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Die Quantifizierung von Marktrisiken in der Tierproduktion
mittels Value-at-Risk und Extreme-Value-Theory

Martin Odening und Jan Hinrichs

1 Einleitung

Die jüngste BSE-Krise und die fast zeitgleich aufgetretene Maul- und Klauenseuche haben

Ende 2000 zu erheblichen Turbulenzen auf den deutschen und europäischen Rinder- und

Schweinemärkten geführt. Der drastische Preisverfall insbesondere auf dem Rindermarkt hat

umfangreiche staatliche Aufkaufaktionen notwendig gemacht, um akute Liquiditätsprobleme

der Produzenten abzuwenden. Diese Ereignisse in Verbindung mit der Einschätzung, dass

durch die zu erwartende Deregulierung der Agrarmärkte in der Europäischen Union die Er-

zeugerpreisschwankungen tendenziell zunehmen werden, erwecken den Wunsch nach geeig-

neten Indikatoren zur Quantifizierung von Marktrisiken. Während die Analyse und die Steue-

rung von Produktionsrisiken im landwirtschaftlichen Bereich traditionell einen agrarökonomi-

schen Forschungsschwerpunkt bildet, wurde der Quantifizierung und Prognose von Marktri-

siken – zumindest aus einzelbetrieblicher Perspektive – bislang vergleichsweise wenig Auf-

merksamkeit geschenkt. Demgegenüber hat sich im Finanzbereich das Konzept des Value-at-

Risk (VaR) als Standardverfahren in diesem Zusammenhang etabliert (JORION 1997). Es lie-

gen auch bereits Überlegungen zur Übertragung dieses Konzeptes auf den Nichtfinanzbereich

vor (DIGGELMANN 1999), und MANFREDO und LEUTHOLD (1999) weisen speziell auf seine

Anwendungsmöglichkeiten im Agribusiness hin. ODENING und MUßHOFF (2002) kommen

ebenfalls zu dem Schluss, dass sich VaR als Instrument des Risikomanagements im Agribusi-

ness – wenngleich differenzierter als im Bankenbereich – verbreiten wird.

Bei der Anwendung von VaR treten eine Reihe von Spezifikationsfragen und methodischen

Problemen auf, von denen einige in diesem Beitrag diskutiert werden sollen. Der Fokus liegt

– motiviert durch die einleitenden Bemerkungen zu extremen Ereignissen auf den europäi-

schen Viehmärkten – auf der Frage, inwieweit die Prognose besonders ungünstiger Marktkon-

stellationen durch die Anwendung der sogenannten Extreme-Value-Theory (EVT) im Ver-

gleich zu herkömmlichen Verfahren der VaR-Schätzung verbessert werden kann. Auf das

Potenzial der EVT ist in diesem Zusammenhang in jüngster Zeit mehrfach hingewiesen wor-

den (MCNEIL 1998, DANIELSSON und DE VRIES 2000, DIEBOLD et al. 1998). Eine weitere
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Zielsetzung des Beitrages besteht darin, die Schwierigkeiten herauszustellen, die aus einer

mittel- bis langfristigen VaR-Prognose resultieren. Während sich der Prognosezeitraum im

Finanzbereich meistens auf einen oder wenige Tag(e) beschränkt, dürfte dies im Agrarbereich

selten der relevante Zeithorizont sein. Zwar liegt in Gestalt der sog. Square-Root-Regel ein

einfach anzuwendendes Verfahren vor, um kurzfristige VaR-Prognosen für einen längeren

Zeitraum fortzuschreiben, allerdings setzt diese Regel voraus, dass die betrachteten Zufalls-

größen im Zeitablauf identisch und unabhängig normalverteilt sind. Wir untersuchen am Bei-

spiel der Schweinemast, wie groß der Fehler ist, der mit der Square-Root-Regel bei fehlenden

Anwendungsvoraussetzungen verbunden ist und greifen Vorschläge aus der Literatur auf, wie

diese Regel gegebenenfalls zu modifizieren ist. Es wird sich zeigen, dass die beiden ange-

sprochenen Problembereiche – die Berücksichtigung von „Fat Tails“ und die zeitliche Aggre-

gation kurzfristiger VaR-Prognosen – zusammenhängen.

Der Beitrag ist wie folgt aufgebaut: Nach einer Definition von VaR und einer kurzen Dar-

stellung traditioneller Schätzverfahren werden in Abschnitt 2 einige Alternativen der Model-

lierung stochastischer Marktfaktoren diskutiert. Dabei geht es zum einen um die Frage, ob

sich eine Volatilitätsprognose auf bedingte oder unbedingte Verteilungen stützen sollte und

zum anderen, welche Verteilungsform adäquat ist. Der letzte Punkt dieses Abschnitts geht auf

Probleme einer zeitlichen Aggregation von VaR-Schätzern ein. Abschnitt 3 stellt einige

Grundlagen der Extreme-Value-Theorie dar und erläutert, wie dieses Konzept zur VaR-

Schätzung herangezogen werden kann. In Abschnitt 4 wird die zuvor dargestellte Methodik

eingesetzt, um das Marktrisiko in der Schweineproduktion für deutsche Marktverhältnisse zu

quantifizieren. Dazu wird auf wöchentliche Preisdaten zwischen 1994 und 2001 zurückgegrif-

fen. Der Beitrag endet mit Schlussfolgerungen für Methodenwahl und Spezifikation von VaR-

Modellen im landwirtschaftlichen Kontext.

