, ten optimizations are performed over each set of
training/selection data, differing only in the seed value to the random number generator,
and the best rule of ten is used in subsequent testing.

Finally, the rule that emerges from the testing/selection process is applied to out-of-
sample data. The out-of-sample evaluation uses one year of prices of the same maturity
month as the testing and selection data, but from the following contract year.

2 Trading Strategy Evaluation

Net profits are the simplest and most common measure of the usefulness of a trading
strategy. The leveraged nature of futures contracts makes the use of simple return-based
measures of performance more difficult, as it is unclear what denominator should be used
in computing the return. One could assume that no leverage is possible, although this
seems a very strong assumption, especially as leverage is frequently cited as an advantage
of futures markets. Alternatively, one could use the margin requirement as the denomina-
tor. This is also problematic, as US Treasury Bills can be pledged as collateral, meanwhile
still accruing interest for the futures-holder, which reduces the forgone interest of holding
futures to zero.

For these reasons, simple profitability is used instead of returns. The fitness measure used
is

π =
T∑
t

(pt+1 − pt) It − φ abs (It − It−1) (2)

where It ∈ [−1, 0, 1] is the trading position at time t and φ is the transactions cost. As
suggested by Neely, Weller and Dittmar, higher transactions costs discourage rules which
over-trade, which may be a symptom of over-fitting. They recommend using a transaction
cost that is higher than otherwise may be realistic for training and selection, and a more
realistic rate for out-of-sample testing. Therefore, transactions costs of $25 per round-trip
are used for training and selection, and $6.25/round-trip are used in out-of-sample testing,
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approximating the commission level of a large trading firm.

Profits are not the only measure of a successful trading strategy. Other useful criteria
might be low variance or small intermediate losses. The second fitness measure consid-
ered here uses the concept of drawdown, or intermediate loss as a proxy of variability,
to measure a strategy’s fitness. The concept of drawdown is especially relevant to fu-
tures trading strategies, as the maximum margin requirement is a monotonic function of
drawdown. The drawdown of a strategy is defined as the difference between the highest
intermediate profit of the strategy and its current value, or, if ΠT =

∑
t πt, then drawdown

is

δT = max
t=1,...,T

(
max

τ=1,...,t
(Πτ ) − Πt

)
(3)

The second fitness measure is the ratio of profit to maximum drawdown, π/δ.

While an almost limitless number of fitness functions could be conceived, these two repre-
sent computationally-efficient measures that proxy the interests of agents using technical
trading strategies.

3 Results

Optimal trading rules are estimated for CBOT Corn, Soybean and Wheat futures. Train-
ing is performed using five maturities of data for each year from 1978 through 19983,
yielding 105 rules for each commodity. In order that any seasonal factors may be pre-
served, selection and testing are performed using prices from subsequent years’ contracts,
but with the same maturity month, i.e. the first rules generated for each commodity use
data from the March 1978 contract for training, the March 1979 contract for selection, and
the March 1980 contract for out-of-sample testing. For each contract maturity, the data
from the first trading day of the delivery month of the previous calendar year through the
final trading day of the full calendar month prior to delivery is used, i.e. for the March
1978 contract, data from 1 March 1977 through 29 February 1978 is used. This method
of construction ensures that there is no overlap between the training, selection or testing
datasets.

Tables 3, 4, and 5 report the performance of the generated rules for corn, soybeans, and
wheat, respectively. The first two sets of results on each table are those of the genetic
programming rules and a strategy of purchasing and holding the corresponding contract
for the entire period. For all three commodities, the genetic programming method is
capable of finding extremely profitable trading rules in-sample. Using the profit-only
fitness criteria, π, the daily average in-sample profit of these rules is $11.13, $33.77, and
$18.01 for the three commodities. Using the second fitness criteria, π/δ, the profits are
smaller, but still greater than the static strategies, and they are achieved with a reduction
in average daily volatility (σ̄) of 61%, 71% and 65% respectively. The rules are also clearly

3For Corn and Wheat, March, May, July, September and December contracts are used. For soybeans,
November contracts are used instead of December.
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able to discern periods of high returns from those of low and negative returns using in-
sample data, as evidenced by comparing the average returns on days on which the rules
were long, neutral, or short in tables 3, 4, and 5. These findings are confirmed by the
pairwise tests in table 6, in which the profit of the technical rule was statistically greater
than that of the static rule for each commodity.

