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Abstract 

Characterizing the future performance of energy technologies can improve the development of 

energy policies that have net benefits under a broad set of future conditions. In particular, 

decisions about public investments in research, development, and demonstration (RD&D) that 

promote technological change can benefit from (1) an explicit consideration of the uncertainty 

inherent in the innovation process and (2) a systematic evaluation of the tradeoffs in investment 

allocations across different technologies.  To shed light on these questions, over the past five 

years several groups in the United States and Europe have conducted expert elicitations and 

modeled the resulting societal benefits.  In this paper, we discuss the lessons learned from the 

design and implementation of these initiatives in four respects. First, we discuss lessons from the 

development of ten energy-technology expert elicitation protocols, highlighting the challenge of 

matching elicitation design with a particular modeling tool.  Second, we report insights from the 

use of expert elicitations to optimize RD&D investment portfolios. These include a discussion of 

the rate of decreasing marginal returns to research, the optimal level of overall investments, and 

the sensitivity of results to policy scenarios and selected metrics for evaluation.  Third, we 

discuss the effect of combining online elicitation tools with in-person group discussions on the 

usefulness of the results. Fourth, we summarize the results of a meta-analysis of elicited data 

across research groups to identify the association between expert characteristics and elicitation 

results.  
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1. Introduction  

 

Governments throughout the world justify their investments in energy technology research, 

development and demonstration (RD&D) (Chan, Anadon, Chan, & Lee, 2011) on the basis of 

three broad public policy challenges—environmental externalities, energy security, and 

economic competitiveness (Anadon, 2012)—in addition to the knowledge spillovers associated 

with scientific research in general (Arrow, 1962).  Country members of the International Energy 

Agency
1
 invested  $13.7 billion PPP in public energy RD&D in 2008, which rose to $17 billion 

PPP (Purchasing Power Parity) in 2012 (IEA, 2013).
2
  A recent review of the largest developing 

countries (Brazil, Russia, India, Mexico, China, and South Africa) indicates that in 2008, public 

energy RD&D was of a comparable scale to IEA countries, totaling $13.8 billion PPP 

(Gallagher, Anadon, Kempener, & Wilson, 2011). 

While total energy RD&D investments are smaller than public subsidies for energy deployment,
3
 

the relative social benefits of RD&D investments may be larger than that of subsidies. The 

relatively large returns to energy RD&D are due to the long-term, high risk, and skewed benefits 

associated with the innovation process (Nemet, 2013). Based on this view, since 1996 expert 

panels in the United States (American Energy Innovation Council, 2010; NCEP, 2004; NCEP, 

                                                           
1
 The IEA has 28 Member countries (Australia, Austria, Belgium, Canada, Czech Republic, Denmark, 

Finland, France, Germany, Greece, Hungary, Ireland, Italy, Japan, Republic of Korea, Luxembourg, 

Netherlands, New Zealand, Norway, Poland, Portugal, Slovak Republic, Spain, Sweden, Switzerland, 

Turkey, United Kingdom, and United States), but no data are provided for Luxembourg or the Slovak 

Republic. Iceland, Chile, and Mexico are OECD members, but are not IEA members. 
2
 In 2012, the United States alone invested just over $4.7 billion PPP, while European countries’ invested 

totaled $5.8 billion PPP. 
3
 The United States government spent about $33.2 billion in 2010 in energy subsidies for deployment 

(EIA, 2011).  A recent report estimated that global energy subsidies for deployment in 2007 were $483 

billion (IEA, OPEC, OECD, & World Bank, 2010). 
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2007; PCAST, 1997; PCAST, 2010) and in the European Union (EERA, 2010; European 

Commission, 2007) have called for significant increases to public energy RD&D investments. 

These studies, however, offer little analytic support to justify their recommendations and often 

do not include substantiated estimates of benefits, costs, and associated uncertainties.   

The U.S. Department of Energy (DOE), the largest single funder of energy RD&D in the United 

States, often conducts estimates of the expected benefits of individual RD&D programs. 

However, the DOE does not consistently evaluate the positive and negative interactions of its 

programs across its investment portfolio; for example, energy storage may complement 

intermittent renewables. Nor does it systematically consider uncertainty in its benefit 

calculations. In short, the DOE does not conduct robust consistent and transparent cost-benefit 

analysis to support its portfolio of RD&D investment decisions in different technology programs.   

As a result of some of these shortcomings, a 2007 study of the National Research Council 

recommended that the DOE make probabilistic assessments of the benefits of RD&D programs 

when making decisions (NRC, 2007).  For a short review of the literature estimating the benefits 

of R&D investments in energy the reader is referred to the Supplementary Information (SI). But 

the political economy conditions within an RD&D funding organization make generating 

credible estimates of the impact of RD&D more difficult. For example, in the case of DOE, 

competition between the different technology programs creates incentives for self-serving biases 

and erodes trust between programs. One strategy that appears feasible given DOE’s existing 

organizational incentives is eliciting the knowledge to develop technical assumptions from 

external (as well as some internal) experts and integrating this knowledge into internally-

acceptable assessment frameworks (Chan & Anadon, 2013). 
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In this vein, research groups at the Harvard Kennedy School (HKS) and at Fondazione Eni 

Enrico Mattei (FEEM) recently conducted expert elicitations to estimate the relationships 

between public RD&D investments and technology outcomes (costs and performance). The main 

objective was to provide insights to both DOE and EU policy makers about the allocation of 

RD&D funding across several technology areas: nuclear power, solar photovoltaics, concentrated 

solar power, biofuels, bioelectricity, vehicles, utility scale energy storage, and fossil power with 

and without carbon capture and storage.
4
 
5
  Elicitations for the US were carried out between 2009 

and 2011 and were designed so that their results could be used in MARKAL (Fishbone & 

Abilock, 1981), a widely -used energy-economic model, to provide insights about DOE funding 

decisions across different programs.  Elicitations for the EU were carried out by FEEM between 

2009 and 2011 within the FP7 project ICARUS and designed for use in WITCH 

(www.witchmodel.org), an integrated assessment energy model.  