2 Value-at-Risk

2.1 Definition

Kurz gefasst drückt VaR den maximalen Vermögensverlust aus, den ein Unternehmen inner-

halb eines definierten Zeitraumes mit einer bestimmten Irrtumswahrscheinlichkeit in Folge

von Marktpreisschwankungen erleiden kann. Sei W der Wert einer Vermögensposition und V

die zufallsbehaftete Wertänderung dieses Vermögens innerhalb eines Zeitraumes

01 ttth −== ∆ , dann ist VaR wie folgt definiert:
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*V)V(E −=VaR (1)

mit E(V) dem Erwartungswert der Wertänderung und *V  derjenigen Wertänderung,

 für die gilt:

pV(Vdvvf
V

=≤=∫
∞−

*)Prob)(
*

(2)

Unter Verwendung der Definitionsgleichung XWV t ⋅=
0

 mit )WWln(X tt 01
=  lässt sich

VaR auch als Funktion der kritischen Rendite X* ausdrücken:

*)X)X(E(Wt −=
0

VaR (3)

wobei E(X) und X* analog zu E(V) und V* definiert sind. Aus (3) wird deutlich, dass die Be-

rechnung von VaR dem Auffinden eines speziellen Quantils der Verteilung der Wertände-

rung, d.h. der Gewinne bzw. Verluste, gleichkommt. Man spricht auch von der „profit and

loss distribution“ (P&L distribution).

2.2 Modellierung der Ergebnisverteilungen

Es stellt sich sofort die Frage, durch welche Verteilung empirisch beobachtbare Renditen ad-

äquat abgebildet werden können. In der Literatur besteht Einigkeit darüber, dass finanzwirt-

schaftliche Daten (Aktienkurse, Indices etc.) durch das Auftreten von Extremwerten charakte-

risiert sind, d.h., die empirischen Häufigkeitsverteilungen weisen „Fat Tails“ auf (positiver

Exzess, Leptokurtosis)1. Für die Modellierung des stochastischen Prozesses der Renditen

können sich daraus zwei Konsequenzen ergeben (JORION 1997, S. 166 f.): Entweder man

verwendet eine leptokurtische Verteilung, z.B. eine t- Verteilung, oder man greift auf ein Mo-

dell mit stochastischer Volatilität zurück oder man tut beides zugleich2. Für die Verwendung

von Modellen mit stochastischer Volatilität spricht die Beobachtung von Volatilitätsclustern

bei hochfrequenten (z.B. täglichen) Datenreihen. Damit wird der Wechsel von Phasen relativ

geringer und relativ hoher Kursschwankungen beschrieben. Ein solches Verhalten lässt sich

                                                          
1 Eine mathematische Präzisierung dieses Begriffs erfolgt in Abschnitt 3.1.
2 Eine weiterer, pragmatischer Ansatz, der in diesem Zusammenhang als „Stress Testing“ bezeichnet wird,

besteht darin, die Wertentwicklung des betrachteten Portfolios für die extremste(n) Situation(en) zu bestim-
men, die in der Vergangenheit aufgetreten ist(sind). Diese „Worst Case Analyse“ wird ergänzend zur VaR-
Berechnung durchgeführt. Dabei bleibt allerdings unklar, mit welcher Wahrscheinlichkeit sich ein solches
Extremszenario in der Zukunft wiederholt.
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beispielsweise mit Hilfe von GARCH-Modellen abbilden. Für die Renditen wird dabei ein

stochastischer Prozess der Form

ttttX εσµ += (4)

angenommen. εt sind identisch und unabhängig verteilte Zufallsvariable (White-Noise-

Prozess). In den meisten Anwendungen werden Normal- oder t-Verteilungen für die Störgrö-

ßen εt unterstellt. Die Varianz 2
tσ entwickelt sich in einem GARCH(1,1) Prozess gemäß

2222
1 ttt X βσδωσ ++=+ , (5)

mit 10002 <+≥≥>= βδβδσγω ,,,

2σ  ist ein langfristiger Durchschnittswert der Varianz, von dem die aktuelle Varianz nach

Maßgabe von (5) abweichen kann. YANG und BRORSEN (1992) zeigen, dass GARCH-Modelle

nicht nur für finanzwirtschaftliche Anwendungen relevant, sondern auch für die Beschreibung

der Entwicklung täglich gemessener Spotmarktpreise landwirtschaftlicher Produkte geeignet

sind.

Die Verwendung von Modellen mit stochastischer Volatilität impliziert ein ständiges Updaten

der Varianzen, und es ist zu fragen, für welche Problemstellungen derartige bedingte VaR-

Prognosen sinnvoll und notwendig erscheinen. Ausschlaggebend für die Entscheidung zwi-

schen bedingten und unbedingten Vorhersagen ist der angestrebte Prognosezeitraum. Wäh-

rend bedingte Modelle für kurzfristige Prognosen überlegen sind, nimmt ihr Wert mit zuneh-

mendem Zeithorizont ab. Die jüngere Vergangenheit der Datenreihe sagt wenig über die

Wahrscheinlichkeit weit in der Zukunft liegender Ereignisse aus (CHRISTOFFERSON und

DIEBOLD 2000). Dies gilt insbesondere für die Prognose extremer Ereignisse, von denen an-

genommen werden kann, dass sie stochastisch unabhängig sind. Aus diesem Grund empfeh-

len DANIELSSON und DE VRIES (2000) Aussagen über extreme Ereignisse aus unbedingten

Verteilungen abzuleiten.