In out-of-sample testing, the performance of the rules is less compelling. Only two of the
six commodity/fitness combinations manage to generate positive mean returns, both for
wheat. Of these two, only the strategy that uses π/δ as the fitness measure has returns
that are statistically greater than zero, and then only at the 10% level. The mean profit
of the technical strategies is greater than the static rules in five of the six combinations,
but the differences are statistically insignificant for corn and one may question whether
the finding for soybeans is the result of the sharp price declines experience by soybeans
during the period of study (notice that the average daily mean return of soybeans during
the sample period is -5.7522). Comparing the returns on days of long and short positions
reveals that the rules are able to consistently identify periods of high, low, and negative
returns out-of-sample for only the case of π/δ applied to wheat futures, for which the
rules are able to distinguish between these periods at 5% or greater levels of significance.

According to table 6, the rules generated in the wheat market do produce profits that
are statistically larger than a static long position, but only the π/δ rules are statistically
different from 0, and then only barely. Both fitness measures are significantly higher than
the static long position. Profitable exploitation of the difference between the technical
strategy and the static long position requires maintaining a static short position in addi-
tion to the position indicated by the technical strategy. This combined strategy increases
transactions costs only minimally (one round-turn per year), and would not change the
statistical significance of the wheat rules, or much alter their indicated profitability, of
$1250/contract, with an average historical drawdown of $1600.

Using the profit/drawdown measure, the wheat rules also appear to be able to differentiate
periods of high returns from low returns, and from high returns to negative returns at the
5% level.

For the corn and soybean markets, these results confirm prior findings in the equity
and foreign exchange markets that technical trading rules do not appear to be able to
generate economic profits in the presence of transactions costs. Rules generated with
genetic programming are clearly able to discern between periods of high and low profits
in-sample, but fail to do so in out-of-sample testing. In both in-sample and out-of-sample
applications, these rules are capable of reducing the volatility of returns, but it remains
unclear whether they are able to achieve this more successfully than existing methods.
The evidence in the wheat market is less clear. The rules generated for the wheat market
using the profit/drawdown fitness measure are able to discern between periods of high
and low returns and very high levels of significance, and are able to generate economic
profits, though the statistical evidence for profitability is weaker.
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4 Summary and Conclusion

The prevalence of technical analysis in commodity markets is a mystery. As a method of
generating profits, it directly contradicts weak-form efficiency. While many explanations
of technical analysis have been offered, none have provided any reason to expect sustained
economic profitability of technical methods.

Much of the prior research into technical analysis has been hampered by data-snooping
biases, introduced when popular technical methods are evaluated using historical data.
In order to avoid data-snooping, this paper uses a genetic programming algorithm to
generate optimal technical trading rules for three agricultural futures markets, which are
then tested using out-of-sample data.

While these rules are quite successful at identifying periods of high, low, and negative
returns ex post, the rules for corn and soybeans are not capable of generating profits in the
presence of transactions costs when applied to out-of-sample data. The rules do produce
higher mean returns when compared to a static long strategy, but the difference is not
statistically significant. The rules generated from wheat futures are capable of generating
small but significant profits when compared to a static long position. Rules generated to
maximize the profit/drawdown ratio are capable of reducing the daily variance of profits
compared to a static long portfolio, but it is unclear whether the technical methods used
here are any more or less useful than conventional statistical methods in prediction of
volatility.

The results of this study can, at best, only be viewed as a lower bound to the profitability
of technical analysis. The function set used in this study does not encompass all technical
indicators. Because genetic programming is a stochastic search method, the rules used
in evaluation in this study are not guaranteed to be globally, or even locally, optimal.
Therefore, rules that lie within the domain of this study may exist that are superior to
this study’s ‘optimal’ rules but were not identified by the optimization process. Further,
the rules used did not even incorporate basic investment management practices, such as
stop-loss orders. Finally, the fitness functions used in this study do not incorporate a risk-
return tradeoff in describing the desirability of a given trading strategy. Each of these
factors could contribute to the lack of support for the use of technical analysis indicated
by this study.

However, the evaluation method used in this study also made the relatively strong as-
sumptions that period t closing prices can be used in the period t trading decision, and
that trading takes place at the period t closing price.