This paper discusses lessons emerging from these data collection and modeling efforts regarding 

how expert elicitations can be designed, implemented, and utilized to support decisions about the 

allocation of public energy RD&D investments. It also includes insights and findings from a 

meta-analysis of the nuclear technology elicited data, identifying how elicitation design affects 

results.  The rest of the paper is structured as follows.  Section 2 presents a literature review on 

the previous use of expert elicitations for energy technologies.  Section 3 describes the methods 

used in this research, in particular, the design and implementation of expert elicitations in an 

                                                           
4
 Theee   results from these elicitations can be found at: Anadon et al., 2011; Anadon et al., 2012; Bosetti, 

et al., 2012; Bosetti et al., 2012; Catenacci et al., 2013; Chan et al., 2011; Fiorese et al., 2013. 
5
 Some similar studies also utilized energy technology expert elicitations, but were not explicitly 

developed to provide insights about portfolios of investments at a large scale (e.g., for technology 

programs funded by DOE or the EU Commission) or across multiple technologies (Baker, Chon, & 

Keisler, 2009a; Baker, Chon, & Keisler, 2008; Baker, Chon, & Keisler, 2009b; Curtright, Morgan, & 

Keith, 2008). 
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energy-economic modeling context (MARKAL and WITCH) conducted by the Harvard and the 

FEEM groups, respectively.  Section 4 discusses key insights from the analysis organized in five 

sub-sections.  Section 5 concludes with a summary of findings and thoughts for future research. 

2. Expert Elicitations of Energy Technologies to and RD&D investment decisions 

Estimating the benefits of energy RD&D investments requires estimation of two relationships.  

First is the relationship between a given RD&D investment and individual technology outcomes, 

which are typically measured in terms of cost or performance. Second is the relationship between 

the technology outcomes and policy goals, such as economic growth, energy prices, CO2 

emissions, or oil imports.   

Expert elicitations are being increasingly used to estimate the first relationship (Anadon et al., 

2011; Anadon et al., 2012; Bosetti et al., 2012; Catenacci M. et al., 2013; Chan et al., 2011; 

Fiorese et al., 2013); Baker, Chon, & Keisler, 2009a; Baker, Chon, & Keisler, 2008; Baker, 

Chon, & Keisler, 2009b; Curtright, Morgan, & Keith, 2008).  These studies gather the opinions 

of experts on technical questions that fall within their area of expertise. Data collection is carried 

out using elicitation protocols carefully designed to reduce biases (Cooke, 1991; Hogarth, 1987; 

Morgan & Henrion, 1990; Evans, 2013). 

However, few studies have designed elicitations with the objective of supporting specific energy 

RD&D policy decisions on a continuous basis.  In addition, even though previous studies 

indicated the importance of protocol design and expert selection as key for elicitation results, 

(Keeney & Winterfeldt, 1991; Meyer & Booker, 1991; Raiffa, 1968) there are no empirical 

assessments in energy of the impact and size of differences in elicited results from expert 
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selection and elicitation design (e.g., whether the survey is conducted in person, via mail, or 

online).  

Expert elicitation estimates can also be used to inform the second relationship by introducing 

them as inputs to technologically-detailed models of the economy, thus linking technology 

outcomes to social benefits. Such an approach allows decision makers to understand how 

technological uncertainty propagates from the first relationship through the second relationship, 

providing important insights on the distribution of outcomes from RD&D.  This type of two-

stage analysis to support policy decisions is common in environmental policy decisions, such as 

those that Fann et al. (2013) inform with their analysis of approaches to estimate concentration-

response functions for PM2.5.  

3. Methods 

3.1 Design and implementation of expert elicitations 

The Harvard studies were designed to inform the DOE on the allocation of RD&D investments 

across large scale technology programs, while the ICARUS project, funded by the European 

Research Council aimed at designing optimal allocation of the EU research budget on energy 

technologies, with specific attention to the role of European climate and energy policies.  We 

highlight here some key features of both data collection efforts.   

Each institution conducted six elicitations. Four of Harvard’s elicitations were distributed by 

mail (bioenergy, utility scale storage, fossil energy and carbon capture and storage, and vehicles) 

and the remaining two were online (nuclear power and solar PV). Four of FEEM’s elicitations 

were extensive in person interviews (batteries for EDV, bioenergy, biofuels, solar) and two were 

online (carbon capture and storage, and nuclear power).  
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The core objective of the elicitations in both cases was to gain insights on the relationships 

between public RD&D investments and technological change for specific technologies in a 

parameterization that could be naturally introduced into an economic model of aggregate 

benefits. Specifically, the Harvard elicitations included questions on experts’ estimates about 

various technology specific cost components (e.g., overnight capital cost, operations and 

maintenance costs) and performance parameters (e.g., efficiency, yield, fuel efficiency) in 2030 

under different DOE RD&D budgets.  Two exceptions were the bioenergy survey—in which 

experts were given the option of providing a cost breakdown or providing an overall cost per unit 

of biofuel or electricity delivered—and the vehicles survey—in which experts were asked about 

the total purchasing cost of different types of vehicles and specific performance characteristics 

without a breakdown of cost components (e.g., battery cost).   

FEEM’s elicitations of batteries for electric vehicles, bioelectricity, biofuels, and solar power 

asked experts to provide an aggregated metric of the 2030 cost under different EU RD&D 

budgets. FEEM’s carbon capture and storage (CCS) survey investigated both the cost and energy 

penalty of alternative CCS technologies. Finally, FEEM’s nuclear survey was conducted in 

coordination with the Harvard study and used a two-step methodology combining an online 

individual elicitation with a workshop in which a subset of experts participated.
6
 

The choice of the media for the elicitation is an important one which involves tradeoffs.  Among 

other possible benefits, in-person interviews imply greater interaction between the expert and the 

researcher and can reduce biases and availability heuristics. However, conducting online or mail 

                                                           
6
 In the survey and the workshop experts were asked questions about cost components and different 

performance parameters. For more detailed information the readers are referred to the papers on the 

Harvard and FEEM elicitations provided in Section 1. 