2.3 Methoden der VaR-Berechnung

In der Literatur werden drei alternative Verfahren zur Berechnung von VaR genannt, die im

Folgenden kurz angesprochen werden sollen. Ausführlichere Beschreibungen finden sich bei

JORION (1997) oder DOWD (1998).
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Varianz-Kovarianz-Methode

Die Varianz-Kovarianz-Methode (VKM), auch als parametrische, analytische oder Delta-

Normal-Methode bezeichnet, bestimmt VaR direkt als Funktion der Standardabweichung der

Portfoliorendite ó. Unterstellt man für die Rendite eine Normalverteilung, so gilt:

hcWt ⋅⋅⋅= σ
0

VaR . (6)

Dabei bezeichnet c das zu p gehörende Quantil der Standardnormalverteilung, und h  passt

den gewünschten Prognosezeitraum (Holding Period) an den Bezugszeitraum der Volatilität ó

an3. Diese wird aus den Varianzen und Kovarianzen der verschiedenen Portfoliokomponenten

und Marktfaktoren ijσ  berechnet:

5.0

1 1








∑ ∑ ⋅⋅=
= =

n

i

n

j
ijjip ww σσ (7)

Darin sind w die Gewichte der Portfoliobestandteile i und j. Als Vorteile der VKM werden

der geringe Rechenaufwand, und die Möglichkeit Wenn-Dann-Analysen durchzuführen, ge-

nannt. Probleme treten auf, wenn die Rückflüsse des betrachteten Portfolios in nichtlinearer

Weise von den zugrunde liegenden Risikofaktoren abhängen, was typischerweise bei Optio-

nen der Fall ist. Die Verteilung der Portfoliorenditen weist dann eine Schiefe auf und ist nicht

mehr normal. Für Anwendungen im Agribusiness erscheint diese Einschränkung derzeit aber

nicht gravierend. Im Zusammenhang mit der Prognose extremer Ereignisse wird insbesondere

die oben angesprochene Normalverteilungsannahme kritisiert, die zu einer Unterschätzung

des VaR führt.

Monte-Carlo-Simulation

Bei dieser Methode wird die gesamte Verteilung der Wertänderung des Portfolios generiert

und VaR als entsprechendes Quantil aus dieser relativen Häufigkeitsverteilung abgegriffen.

Daher rührt auch die Bezeichnung „Full Valuation Method“. Die Simulation vollzieht sich in

folgenden Schritten4:

• Auswahl von Verteilungen bzw. stochastischen Prozessen für die relevanten Risikofakto-

ren und Schätzung der zugehörigen Parameter, insbesondere Varianzen und Korrelationen

                                                          
3 Auf die Probleme, die mit dieser Vorgehensweise verbunden sind, wird in Abschnitt 2.4 eingegangen.
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• Simulation von Zufallspfaden für die Risikofaktoren

• Bewertung des Portfolios bzw. seiner Bestandteile an Hand der Realisation der Zufallsva-

riablen für den gewünschten Prognosezeitraum („mark-to-market“)

• Wiederholung der beiden vorgenannten Schritte, bis eine hinreichende Genauigkeit gege-

ben ist

• Berechnung der Gewinne bzw. Verluste bezogen auf den gegenwärtigen Zeitpunkt, Ord-

nung in aufsteigender Reihenfolge, Bestimmung der empirischen Häufigkeitsverteilung

Als größter Vorteil der Monte-Carlo-Simulation ist die Flexibilität bezüglich der Verteilungs-

annahmen zu sehen. Nachteilig ist der hohe Rechenaufwand im Fall komplexer Portfolios.

Historische Simulation

Die Historische Simulation (HS) gleicht hinsichtlich der Schrittfolge der Monte-Carlo-

Simulation, mit dem Unterschied, dass die Wertänderungen nicht mittels Zufallszahlensimu-

lator generiert, sondern direkt aus Vergangenheitsdaten abgeleitet werden. Somit ist keine

explizite Verteilungsannahme notwendig und die diesbezügliche Kritik an der VKM greift

hier nicht. Allerdings wird implizit von einer Verteilungskonstanz ausgegangen. Als proble-

matisch erweist sich, dass die empirische Verteilungsfunktion zwar um den Mittelwert relativ

glatt verläuft, jedoch angesichts der geringen Anzahl von extremen Stichprobenwerten an den

Rändern diskrete Sprünge aufweist. Je größer bzw. kleiner die gewünschte Wahrscheinlich-

keit ist, umso unsicherer wird die Schätzung des zugehörigen Quantils, und entsprechend

empfindlich reagiert sie auf Veränderungen des Datensamples. Über Ereignisse, die schlech-

ter sind als das Stichprobenminimum kann per definitionem nichts ausgesagt werden. Mög-

lichkeiten, diese Probleme zu umgehen, bietet die Extreme-Value-Theory, die in Abschnitt 3

beschrieben wird.

2.4 Long-Term-Value-at-Risk

Aus der Sicht landwirtschaftlicher Unternehmen besteht Bedarf, VaR-Prognosen zu erstellen,

deren Horizont größer ist als das Messintervall der zugrunde liegenden Daten, etwa auf der

Basis wöchentlicher Daten das VaR für drei oder sechs Monate zu bestimmen. Es existieren

grundsätzlich zwei Möglichkeiten, VaR-Prognosen für eine längere „Holding-Period“ zu er-

stellen: Entweder man misst die Wertveränderungen über den Zeitraum, den es zu prognosti-

                                                                                                                                                                                    
4 Zu Einzelheiten der praktischen Umsetzung siehe WINSTON (1998, S. 345).
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zieren gilt, d.h. man schätzt das VaR auf der Basis drei- oder sechsmonatiger Renditen, oder

man rechnet eine kürzerfristige (z.B. wöchentliche) VaR-Schätzung auf den gewünschten

Zeitraum hoch. Das erstgenannte Vorgehen ist unabhängig von der Renditeverteilung mög-

lich; es weist allerdings den gravierenden Nachteil auf, dass sich die Zahl der Beobachtungen

stark reduziert. Stehen beispielsweise wöchentliche Daten über einen Zeitraum von 10 Jahren

zur Verfügung und soll ein Halbjahres-VaR berechnet werden, so kann sich die Schätzung nur

auf 20 Beobachtungen stützen. Für die zweite Vorgehensweise, die Hochrechnung von VaR-

Schätzungen (Time-Scaling, Time-Aggregation), wird häufig die Square-Root-Regel heran-

gezogen5:

VaR(h) h⋅= VaR(1) (8)

Darin ist VaR(1) das Ein-Perioden-VaR und VaR(h) entsprechend das h-Perioden-VaR.