While each of the above assumptions provide avenues for future research, the two most
interesting are the specification of some form of a mean-variance utility function as the
fitness criteria, as well as a comparison of the ability of technical analysis to forecast
volatility, possibly in combination with returns. Finally, the results of the wheat futures
should be explored more carefully; while the profitability of the rules generated is not
statistically different from 0, it is significantly different from a static long futures position,
and these rules do appear to be capable of generated a small profit.

9



Table 3: Summary of Technical Trading Rules Applied to CBOT Corn Futures

Selection Data Out of Sample Data
π π/δ π π/δ

Dynamic Trading Strategy
µ 11.1298 7.0476 -2.6107 -0.9554
σµ 9.6512 4.7448 8.6063 5.4917
σ̄ 147.8555 81.5111 143.1905 82.2999

Static Long Position
µ -2.0090 -2.5142
σµ 12.2683 12.5683
σ̄ 161.1638 161.2642

Dynamic Strategy, Long
µ 13.8808 33.2119 -6.4772 -6.3462
σµ 23.3850 78.9139 21.8542 45.3998
σ̄ 184.4950 192.6476 162.7179 153.1524
% Days 0.3386 0.1027 0.3311 0.0964

Dynamic Strategy, Neutral
µ 2.0308 -1.7468 -0.9682 -2.3335
σµ 63.1136 15.6761 32.2702 13.3987
σ̄ 152.4209 161.7651 165.0259 160.4383
% Days 0.1789 0.7398 0.2043 0.7483

Dynamic Strategy, Short
µ -14.5431 -25.8632 -0.2507 -0.6490
σµ 37.1981 38.5606 19.5875 49.2405
σ̄ 147.1356 137.3965 159.6053 172.8634
% Days 0.4825 0.1575 0.4647 0.1553

All Rules
n > 0 100 104 42 46
δ 34.1548 11.8690 55.9500 25.8238
Mean R/T 23.6095 17.5143 23.4476 17.8000
Max(π) 44.2729 25.5727 15.7750 9.4124
Min(π) -24.7768 -2.4457 -29.9500 -33.8000

105 rules were generated. π is the profit net of transactions costs, δ is the maximum
drawdown (see equation 3), µ is the mean daily return, σµ is the standard error of µ,
and σ̄ is the mean of the daily standard deviation of profits across all contracts; µ, σµ,
and σ̄ are expressed in $/day. Transactions costs were applied at $6.25 per round-trip.
Statistics for Long, Neutral and Short positions are averaged across the entire data set.
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Table 4: Summary of Technical Trading Rules Applied to CBOT Soybean Futures

Selection Data Out of Sample Data
π π/δ π π/δ

Dynamic Trading Strategy
µ 33.7710 11.0623 -0.2043 -0.6570
σµ 20.1602 7.2439 21.1130 10.8098
σ̄ 398.1078 116.8453 400.0987 161.0494

Static Long Position
µ -4.7514 -5.7522
σµ 25.2896 25.2956
σ̄ 436.2584 430.8642

Dynamic Strategy, Long
µ 37.2273 176.4959 -6.5270 -24.9057
σµ 53.6884 208.5749 56.7529 154.4124
σ̄ 459.6981 484.6674 436.9672 423.9245
% Days 0.3687 0.0187 0.3625 0.0202

Dynamic Strategy, Neutral
µ 17.0027 0.0264 -2.2106 -5.6466
σµ 96.4147 29.5923 107.8516 27.1456
σ̄ 469.7569 439.5420 430.0410 422.1686
% Days 0.1463 0.9148 0.1404 0.8966

Dynamic Strategy, Short
µ -43.0809 -120.2938 -6.0136 -1.2071
σµ 77.5271 228.8401 63.5424 187.0107
σ̄ 409.7164 386.3241 429.5237 526.6813
% Days 0.4849 0.0665 0.4972 0.0832

All Rules
n > 0 101 105 50 53
δ 82.1071 10.3095 136.4334 42.6619
Mean R/T 34.7429 9.5619 33.2667 10.2667
Max(π) 76.8105 34.9851 47.4250 22.3855
Min(π) -45.0697 0.3735 -62.8224 -52.3810