 

9 

 

elicitations reduces costs, for both respondents and researchers, and increases flexibility, thereby 

expanding the pool of participants.   

Independent of the media chosen, developing the elicitation protocol took around 3-5 months for 

both research groups, consistent with previous energy technology expert elicitations. A crucial 

step was testing and revising the elicitation protocol through pilot interviews and an iterative 

process in which a few experts on a given technology were involved.   

In line with the literature, the elicitations included a background calibration section which 

contained a summary of the purpose of the survey, background information on either DOE’s or 

EU current activities and investments in the technology of interest, and a statement about 

avoiding bias and overconfidence. All Harvard surveys and most of FEEM’s surveys also asked 

participants to rate their own expertise in several sub-technology areas on a 6-point scale, where 

6 was described as “I am one of the top experts in this technology/system” and 1 was described 

as “I am not familiar with this technology/system.” This information was subsequently used to 

test for correlations between areas of expertise and recommendations for RD&D funding or 

particularly optimistic technology forecasts, which would have suggested experts make self-

interested recommendations. The SI includes for more information on details on the elicitations.  

The second half of the protocol contained the core questions of the elicitations. The Harvard 

studies included four sections with questions on: (1) the commercial viability, cost and 

performance of different technologies in 2030 under a business as usual (BAU) public RD&D 

funding scenario; (2) the expert’s recommendation of total public investments in the technology 

area of interest and their recommended allocation of funds to sub-technologies, including  

questions about the specific technical hurdles to be addressed by their allocation; (3) how future 

technology costs and performance would change if their recommended RD&D investments were 
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implemented, and how this would change under alternative RD&D investment levels; and (4) 

other technology-specific policies and factors affecting technology deployment. We also 

considered using self-rated expertise to weight experts, but we ultimately did not conduct this analysis. 

The FEEM elicitations on batteries for EDV, bioenergy, biofuels, and solar, asked experts to (1) 

assess different technological options based on their level of maturity and possible bottleneck; 

(2) suggest a breakdown of public research expenditures across the different technological paths 

that would maximize the chance of a breakthrough; (3) provide estimates of future costs and the 

surrounding uncertainty conditional on different levels of public RD&D investment;
7
 (4) assess 

the potential additional bottlenecks that additional RD&D investment could not address (i.e. 

concerns about competition of biofuel with food for land); and (5) assess the potential 

international diffusion of a given technology, if cost-competitive, to both OECD and non-OECD 

countries.  

All elicitations included interactive visual aids.  The Harvard mail surveys included a set of chips 

and a “board game” to help experts think through allocating their recommended budget across 

different technology areas and technology development “stages”.
8
  The Harvard and FEEM 

online surveys included a virtual game board and chips as well as graphical feedback for all 

quantitative input from the experts, allowing them to visualize probability distributions of their 

                                                           
7 

The FEEM elicitations asked the expert to first provide estimates of the 10
th
, 90

th
 and 50

th
 percentile of 

future costs. The same experts were subsequently asked to provide probabilities that under the same 

different RD&D scenario the cost of a given technology would be below some level chosen by the 

researchers. This effectively meant eliciting the same information twice, but under different format, and 

allowed to check the consistency of expert’s responses.  
8
 The Harvard board game included 100 poker chips, one for each percentage of their total 

recommendation, that experts allocated across sub-technology areas, which included an “other category” 

that allowed them to indicate additional areas. The stages of RD&D that experts could allocate across 

were basic research, applied research, pilots, and demonstration.  
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cost and performance estimates under the different RD&D scenarios.
9
 The FEEM in person 

surveys allowed experts to plot their cost estimates in real time and check for the consistency of 

their own answer.  

To evaluate the effectiveness of online elicitations, FEEM and Harvard conducted nearly 

identical elicitations in nuclear energy. Following the surveys, the groups convened a subset of 

the European and U.S. experts for a 1.5-day workshop to discuss the results of the survey and to 

bring forward any questions or misunderstandings that surfaced during the online elicitations. 

Experts discussed their answers and talked through their disagreements regarding the 

interpretation of the questions. Following each session of the workshop, experts were given the 

opportunity to privately change their answers to the survey. 

Finally, both research groups worked at connecting the technical outcomes and/or the costs and 

uncertainty estimates to societal benefits (e.g., CO2 emissions, energy costs, oil imports, etc.).  

The Harvard group selected the MARKAL model, while the FEEM worked with the WITCH 

model.  MARKAL is a bottom up energy-economic model that is publicly-available and has 

institutional buy-in from many government agencies in the US and elsewhere. The use of 

MARKAL was coupled with an importance sampling technique which allowed changing input 

assumptions without requiring additional model runs, thus solving a computational constraint 

faced by many decision-making entities (Pugh et al., 2011).
10

  Because of this method’s ability to 

                                                           
9
 The graphical feedback on the online surveys included plots of the 90

th
, 10

th
, and 50

th
 percentile 

estimates for each technology and different budget scenarios, allowing experts to modify their answers as 

they were filling out the graphs in real-time. 
10

 The computational challenge comes after the challenge of building internal trust and buy-in, achieving 

external transparency and consistency, which currently contributes to decision-making entities not 

estimating the benefits of RD&D investment portfolios.  
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test different input assumptions, the benefits associated with RD&D investments under more 

optimistic or more pessimistic experts’ assumptions were estimated.
11

  

 3.2 Meta-analysis of expert elicitations 

Anadon et al. (2013) conducted a meta-analysis of three recent nuclear expert elicitations 

(Abdulla, Azevedo, & Morgan, 2013; Anadon et al., 2012) given the scarcity of information 

regarding the impact of expert selection and elicitation design on elicitation results.  Meta-

analysis is a set of statistical techniques used to reconcile and aggregate the results of multiple 

studies testing similar hypotheses and to thus enhance the overall reliability of findings 

(Borenstein, Hedges, Higgins, & Rothstein, 2009; Glass, 1976).  Systematic reviews and meta-

analyses, which typically follow very strict rules in healthcare applications, are very systematic 

and time consuming (Morton, 2013). Meta-analysis complements the qualitative insights about 

expert selection and elicitation design and has been used in environmental economics since the 

1990s (Matarazzo & Nijkamp, 1997; Nelson & Kennedy, 2009), with several recent applications 

in energy (Barker & Jenkins, 2007; Rose & Dormady, 2011; Zamparini & Reggiani, 2007).   