DIEBOLD et al. (1997) zeigen, dass eine fehlerfreie Umrechnung mittels (8) an verschiedene

Bedingungen geknüpft ist. Erstens, darf sich die Struktur des betrachteten Portfolios im

Zeitablauf natürlich nicht ändern. Zweitens, müssen die Renditen identisch und unabhängig

verteilt sein (iid Annahme), und drittens, müssen sie normalverteilt sein. Von der Struktur-

konstanz des Portfolios soll im Weiteren ausgegangen werden. Wie (8) zu modifizieren ist,

falls die iid-Annahme erfüllt ist, jedoch keine Normalverteilung, sondern eine Fat-Tail-

Distribution vorliegt, wird in Abschnitt 3.1 diskutiert. An dieser Stelle soll der Frage nachge-

gangen werden, wie das Time-Scaling bei Verletzung der iid-Annahme vorzunehmen ist. All-

gemeingültige Aussagen hierzu liegen nicht vor, allerdings haben DROST und NIJMAN (1993)

für einen GARCH-Prozess gezeigt, wie Volatilitäten zeitlich korrekt zu aggregieren sind. Für

den oben beschriebenen GARCH(1,1)-Prozess beispielsweise, lassen sich die h-

Periodenvolatilitäten aus den Ein-Periodenvolatilitäten wie folgt ermitteln:

)h()h()h(X)h()h()h( ttt
2222

1 σβδωσ ++=+ (9)

)h()()h(

)(
)(

h)h(

h

h

ββδδ

βδ
βδ

ωω

−+=

+−
+−

=
1
1

mit

                                                          
5 Die Square-Root-Regel findet beispielsweise auch in dem verbreiteten RiskMetrics-Modell der JP Mogan

Investmentbank Anwendung.
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Darin sind die Koeffizienten a und b wie folgt definiert:

2

2

2

2
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+
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h

h

b

hh
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κ bezeichnet die Kurtosis der Renditeverteilung

(9) unterscheidet sich nicht nur optisch von (8). Vielmehr bestehen systematische Unterschie-

de, die mit zunehmendem h größer werden. Geht h gegen unendlich, streben δ und â in (9)

gegen Null, so dass die stochastischen Terme keinen Einfluss mehr haben. Lediglich der erste,

deterministische Term bleibt und wächst. Das bedeutet, dass zwar das durchschnittliche Ni-

veau der h-Perioden-Volatilität in beiden Fällen übereinstimmt, allerdings weist die Square-

Root-Regel auch eine Zunahme der Schwankungen der Volatilität aus, während sie sich tat-

sächlich mit größer werdendem Zeithorizont verkleinert. DIEBOLD et al. (1997) zeigen anhand

von Simulationsexperimenten, wie groß der Unterschied zwischen beiden Methoden im kon-

kreten Einzelfall aussehen kann. Entsprechende Rechnungen für die von uns betrachtete An-

wendung werden in Abschnitt 4 vorgestellt.

3 Extreme-Value-Theory

In Abschnitt 2.3 wurden traditionelle Verfahren zur VaR-Schätzung beschrieben. Bezüglich

der Prognose sehr seltener Ereignisse wurden sowohl bei der VKM als auch bei der HS

Nachteile deutlich. Einen Ansatz zur Verbesserung der Schätzgüte extremer Quantile bietet

die Extreme-Value-Theorie (EVT)6 7. Sie liefert spezielle statistische Grundlagen für die

Schätzung der Ränder von Wahrscheinlichkeitsverteilungen, von denen einige nachstehend

                                                          
6 EMBRECHTS et al. (1997, S. 364) beschreiben das Anliegen der EVT plakativ als „Mission Improbable: How

to Predict the Unpredictable“.
7  Alternativ zur EVT verwendet LI (1999) einen semiparametrischen Ansatz, der neben der Varianz auch Schie-

fe und Kurtosis der Renditeverteilung bei der VaR-Schätzung berücksichtigt.
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kurz angesprochen werden sollen. Eine ausführliche Darstellung findet sich bei EMBRECHTS

et al. (1997).

3.1 Grundlegende Konzepte

Zentrales Anliegen der EVT ist es, Aussagen über Stichprobenextrema (Maxima oder Mini-

ma) zu treffen. Genauer gesagt wird gefragt, gegen welche Verteilung Stichprobenextrem-

werte streben. Eine herausgehobene Stellung hat dabei die sog. Verallgemeinerte Extrem-

wertverteilung (GEV). Mit Hilfe das Fisher-Tipplet-Theorems lässt sich zeigen, dass normali-

sierte Stichprobenmaxima für eine sehr große Zahl von Verteilungen mit zunehmendem

Stichprobenumfang gegen die verallgemeinerte Extremwertverteilung konvergieren. Seien

nX,,X,X L21  iid Zufallsvariablen (ZV) aus einer unbekannten Verteilung F, und na  und nb

geeignete Normalisierungskoeffizienten, dann gilt für die Stichprobenmaxima

)X,,X,Xmax(M nn L21= :