105 rules were generated. π is the profit net of transactions costs, δ is the maximum
drawdown (see equation 3), µ is the mean daily return, σµ is the standard error of µ,
and σ̄ is the mean of the daily standard deviation of profits across all contracts; µ, σµ,
and σ̄ are expressed in $/day. Transactions costs were applied at $6.25 per round-trip.
Statistics for Long, Neutral and Short positions are averaged across the entire data set.
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Table 5: Summary of Technical Trading Rules Applied to CBOT Wheat Futures

Selection Data Out of Sample Data
π π/δ π π/δ

Dynamic Trading Strategy
µ 18.0116 8.4777 1.0794 0.9259
σµ 12.1431 5.6898 13.2608 7.4077
σ̄ 211.3358 94.4503 209.8399 112.6147

Static Long Position
µ -1.7468 -3.2982
σµ 16.4167 15.6400
σ̄ 234.9496 231.3083

Dynamic Strategy, Long
µ 23.4439 57.4797 -2.0045 7.5704
σµ 33.2704 60.4151 44.1327 46.7534
σ̄ 253.3747 256.8510 246.0227 252.7633
% Days 0.3831 0.0796 0.3935 0.1054

Dynamic Strategy, Neutral
µ -5.2467 -2.4332 0.6420 -4.4644
σµ 55.1146 15.6063 43.5340 18.9775
σ̄ 244.2229 237.9467 249.4612 228.3863
% Days 0.1779 0.8163 0.1539 0.7821

Dynamic Strategy, Short
µ -22.2534 -41.3724 -5.7060 -5.1438
σµ 32.8844 79.7937 33.1215 37.8559
σ̄ 214.4732 191.9620 211.6171 233.3540
% Days 0.4390 0.1042 0.4526 0.1125

All Rules
n > 0 98 103 55 56
δ 45.2857 12.5262 74.5190 32.4229
Mean R/T 30.3714 16.8476 28.0667 17.8952
Max(π) 44.1968 28.2700 36.2301 24.4250
Min(π) -25.4216 -7.7133 -31.1250 -19.2978

105 rules were generated. π is the profit net of transactions costs, δ is the maximum
drawdown (see equation 3), µ is the mean daily return, σµ is the standard error of µ,
and σ̄ is the mean of the daily standard deviation of profits across all contracts; µ, σµ,
and σ̄ are expressed in $/day. Transactions costs were applied at $6.25 per round-trip.
Statistics for Long, Neutral and Short positions are averaged across the entire data set.
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Table 6: Summary of Pairwise Tests

Selection Data Out of Sample Data
π π/δ π π/δ

Corn
π > 0 11.8169*** 15.2200*** -3.1084 -1.7827
π > πstatic 8.6250*** 7.0552*** -0.0649 1.1645
πlong > πneutral 1.8041** 4.4524*** -1.4484 -0.8687
πlong > πshort 6.6288*** 6.8921*** -2.1740 -0.8716

Soybeans
π > 0 17.1650*** 15.6483*** -0.0992 -0.6228
π > πstatic 12.2051*** 6.1597*** 1.7254** 1.8980**
πlong > πneutral 1.8779** 8.5837*** -0.3629 -1.2587
πlong > πshort 8.7263*** 9.8220*** -0.0618 -1.0013

Wheat
π > 0 15.1991*** 15.2676*** 0.8341 1.2808*
π > πstatic 9.9151*** 6.0300*** 2.1876** 2.5012***
πlong > πneutral 4.5666*** 9.8388*** -0.4375 2.4440***
πlong > πshort 10.0099*** 10.1207*** 0.6874 2.1657**

* indicates significance at the 10% level, ** indicates significance at the 5% level, and ***
indicates significance at the 1% level. Test statistics used are

z =
r1 − r2√

σ2
1+σ2

2

T

where z ∼ N(0, 1).
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Figure 3: Profitability of π rules and static long positions, CBOT Corn Futures
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Figure 4: Profitability of π/δ rules and static long positions, CBOT Corn Futures
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Figure 5: Profitability of π rules and static long positions, CBOT Soybean Futures
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Figure 6: Profitability of π/δ rules and static long positions, CBOT Soybean Futures
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Figure 7: Profitability of π rules and static long positions, CBOT Wheat Futures
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Figure 8: Profitability of π/δ rules and static long positions, CBOT Wheat Futures
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