Using the individual elicited values from multiple elicitations,
12

  (Anadon et al., 2013)  estimate 

how public RD&D investment affects experts’ 2030 central estimates (50
th

 percentile) and the 

                                                           
11

 This approach can potentially be used to conduct other sensitivity analysis such as including 

experts internal to the decision making process vs. experts from stakeholder groups, experts from 

different countries, etc (Chan & Anadon, 2013).  It also can be used to understand the sensitivity of 

aggregated results to decisions about whether to include or exclude the outlier expert responses (Jenni, 

Baker, & Nemet, 2013). 
12

 The use of primary data (IPD) is considered the gold standard for systematic reviews because it avoids 

many of the shortcomings of aggregate meta-analysis: it enables controlling for confounding factors at the 

individual level and for treatment differences between studies. Moreover, using IPD the study derived 

results directly and independent of study reporting. This increased the aggregate power of the study, 

which allowed to more thoroughly scrutinize modeling assumptions (such as the presence of interactions 

and the linearity of associations) and explore subgroup effects (Borenstein et al., 2009; Ghersi, Berlin, & 

Askie, 2013; Reade et al., 2009). 
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uncertainty (defined as the difference between the 90
th
 and the 10

th
 percentile of expected costs, 

normalized by the median, (p90-p10)/p50) surrounding it, after controlling for a wide range of 

observed characteristics.. As a result, the study also informs on how elicitation protocol 

differences and expert geographical and sector characteristics affected technology outcomes. 

Independent variables in the central estimates and uncertainty regressions were the level of 

public RD&D budgets, expert background (industry, academia, and public institution), expert 

country (American vs. European), technology type (large-scale Gen. III/III+ designs, large-scale 

Gen. IV designs, and small modular reactor designs), and elicitation mode (in-person vs. online). 

The relationship between expected costs and RD&D investment was tested both using a log-log 

specification, usually applied in the learning-by-searching literature, and a linear specification 

with a squared RD&D term, in line with the literature on diminishing marginal returns to RD&D 

investments (Evenson & Kislev, 1976; Hall, Mairesse, & Mohnen, 2009; Popp, 2002).  

4. Key Findings 

This section describes the key findings regarding the role of public RD&D on the future of 

energy technologies and the use of elicitations to inform the policy process.  

4.1 Including questions about self-rating of expertise 

Including a section on self-assessed expertise in the elicitation protocol helped assess whether 

experts were biased towards favorable treatment for the sub-technology area which they were 

                                                                                                                                                                                           
It is also important to point out that expert elicitations are used to estimate the distribution of the 

underlying beliefs held by experts with the largest information sets over an uncertain quantity. Therefore, 

an expert elicitation study does not rely on asymptotic convergence of sample estimates through the 

collection of a large number of individual observations, but rather develops the highest quality 

representation of the underlying distribution among the most informed experts.   In this sense the use of 

IPD meta-analysis that treats individual experts as single observations relies on a random sampling 

assumption that the original data collection did not make.  
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most knowledgeable. However, we found little evidence of experts systematically recommending 

greater funding levels for the technology areas with which they were most familiar (Figures 1 

and 2 for US and EU experts, respectively).  

   X- axis: Self-rated expertise (1: lowest; 6: highest) 

Y- Axis: Fraction of expert’s total investment for a particular technology area 

 
(a) Bioenergy     
 (b) Utility scale energy storage 

 
(c) Nuclear energy    
 (d) Fossil energy and CCS 

 
(e) Vehicle technologies (f) Solar photovoltaics 
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Figure 1: Analysis of expert–recommended budget allocations in areas of self-assessed expertise 

in Harvard elicitations. The x-axis corresponds to the self-rated expertise (1: I am not familiar 

with this technology; 6: I am one of the top experts in this technology). The y-axis corresponds 

to the fraction of the recommended budget that an expert devoted to a particular technology.  The 

graphs represent 6 different elicitations: (a) Bioenergy; (b) Utility scale energy storage; (c) 

Nuclear energy; (d) Fossil energy and CCS; (e) Vehicle technologies; (f) Solar photovoltaics. 

 
X- axis: Self-rated expertise (1: lowest; 6: highest for nuclear, 1: lowest; 5: highest for all the other technologies) 

Y- Axis: Fraction of expert’s total investment for a particular technology area 

 

 
(a) Nuclear energy                                                                    (b) Biofuels 

  
(c) Vehicle technologies     (d) Solar photovoltaics 

 

Figure 2: Analysis of expert–recommended budget allocations in areas of self-assessed expertise 

in FEEM elicitations. The x-axis corresponds to the self-rated expertise (1: I am not familiar with 

this technology; 6: I am one of the top experts in this technology). The y-axis corresponds to the 

fraction of the recommended budget that an expert devoted to a particular technology.  The 

graphs represent 4 different elicitations: (a) Nuclear energy; (b) Biofuels; (c) Vehicle 

technologies; (c) Solar photovoltaics. 
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4.2 Conducting elicitations online  

Online elicitations emerge as the lowest cost option, followed by mail and in person elicitations.   

An extremely conservative back of the envelope calculation of the monetary benefits (i.e., 

excluding benefits in future years, assuming that researchers travelling to interview experts do 

not need accommodation, and ignoring the time and effort savings to researchers and experts) 

indicates that online surveys with 11 experts are at least 40% cheaper than in-person elicitations 

with the same number of experts.  During the online surveys, some experts did contact the 

research team for clarification, but it is virtually impossible to rule out that the lower interaction 

between experts and researchers decreased the value of the information contained in the online 

estimates, as some experts may have found some of the questions ambiguous (even after 

extensive pilot testing of the elicitation instruments).   