( )xHx
a

bM
limp

n

nn =







≤

−
(10)

p lim meint den Grenzwert der Wahrscheinlichkeit für ∞→n , und H(x) bezeichnet die GEV,

die wie folgt definiert ist:

( ) ( )( )
( ) 0

01 1

=
≠









−
+−

=
−

ξ
ξξ ξ

für

für

eexp

xexp
xH

x
(11)

Die GEV beinhaltet drei Extremwertverteilungen als Spezialfälle, die Frechet-Verteilung

)( 0>ξ , die Weibull-Verteilung )( 0<ξ  und die Gumbel-Verteilung )( 0=ξ . Weiterhin

lassen sich Verteilungen F in Abhängigkeit des Parameters ξ  als fat tailed )( 0>ξ , thin tai-

led )( 0=ξ  und short tailed )( 0<ξ  klassifizieren. Im vorliegenden Kontext gilt die Auf-

merksamkeit der erstgenannten Klasse, zu der beispielsweise die t-Verteilung und die Pareto-

Verteilung, aber nicht die Normalverteilung gehören. EMBRECHTS et al. (1997, S. 131) zeigen,

dass die Stichprobenmaxima einer Verteilung F, die "Fat Tails" aufweist, gegen die Frechet-

Verteilung ( )αxx exp)( =Φ  konvergiert, wenn folgende Bedingung erfüllt ist:

( )xLx)x(F ξ11 −=− (12)
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(12) entspricht der Forderung, dass der Rand der Verteilung F gemäß einer Potenzfunktion

ausläuft. Darin ist L(x) eine langsam variierende Funktion, die häufig als Konstante gewählt

wird, und ξα 1=  ist der Tail-Index der Verteilung. Je kleiner α ist, umso größeres Gewicht

haben die Ränder der Verteilung F. Für das weitere Vorgehen lässt sich schlussfolgern, dass

sich Wahrscheinlichkeiten bzw. Quantile für den äußersten Rand einer nicht notwendigerwei-

se bekannten Verteilung F mit "Fat Tails" bestimmen lassen, indem der Tail Index α auf ge-

eignete Weise geschätzt wird. In Abschnitt 3.2 wird ein solches Schätzverfahren für α be-

schrieben.

Die Erkenntnisse der EVT haben auch Implikationen für das oben diskutierte Problem der

Konversion kurzfristiger in längerfristige VaR-Prognosen. Angenommen, für eine Ein-

Perioden-Rendite X gilt ( ) α−=> CxxXP , dann folgt auf Grund der näherungsweise linearen

Additivität der Ränder von Fat-Tail-Verteilungen (DANIELSSON und DE VRIES 2000):

( ) α−=>+++ hCxxXXXP hL21 (13)

Das bedeutet, die Hochrechnung der Einperioden-VaR-Prognose für h Perioden erfolgt bei

fat-tailed Renditen unter der iid-Annahme mittels:

VaR(h) α1VaR(1) h⋅= (14)

Weisen die Renditen endliche Varianzen auf, impliziert dies 2>α und somit einen kleineren

Skalierungsfaktor als von der Square-Root-Regel postuliert (DANIELSSON et al. 1998). Somit

ist die Square-Root-Regel nicht nur bei Verletzung der iid-Annahme zu hinterfragen, sondern

gleichfalls, wenn die Verteilung der Renditen durch "Fat Tails" charakterisiert ist.

3.2 Schätzung des Tail-Index

Um den Rand der Fat-Tail-Verteilung F(x) aus empirischen Daten zu schätzen und Quantile

dieser Verteilung zu bestimmen, kann auf verschiedene Schätzverfahren zurückgegriffen

werden. Ein verbreitetes Verfahren ist der Hill-Estimator (DIEBOLD et al. 1998). Dazu sind die

beobachteten Verluste X der Größe nach zu ordnen: nk XXXX LL >>>> 21 . Der Tail-

Index ξα 1= kann dann wie folgt geschätzt werden:
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( )
1

1
1

lnln
1

−

+
=









−= ∑ k

k

i
i XX

k
kα) (15)

Die Funktion L(x) in (12) wird durch eine Konstante C approximiert. Deren Schätzer lautet

(EMBRECHTS et al. 1997, S. 334):

α)
)

1+= kk X
n
k

C (16)

Daraus ergeben sich für den Rand der Verteilung F(x) und das p-Quantil xp die Schätzer:

( ) 1
1 , +

+ >





== k

k Xx
x

X

n
k

pxF
α))

 bzw. (17)

( )
α))
1

1
1









== +

−

np
k

XxFx kp (18)

Von dem Hill-Estimator kann gezeigt werden, dass er konsistent und asymptotisch normal-

verteilt ist (DIEBOLD et al. 1998).

Die Durchführung der Schätzung setzt die Festlegung des Grenzwertes kX  bzw. die Anzahl

der Stichprobenwerte k voraus, die in die Schätzung einbezogen werden. Unglücklicherweise

kann das Schätzergebnis stark durch diese Wahl beeinflusst werden. Zudem besteht ein Tra-

de-Off: Je mehr Daten man für die Schätzung des Tail-Index α verwendet, um so geringer

wird die Varianz des Schätzers; allerdings erhöht sich gleichzeitig der Bias, denn die unter-

stellte Potenzfunktion (12) gilt eben nur für den Rand der Verteilung. Um dieses Problem zu

lösen, entwickeln DANIELSSON et al. (2001) ein Bootstrap-Verfahren zur Bestimmung des

Stichprobenanteils k/n. Mit k wird die Anzahl der Extremwerte bezeichnet, welche den ge-

wählten Schwellenwert kX  überschreiten und die Datengrundlage für die Berechnung des

Tail-Index bilden. Bei dem Bootstrap-Ansatz handelt es sich um ein mehrstufiges Verfahren,

bei dem die einzelnen Schritte bis zum Auffinden des optimalen Stichprobenanteils k/n wie-

derholt zu durchlaufen sind.