The discussion during the nuclear group workshop, which included 18 out of the 60 experts that 

participated in the FEEM and Harvard nuclear expert elicitations, confirmed that the online tools 

providing real-time feedback were useful and that expert interpretation of the questions was 

consistent with the researchers’ intentions.  In addition to the qualitative discussion, the 

robustness of the online elicitation tool was further validated by virtue of very few experts 

requesting to make changes to their original answers by the end of the workshop.
13

  

Differences in the media chosen for the elicitations (online as well as by mail), RD&D scenarios, 

time periods and technology focus can be used to quantitatively investigate any possible 

systematic differences in the normalized uncertainty range ((90
th

-10
th

)/50
th

 percentile cost 

                                                           
13

 The workshop was divided into discussion sessions that were design to match the elicitation questions. 

Each session included a presentation of the results of that part of the elicitation, a moderated group 

discussion, and a final session in which each expert was provided with a sheet allowing him to privately 

make changes to his answers to that section (all nuclear experts were men). 
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estimates of the experts). Table 1 shows the results of the analysis of the normalized uncertainty 

range provided by the experts in the Harvard elicitations using dummy variables for online 

surveys and for different RD&D and technology scenarios.  Table 2 shows similar regression 

results for the four in-person FEEM elicitations. 

Model 1 in Table I shows that the normalized uncertainty range in the Harvard data is greater for 

online rather than paper sent by mail elicitations. However, we must note that the technology 

areas are perfectly collinear with the online dummy, which means that further work is needed to 

disentangle the effect of conducting elicitations online from the differences in normalized 

uncertainty across technology areas. Model 3 and Model 4 in Table I shows respectively that: (a) 

controlling for unobserved expert-level heterogeneity with expert fixed effects, RD&D scenarios 

with greater investment than the BAU RD&D scenario had significantly lower normalized 

uncertainty ranges; and (b) the bioenergy, storage, solar, and nuclear surveys were associated 

with significantly greater normalized uncertainty ranges than the fossil survey, with the smallest 

difference for nuclear; conversely, there was not a significant difference in the uncertainty metric 

between the fossil and vehicles survey. 

Turning to Table II, we find in the 4 in-person FEEM higher RD&D scenarios are associated 

with greater normalized uncertainty ranges. This result is in contrast with the Harvard results in 

Table I.  There are several possible explanations for this difference, none of which can be 

formally tested at present. One hypothesis is that U.S. experts believe that more RD&D reduces 

uncertainty while E.U. experts believe that it increases it.  Another hypothesis is that the results 

depend on the framing of questions by FEEM and Harvard. Specifically, the Harvard surveys 

asked experts to recommend the total amount and specific allocation of RD&D investments, 

while the FEEM survey asked experts about fixed increases from the BAU scenario without 
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asking them to design their ideal RD&D program.  It is possible that when experts think about 

their ideal RD&D program they have less uncertainty about the results of their recommendations.   

It is also possible that when experts think about the impact of RD&D on the aggregated cost of 

the technologies (as is the case in most of FEEM elicitations) they think about uncertainty 

differently when compared to components of technology cost (as is the case in most of Harvard 

elicitations).   

Table I: Analysis of factors associated with differences in normalized uncertainty ranges in the 6 

Harvard expert elicitations. The 2030 BAU RD&D scenario and the fossil technology category 

serve as reference points. Y = ln(uncertainty).  

Variable Model 1 Model 2 Model 3 Model 4 

Online 0.1430** 

(0.0622) 
 

 
 

2010 BAU  
-0.0431 

 (0.0882) 
-0.1140** 

(0.0504) 

-0.0657 

(0.0841) 

2030 recommended budget  
- 0.0945 

(0.0924) 
-0.1055**  

(0.0479) 

-0.0856 

(0.0853) 

2030 10X recommended budget  
-0.0259 

(0.0863) 
-0.0948** 

(0.0473) 

-0.0168 

(0.0800) 

Vehicles   
 -0.1065 

(0.1120) 

Bioenergy   
 0.6310*** 

(0.0964) 

Storage   
 0.7006*** 

(0.1265) 

Nuclear   
 0.2574*** 

(0.0669) 

Solar PV   
 0.6894*** 

(0.0734) 

Expert fixed effects NO NO YES NO 

Constant 0.6010*** 0..4987*** 
-1.4974*** 

 
0.8255*** 

R-squared 0.0077 0.0019 
0.7419 

0.1465 

Observations 635 635 635 635 

Robust p-values in brackets 

*** P<0.01, ** p<0.05, * p<0.1 

Notes: The nuclear and solar PV elicitations were conducted online, and the others via mail. 
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The difference between the impact of RD&D on the estimates by US and EU experts highlights 

the complex set of factors involved when making these estimates. They therefore should be 

carefully considered when using the results from different elicitations on similar topics.  Overall, 

the launch, data acquisition, and data processing for the online surveys were faster than for the 

paper surveys. Both groups also learned valuable lessons from the development of their first 

elicitations (bioenergy energy for Harvard and solar survey for FEEM) that made the 

development of the remaining elicitations faster.    

 

Table II: Analysis of factors associated with differences in normalized uncertainty ranges in the 4 

FEEM in person expert elicitations. The 2030 BAU RD&D scenario and the biofuels technology 

category serve as reference points. Y = ln(uncertainty).  

 

Note: the “b” and “c” versions of the regression models represent different levels of aggregation in the solar and 

vehicle technologies elicitations.   