In der ersten Stufe werden l Wiederholungsstichproben { }**
1

*

11
,..., nn XXN =  mit einem gegebe-

nen Umfang n1<n aus der Gesamtmenge der Daten { }nn X,,X K1=Ν  mit Zurücklegen gezo-
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gen und für ein k1 der asymptotische mittlere quadratische Schätzfehler (AMSE) ( )11,knQ  wie

folgt geschätzt:

( ) ( ) ( )( )( ) 



 −= n

*
n

*
n kkMEk,nQ Νξ

22

1111 11
2 (19)

mit ( ) ( )∑
=

+−=
1

1111
1

2*
1,

*
,

1
1

* lnln
1 k

i
kninn XX

k
kM  und (20)

( ) ∑
=

+−=
1

1111
1

*
1,

*
,

1
1

* lnln
1 k

i
kninn XX

k
kξ (21)

( )1
*

0,1 nk  bezeichnet denjenigen Wert k1, der den AMSE (19) minimiert:

( ) =1
*

0,1 nk argmin ( )11 ,knQ (22)

Anschließend wird in einem zweiten Schritt ( )2
*

0,2 nk  ganz analog mit einem kleineren Stich-

probenumfang ( )
n

nn
2

1
2 =  bestimmt.

In einem dritten Schritt wird ( )nk
∧

0  berechnet:

( ) ( )( )
( )

( )( )
( )( )

( )
1

1
*

0,11

ln

lnln

2

1
*

0,11

2

1
*

0,1

2
*

0,2

2

1
*

0,1
0

^

lnln2

ln n

nkn

nkn

nk

nk

nk
nk

−















−
= (23)

Im darauf folgenden vierten Schritt kann ξ  mittels 





 ^

0knξ  geschätzt werden:

*

1ˆ,

ˆ

1

*
,^

0

^

0
01

0

1
lnln

1
+

=

−=





 ∑ kn

k

i
inn XX

k
kξ (24)

Die beschriebene Schätzung von k hängt von zwei Parametern ab, der Anzahl der Bootstrap-

Wiederholungsstichproben l, sowie dem Stichprobenumfang n1. Die Zahl der Wiederholungen

wird im Wesentlichen durch die zur Verfügung stehenden Rechenkapazitäten limitiert. In der

in Abschnitt 4 beschriebenen Anwendung wird mit 10000 Wiederholungen gerechnet, was zu
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sehr stabilen Ergebnissen führt. Die zu Beginn willkürlich getroffene Wahl des Umfangs n1

kann dagegen in einem weiteren, fünften Schritt optimiert werden. Dazu ist der Quotient

( ) ( )( )
( )*

,

*
,

k,nQ

k,nQ
nR

022

2

011
1 = (25)

zu berechnen und bezüglich n1 numerisch zu minimieren. Stimmt =*
1n argmin ( )1nR  nicht mit

dem im ersten Schritt gewählten Stichprobenumfang 1n  überein, müssen die Schritte 1 – 4

nochmals durchlaufen werden.

Um auch Aussagen über Quantile treffen zu können, die im Innern der Verteilung und nicht in

ihrem Extrembereich, d.h. links von 1+kX  liegen, schlagen DANIELSSON und DE VRIES (2000)

vor, den mittels Hill-Estimator geschätzten Randbereich der Verteilung F an der Stelle 1+kX

mit der empirischen Verteilungsfunktion zu verknüpfen. Dadurch werden die jeweiligen

Vorteile der EVT und der HS kombiniert.

4 Anwendung „Tierproduktion“

4.1 Modell und Daten

In Anlehnung an MANFREDO und LEUTHOLD (1999), die die Marktrisiken in der US-

amerikanischen Bullenmast mit Hilfe von VaR untersuchen, soll dieses Konzept nun herange-

zogen werden, um das Marktrisiko in der Schweineproduktion für europäische Marktverhält-

nisse zu quantifizieren. Ziel ist die Bestimmung des VaR für einen Zeithorizont von 12 Wo-

chen. Dabei werden drei Sichtweisen eingenommen: Erstens, die eines Ferkelproduzenten,

zweitens, die eines Verbundbetriebes, der selbsterzeugte Ferkel mästet und drittens, die eines

spezialisierten Schweinemästers, der Ferkel zukauft. Ferkel und Schweine werden nicht über

Vertragsproduktion zu vorab definierten Preisen, sondern zu aktuellen Marktpreisen gekauft

bzw. verkauft. Der Geldüberschuss (Veredlungsmarge) CFt zu einem Zeitpunkt t bezogen auf

ein Ferkel bzw. Schwein lautet

t

K

i
itt ZbPaCF ∑

=

−⋅=
1

(26)
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und kann dann wie ein Portfolio betrachtet werden, das sich aus einer Long-Position (dem

Produktpreis P) und mehreren Short-Positionen (den Faktorpreisen Zi) zusammensetzt. Damit

lässt sich (7) unmittelbar übertragen, wobei die Portfoliogewichte a und bi die Bedeutung von

produktionstechnischen Koeffizienten (Schlachtgewicht, Futterverbrauch etc.) haben. Empiri-

sche Untersuchungen von ODENING und MUßHOFF (2002) zeigen, dass das Marktrisiko in der

Schweineproduktion fast ausschließlich durch die Ferkel- und Schweinepreise hervorgerufen

wird. Andere Aufwandspositionen, wie z.B. Futterkosten, beeinflussen zwar das Niveau der

Produktionsmarge, unterliegen in Deutschland aber nur geringen Schwankungen. Für die Be-

rechnung des VaR spielen sie daher praktisch keine Rolle. Aus diesem Grund wird im Fol-

genden das VaR vereinfachend für drei Zeitreihen ausgewiesen: Für die Erzeugerpreise von

Ferkeln (Sichtweise des Ferkelerzeugers), für die Erzeugerpreise für Schlachtschweine

(Sichtweise des Verbundbetriebes) und die Differenz aus Erlösen und Ferkelpreisen (Sicht-

weise des spezialisierten Mastbetriebes), wobei ein Schlachtgewicht von 80 kg angenommen

wird.  Es ist hervorzuheben, dass es sich hier nicht um eine Anwendung des VaR-Konzeptes

im engeren Sinne handelt, sondern vielmehr ein Cash-Flow-at-Risk (CFaR)8 berechnet wird

(DOWD 1998, S. 239 f.). Trotz der formalen Analogie ist auf Unterschiede in der Interpretati-

on beider Größen hinzuweisen: Während VaR den Wertverlust einer Vermögensposition

quantifiziert, bezieht sich CFaR auf eine Stromgröße, eben den Cash Flow. Der informatori-

sche Wert des CFaR dürfte daher vor allem für eine risikoorientierte mittelfristige Finanzpla-

nung gegeben sein.

Die Preiszeitreihen wurden von der Zentralen Markt und Preisberichtstelle Berlin (ZMP) zur

Verfügung gestellt. Es handelt sich um wöchentliche Notierungen im Zeitraum von Januar

1994 bis Oktober 2001 für die fünf neuen Bundesländer. Die Ferkelpreise in Euro je kg Le-

bendgewicht beziehen sich auf Ringferkel von handelsüblicher Qualität. Bei den Schweine-

preisen wurde ein Durchschnittspreis in Euro je kg Schlachtgewicht über die Handelsklassen

E bis P gebildet. Eine Darstellung der Originalreihen findet sich im Anhang (Abb. A1).

4.2 Empirische Ergebnisse

Entsprechend den Ausführungen in Abschnitt 2.2 ist zunächst zu klären, welche Verteilungen

der Marktfaktoren der Berechnung des VaR zugrunde zu legen sind. Dabei geht es erstens um

die Frage „bedingt oder unbedingt“ und zweitens um die Entscheidung „fat tailed oder thin

tailed“. Beide Aspekte werden im Folgenden nacheinander untersucht. Gegenstand der Be-

                                                          
8 Dessen ungeachtet wird bei der Diskussion der Ergebnisse im Folgenden weiter von VaR (im weiteren Sinne)
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trachtung sind nicht die Preiszeitreihen selbst, sondern die wöchentlichen Veränderungen der

Preise9. Zur Beantwortung der erstgenannten Frage wird ein Lagrange-Multiplier-Test auf

Vorliegen von GARCH-Effekten, d.h. auf bedingte Heteroskedastizität durchgeführt (GREENE

2000, S. 808). Dieser Test zeigt an, dass die Nullhypothese der Homoskedastizität sowohl bei

den Schweinepreisen als auch bei der Veredlungsmarge abzulehnen ist. Im Anschluss wird

daraufhin jeweils ein GARCH(1,1) Modell für die wöchentlichen Differenzen der Ferkelprei-

se, der Schweinepreise und der Veredlungsmarge in der Schweinemast geschätzt10. Die

Schätzwerte sind in Tabelle 1 zusammengefasst.

Tabelle 1: Parameter der GARCH (1,1)-Modelle (t-Werte in Klammern)

Parameter Ferkel Schwein Marge

ωω 0,000875**
(5,71)

0,000727**
(3,79)

0,862557*
(1,81)

δδ 0,710047**
(6,24)

0,443897**
(4,22)

0,164101**
(4,24)

ββ 0,172849**
(4,26)

0,276940**
(2,34)

0,762881**
(12,21)

* Signifikanzniveau 95%     ** Signifikanzniveau 99%

Es zeigt sich, dass die geschätzten Parameter signifikant bzw. hoch signifikant sind. Die stan-

dardisierten Residuen tt σε /
)

 weisen auf einem 1% Signifikanzniveau keine Autokorrelatio-

nen mehr auf. Mit Ausnahme der Schätzung für die Ferkelpreisreihe trifft dies auch für die

Quadrate der standardisierten Residuen zu. Somit erscheint die Einbeziehung weiterer Lags in

das GARCH-Modell nicht notwendig.

Im nächsten Schritt werden die Ein-Wochen-Prognosen der Volatilitäten, die mit den soeben

geschätzten Modellen erstellt werden können, auf einen 12-Wochen-Zeitraum hochgerechnet:

Dies erfolgt einerseits mit Hilfe der Square-Root-Regel (6) und andererseits mit Hilfe der

Drost-Nijman-Formel (7). Das Ergebnis für die Schweinepreise ist in Abb. 1 dargestellt. Die

Prognose der Volatilitäten für die Ferkelpreise als auch die Veredlungsmarge führt zu ähnli-

chen Ergebnissen (siehe Abb. A2 im Anhang).

                                                                                                                                                                                    
gesprochen.

9 Üblicherweise werden in finanzwirtschaftlichen Anwendungen Renditen, gemessen als Differenzen logarith-
mierter Preise („log returns“), betrachtet (siehe (3)). Dies hat den Vorteil der Niveauunabhängigkeit, führt
aber zu Problemen, wenn negative Werte auftreten, wie dies z.B. bei der Veredlungsmarge der Fall sein kann.