Model a1 Model a2 Model b1 Model b2 Model c1 Model c2

+50% RD&D 0.167* 0.186*** 0.165* 0.186*** 0.165* 0.186***

(0.0847) (8.50e-06) (0.0868) (8.50e-06) (0.0750) (4.86e-06)

+100% RD&D 0.305*** 0.327*** 0.298*** 0.327*** 0.298*** 0.327***

(0.00231) (3.00e-09) (0.00304) (3.00e-09) (0.00244) (2.16e-09)

Solar -0.110 -0.0267

(0.338) (0.862)

Vehicle -0.151 0.380**

(0.152) (0.0490)

Cost_CSP -0.476*** -0.0267

(0.000400) (0.863)

Cost_EV -0.104 0.427**

(0.376) (0.0313)

Cost_PHEV -0.197 0.333*

(0.105) (0.0919)

Cost_PV 0.0429 0.362**

(0.725) (0.0421)

Constant -0.623*** -0.439*** -0.515*** -0.819*** -0.515*** -0.819***

(0) (0.00412) (1.91e-06) (4.16e-10) (1.75e-06) (5.66e-10)

Observations 161 161 161 161 161 161

R-squared 0.058 0.857 0.071 0.857 0.142 0.867

Expert FE NO YES NO YES NO YES

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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4.3 Combining elicitations with a group workshop 

The Harvard and FEEM groups carried out the same nuclear two-step elicitation in the US and in 

the EU. First, experts provided individual estimates through and online survey. Then, a subset of 

experts was involved in a workshop and group discussion (see Figure 3 for a schematic of the 

process). This identified issues that could arise when each of the two steps is followed as a stand-

alone procedure.  

 

Figure 3: (a) Structure protocol employed in the design of the online elicitation and group 

discussion; (b) structure of the individual online elicitation instrument (Anadon et al. 2012). 
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As discussed in section 4.2, while cost and performance estimates did not change substantially 

during the workshop from the individual expert elicitations, the workshop did enrich the 

information obtained from the elicitations on other topics.  The workshop had some impact on 

the stated RD&D policy objectives that recommended investments were meant to address. 

Experts who participated in the workshop made some changes (mainly in the form of additions), 

suggesting that the workshop discussion was helpful in building consensus in this area.  RD&D 

policy objectives that gained priority after the workshop were development of SMRs, risk and 

safety, and proliferation resistance.  EU experts also increased recommended funding for 

sodium-cooled fast reactors and fuels and materials. 

The workshop also resulted in an improved understanding of how some experts perceived 

definitional and framing issues that were originally taken for granted. For example, while some 

experts thought of climate change mitigation as the main goal when making RD&D 

recommendations, others had multiple goals in mind, such as non-proliferation concerns and 

hydrogen production.
14

  This variation in the experts’ reasoning would not have been revealed 

had we pursued only individual elicitations. The workshop also helped clarify the reasons why 

U.S. experts placed more emphasis on RD&D to understand fuel cycle economics and reduce 

fuel cycle costs than E.U. experts and why EU experts thought that it was unlikely that there 

would be a market for small modular reactors (SMRs) in the future.  Due to the (obviously 

unplanned) timing of the workshop after the Fukushima disaster, we were also able to determine 

                                                           
14

 Here we include two other examples: (a) While experts displayed a clear understanding of the questions 

asked about cost and performance, different experts were using a different definition of “major 

radioactivity releases caused by an accident or sabotage.” (b) Some experts thought that the Fukushima 

accident would fall under their personal definition of “major radioactivity release,” others felt that such a 

description would only apply to a larger accident with more direct casualties. 
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that the Fukushima disaster did not alter the expert’s answers regarding the future of nuclear 

deployment in the United States and the European Union.   

Overall, the combination of the individual online elicitation and expert workshops served to 

validate the online tool and build consensus on parts of the survey, while allowing the research 

team to better understand some of the reasons behind expert answers.  The combination of online 

tools and other tools to increase expert interaction without incurring additional costs is an area of 

growing interest (Siddharth, Khodyakov, Srinivasan, Straus, & Adams, 2011). 

4.4 Designing expert elicitations to use as modeling inputs  

Even though the elicitations were explicitly designed to provide insights about the optimal 

allocation and total level of RD&D investments across different technology areas, some design 

needs were not foreseen. Chan & Anadon (2013) identify ways to improve the elicitation to 

better match analysis needs.
15

 First, obtaining experts’ estimates of future technology cost over a 

very large range of RD&D investments, including RD&D ranges well-beyond current levels, can 

yield additional insights.  Experts in the Harvard study were asked to provide estimates of 2030 

technology cost and performance under a BAU RD&D funding scenario, their recommended 

RD&D funding level, and 10 times their recommended funding level. When designing the 

survey, researchers believed that this was the maximum feasible range that experts would be able 

                                                           
15

 The work by Chan & Anadon (2013) on estimating and optimizing the benefits of energy RD&D 

portfolios presented here relates to three other pieces of work. Although Blanford (2009) and Davis and 

Owens (2003) present two frameworks to support investment decisions, they do not justify their 

assumptions regarding the impact of RD&D on future technology cost and performance, and they do not 

provide computational flexibility to allow the estimation of optimal RD&D investment levels in a range 

of technologies at a sufficiently small level of granularity (in the range of millions of dollars) and with the 

ability to optimize for different goals and risk considerations. Baker & Solak (2011) use elicitation data 

for three technologies not targeted to inform government investments at the program level and, unlike this 

work, the R&D investment optimization relies on assumptions about climate damages. 
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to consider; 10-times the recommended levels amounted to 10 to 80 times current funding levels. 

Outside of this range, the elicitations could not inform the relationship between RD&D funding 

and technology cost and performance without heroic assumptions to extrapolate beyond the 

range experts were asked to consider.  The funding levels selected in the Harvard work were 

sufficient to determine that the current RD&D investment level is too low and that, if properly 

allocated, $15 billion in aggregate US RD&D funding could be justified on the basis of 

aggregate economic benefits. However, because the calculated benefits of RD&D were so large, 

this range proved too small to estimate the optimal level of RD&D investment. Even though the 

Harvard study could calculate the rate of decreasing marginal benefits, benefits (in terms of 

aggregate economic surplus) were still increasing 10% faster than costs at the maximum 

aggregate range considered, $15 billion per year (see Figure 4). Other than aggregate economic 

surplus, there are many other metrics of benefits that one could use (for example, one could use 

avoided CO2 emissions for benefits and incorporate opportunity costs for the RD&D costs).    
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Figure 4: Optimal R&D portfolios under an 83% CO2 reduction policy. The figure shows the 

allocation of RD&D funding at different RD&D budget constraints between $2.5 billion - $15 

billion per year, relative to the Fiscal Year 2009 and 2012 allocations. The dark blank line in the 

main plots is the maximum expected increase in economic surplus (above the an arbitrary 

reference point, the expected surplus in the optimal $2.5bil budget) that can be attained under a 

given RD&D budget constraint. The small numbers along the black line are estimated marginal 

returns on investment, calculated by linear approximations to the derivative of the optimal 

expected surplus at different budgets (Chan & Anadon, 2013). 

 

Second, future elicitations in this area should incorporate questions about the extent to which 

advances in a particular technology co-develop with advances in other related technologies.  The 

Harvard researchers felt that it was reasonable to assume that future advances in some 

technologies would be uncorrelated with advanced in other technologies (e.g. solar photovoltaics 

and nuclear technologies). However, due to knowledge spillovers between technology areas, it 

seemed unreasonable to make this assumption for all technologies (Nemet, 2012).  For example, 
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the Harvard bioenergy technology elicitation consisted of technology processes for three bio-

based fuels: gasoline substitutes, diesel substitutes, and jet fuel substitutes.  Because of the 

similarity in the technology to produce any of the three products, assuming independence across 

the impact of RD&D on the future costs of these technologies did not seem reasonable.  

Complete independence also did not seem reasonable across other technology areas, such as 

utility-scale energy storage and electric or plug-in-hybrid vehicles, which could feasibly share 

battery technology. Thus, a correlation table was developed based on Harvard’s expertise in 

various technology areas (see section SI4 in the SI). To inform future elicitations, the Harvard 

vehicles elicitation implemented a pilot approach to utilize expert knowledge to estimate cross-

technology correlations. The pilot asked experts to revise their 90
th

, 10
th

, and 50
th

 percentile 

estimates for a technology considering several future scenarios with different realizations of 

2030 costs in a related technology.  While most experts were willing and able to think through 

and answer these questions thoughtfully, including these questions lengthened an already long 

elicitation. Third, asking qualitative questions to justify experts’ recommended level of 

investments and allocation increased our own confidence in the results and their external 

credibility.
16

 

Fourth, the large number of experts included in the elicitations (more than 100 per research 

group), required substantial preprocessing before summary results could be presented. Harvard 

developed an importance sampling technique to reduce the computational requirements of 

assessing the RD&D allocations and forecasts of many different experts. However, for the 

                                                           
16

 This is something that the Harvard group did not include in the first bioenergy elicitation, but did 

include in the subsequent five elicitations.  For more information on what some of these qualitative 

questions focused on, the reader can access the links to the nuclear survey in the SI of Anadon et al. 

(2012). 

 



 

26 

 

parsimony of presenting results, experts’ responses were eventually selected or aggregated.  

Anadon et al. (2011), for example, relied on three “expert scenarios”, labeled, “optimistic,” 

“middle,” and “pessimistic”, each of which grouped the answers of the 6 most optimistic, central, 

and pessimistic experts.  As shown in Figure 5, even increasing RD&D investments from a BAU 

budget of $2 billion to $82 billion/year, and utilizing assumptions from the most optimistic 

experts, CO2 emissions are not expected to decrease substantially from current levels.  Thus, 

creating “expert scenarios” allowed researchers to calculate high and low bounds of benefit 

metrics that did not depend on the choice of expert.     

 

Figure 5: U.S. energy-related CO2 emissions under (a) business-as-usual federal energy RD&D 

investment and no additional demand-side policies (blue) and (b) ten times the experts’ average 

recommended federal energy RD&D investments (somewhere between $49 and $82 billion/year) 

(red), with no additional demand-side policies, using “middle of the road” and “optimistic” 

experts’ technology cost projections. Note that optimistic experts were optimistic about 

technological progress in general, and not necessarily optimistic about the effects of RD&D 

(Anadon et al., 2011). 
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4.5 Using meta-analysis to improve elicitation usability and design 

The meta-analysis of the nuclear elicitations evaluated the impact of expert selection 

(background and country) and elicitation design (technology granularity and online vs. in person 

mode) on the elicited costs of nuclear technologies.  The goal of this exercise was to inform 

future elicitations and to better capture the experts’ thinking on the impact of public nuclear 

RD&D on future technology costs for modeling and policy analysis. 

Here, we discuss the key insights from the log-log model of the experts’ central estimate of 

nuclear power overnight capital cost in 2030 (see section 3.2).
17

 Expert composition has a 

qualitatively large impact on the range of estimates available for policy analysis.  Controlling for 

expert affiliation, expert country of origin, and technology type, the coefficient of the RD&D 

variable increases by 25% relative to the estimated coefficient in the reduced form model 

(namely, RD&D on costs).  On average, a doubling of the yearly public nuclear RD&D budget in 

the US and the EU is associated with an 8% decrease in nuclear costs in 2030, ceteribus paribus.  

Experts from public institutions have estimates of overnight capital costs that are about 14% 

higher on average than those of academics and that estimates from industry experts are even 

higher, on average around 31% higher than academics. Expected overnight capital costs are 

approximately 22% lower for experts in the USA when compared to experts in the European 

Union. Technology type also is a statistically significant determinant of 2030 expected costs: 

                                                           
17

 The results of the two non-linear models we specified, log-log and linear-quadratic, were consistent in 

terms of the statistical significance and sign of the estimated effects.  Also, the estimated negative 

quadratic coefficients in the linear model are consistent with diminished returns to RD&D (and are not 

necessarily inconsistent with learning-by-searching). 
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overnight capital costs are expected to be higher for both Gen. IV and SMR technologies with 

respect to Gen. III/III+ technologies by roughly 23% and 24%, respectively.
18

   

Focusing on uncertainty—defined as the 90
th

 percentile estimate less the 10
th

 percentile estimate, 

normalized by the 50
th

 percentile estimate—higher or lower levels of RD&D investment are not 

systematically associated with narrower or wider uncertainty ranges. However, US experts have 

around 16% wider uncertainty ranges compared to EU experts.  The uncertainty range for SMRs 

is about 14% smaller than that for large scale Gen. III/III+, suggesting that experts are more 

confident about their cost estimates for these systems. This was a somewhat surprising finding 

considering that SMRs are expected to be delivered to the site fully constructed from the 

manufacturing facilities, yet current experience is limited and no operating licenses have been 

issued in the United States or the EU.  

Ongoing work is now focusing on validating these results across a wide range of technologies 

through a larger meta-analysis The increased variation among these studies, as well as the 

increase observations, will enable more precise estimation of both expert and elicitation design 

effects and will allow to gauge differences in experts’ assumptions about the returns of RD&D in 

different technological areas. 

 

 

                                                           
18

 The Anadon, Nemet & Verdolini (2013) study found that the in-person variable (accounting for the 

observations obtained through an in-person interview as opposed to through an online tool) becomes 

negative and significant when expert fixed effects are included, although it is difficult to draw conclusions 

about this effect since it requires inclusion of unobserved expert characteristics for it to become 

significant. This tentative result is consistent with results in Table 1 in this paper, but the tentative nature 

of this analysis requires that the inn-person effects be a focus of future work assembling additional 

elicitation data ensuring that more than the 3% of observations are in-person. 
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5. Conclusions and future work 

The findings presented in this paper provide lessons for the future design and use of expert 

elicitations to inform policy decisions on public RD&D investments. The findings presented in 

this paper stem from several pieces of work related to 10 expert elicitation exercises 

encompassing 6 energy technology areas and conducted between 2009 and 2011 by Harvard 

researchers and FEEM researchers. Below we summarize five key findings.  

First, mail and online expert elicitation tools can be used to obtain expert elicitation estimates 

more cost-effectively than in-person interviews without introducing bias.  This finding relies on 

insights from the expert workshop that followed FEEM and Harvard nuclear elicitations and is 

conditional on appropriate preparatory work by the eliciting research team. This work includes 

extensive background research on the topic, pilot testing the elicitation instrument, background 

material that discussed biases and confidence, and the utilization of numerous interactive visual 

aids.  In particular, conducting elicitations online can contribute to an easier institutionalization 

of the process. 

Second, asking experts to self-assess their level of expertise in specific technologies and 

processes, to justify their RD&D priorities, and to identify non-RD&D-related factors that would 

affect the future of specific technologies, increases both the researchers’ confidence in the level 

of intellectual engagement of the experts and in the external credibility of the results.  For 

example, experts were not systematically recommending larger amounts of funding to their areas 

of expertise, providing some evidence that they were not solely motivated by self-interest.   

Third, to support decisions about RD&D investments in different technology programs, it can be 

useful to push experts to consider a wide range of scenarios, including scenarios at the boundary 
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of their private information set, to explore potentially-desirable scenarios far from current 

activities without undue extrapolation bias. In addition, elicitations should include questions to 

allow the deduction of correlations across technology improvements. Alternatively, researchers 

(or analysts) can create a separate elicitation targeting correlations.  

Fourth, some important policy insights can be derived by creating scenarios without aggregating 

experts.  Insights regarding the need to put in place additional policies beyond RD&D 

investments to meet CO2 emissions reductions goals, and the decreasing marginal returns to 

RD&D investments, were independent of whether or not modeling included experts that were 

optimistic, central, or pessimistic regarding forecasted 2030 technology costs. 

And fifth, expert selection has a large and significant impact on elicitation results, indicating that 

experts from the private sector, academia, and public institutions, as well as experts from 

different countries, have different private information sets and beliefs. An elicitation exercise 

that sought to include all perspectives would need to include experts from all of these 

backgrounds. Further, the meta-analysis exercise allowed researchers to better understand 

estimates of the impact of RD&D on technology costs.  

The lessons from this work are applicable not only to energy, but also to other technology areas 

that receive substantial government RD&D support, such as health, defense, and agriculture. 

Public RD&D investments in other sectors also face questions regarding the extent to which they 

should be guided purely by scientific merit or by mission. For example, there have been calls to 

increase the extent to which funding in the R&D budget of the National Institutes of Health 

(NIH) should consider disease burdens (see review by Sampat (2012)).  This approach would 

require not only that greater fractions of the NIH budget be allocated to specific diseases, but 
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also some consideration of the extent to which additional research could result in improvements.   

Industrial research institutions could also implement some of the insights and methods discussed 

in this paper, as they also deal with investing in projects with uncertain returns that will only 

impact their bottom line if they are diffused in the market. 

Although the combination of insights from this body of work improves our confidence in the use 

of expert elicitations to inform RD&D decisions in the energy sector and (we would argue) 

beyond, there are several avenues for ongoing and future research that will further improve our 

understanding.  Experts could be randomized into three different groups to complete the same 

elicitation in-person, online, or via mail, respectively to conduct a more systematic evaluation of 

whether there are any systematic differences in the results. Additional meta-analysis work 

including elicitations for energy technologies beyond nuclear energy would establish the extent 

to which expert background, country variables and returns to RD&D change across technologies. 

Ongoing work involving three major teams involved with energy economic models (GCAM at 

the Pacific Northwest National Laboratory, WITCH at FEEM, and MARKAL at Brookhaven 

National Laboratory) is using aggregates of elicitation results from different studies. This effort 

will develop probability distributions of technology costs conditional on R&D levels by applying 

equal weights in a mixture distribution of individual expert assessments collected from major 

studies conducted at the University of Massachusetts Amherst, FEEM, and Harvard University. 

Finally, the question of whether or not to aggregate expert answers to model future technical 

change and the uncertainty around it was not a focus of this paper (the focus was on insights 

robust to different “expert scenarios”).  Identifying the benefits of aggregating expert 

assessments may ultimately require ex-post analysis of previous elicitations against the realized 

technical change. 
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