10 Auf die Schätzung eines Bi-GARCH-Modells für die Ferkel- und Schweinepreise, aus denen dann unter Ver-
wendung der Portfoliogewichte die Volatiliät und das VaR der Veredlungsmarge abzuleiten ist, wird an dieser
Stelle verzichtet. Statt dessen wird ein GARCH-Modell für die Veredlungsmarge selbst geschätzt. Dies ent-
spricht der Vorgehensweise, die auch später für die EVT-Schätzung erfolgt, da dort nur univariate Verteilun-
gen betrachtet werden.
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Abbildung 1: Zeitliche Aggregation der Volatilität der GARCH-Modelle

Abb. 1 bestätigt die theoretischen Vorüberlegungen in Abschnitt 2.4. Die Square-Root-Regel

kann offensichtlich nicht als geeignete Approximation für eine korrekte Zeitaggregation der

Volatilität in GARCH-Modellen betrachtet werden. Die Schwankungen der Volatilität sind

tatsächlich wesentlich geringer, als durch Multiplikation mit dem Faktor 12  ausgewiesen.

Das bedeutet, dass die VaR-Prognosen, die sich dieser Vorgehensweise bedienen, permanent

zu einer Über- und einer Unterschätzung des tatsächlichen 12-Wochen-VaRs führen. Die kor-

rekt ermittelte Schwankung der 12-Wochen-Volatiltität erscheint so gering, dass – der Argu-

mentation von DANIELSSON und DE VRIES (2000) folgend – bei der nachfolgenden Anwen-

dung der EVT von unbedingten Verteilungen ausgegangen wird, ungeachtet der Feststellung

bedingter Heteroskedastizität bei wöchentlichen Veränderungen.

Es bleibt die Frage zu klären, ob die Differenzen der betrachteten Zeitreihen fat tailed sind

oder nicht. Dieser Sachverhalt kann durch sog. QQ-Plots visualisiert werden, bei denen die

Quantile der empirischen und einer theoretischen Verteilung gegenübergestellt werden. Lie-

gen die Punkte annähernd auf einer Gerade, ist davon auszugehen, dass die beobachteten Da-

ten der Referenzverteilung folgen. In der Abb. 2 wurde die Normalverteilung als Referenz-

verteilung gewählt.
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Abbildung 2: QQ-Plots für Ferkel, Schweine, Veredlungsmarge (1 Woche)
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Abb. 2 lässt sich in der Weise deuten, dass die Veränderungen der Ferkelpreise und der

Schweinepreise einen positiven Exzess aufweisen; für die Veredlungsmarge trifft diese Fest-

stellung nicht eindeutig zu. Die Durchführung eines Kolmogorov-Smirnoff-Anpassungstests

bestätigt den ersten visuellen Eindruck der QQ-Plots. Die Abweichung von der Normalver-

teilung ist bei den Veränderungen der Ferkelpreise am deutlichsten ausgeprägt. Die Annahme

der Nullhypothese hinsichtlich Normalverteilung ist mit einem Signifikanzniveau von 5% für

alle drei Verteilungen abzulehnen. Bei den Veränderungen der Ferkelpreise überschreitet der

Prüfquotient mit 0,086 auch den kritischen Wert von 0,081 für das 1% Signifikanzniveau. Der

Jarque-Bera-Test, der Abweichungen von der Normalverteilung in Bezug auf Schiefe und

Wölbung zusammenfasst, bestätigt zusätzlich die Ablehnung dieser Verteilung für die drei

betrachteten Zufallsvariablen. Der kritische Wert der Teststatistik beträgt auf dem 1% Signi-

fikanzniveau 9,2 und wird durch die entsprechenden empirischen Werte der Ferkelpreise

(55,4), der Schweinepreise (55,1) und der Marge (23,5) überschritten. Die Testergebnisse



19

stützen die Hypothese des Vorhandenseins von "Fat Tails". Diesem Befund entsprechend soll

im nächsten Schritt eine EVT-Schätzung durchgeführt werden.

Mit Blick auf die Veredlungsmarge, in die hier zwei stochastische Faktoren einfließen, stellt

sich die Frage, wie die zur Schätzung univariater Verteilungen konzipierte EVT umzusetzen

ist. Grundsätzlich bestehen zwei Vorgehensweisen zur Implementierung einer EVT-

Schätzung für ein Portfolio, das Post Fitting und das Presampling (DANIELSSON & DE VRIES

2000). Bei der eindimensionalen Methode des Post Fittings wird entsprechend der Vorge-

hensweise der HS, unter Berücksichtigung der Gewichtung der einzelnen Portfoliokompo-

nenten, mit den historischen Preisreihen ein Portfolio gebildet. Anschließend werden die Tails

der Verteilung dieser Zufallsvariablen geschätzt. Beim Presampling wird für jede in das Port-

folio eingehende Komponente eine Tailschätzung durchgeführt und nach Erstellen einer Ko-

varianzmatrix das Portfolio mit den in den Tails modifizierten Verteilungen der Preisreihen

gebildet. Diese mehrdimensionale Methodik hat gegenüber dem Postfitting den Nachteil eines

immens steigenden Rechenaufwandes bei umfangreichen Portfolios. Das Post Fitting basiert

auf der Annahme konstanter Korrelationen zwischen den einzelnen Portfoliokomponenten

über die Zeit, die bei der Veredlungsmarge gegeben ist und somit hier angewandt wird.

Um das in Abschnitt 3.2 beschriebene Bootstrap-Verfahren zur Bestimmung des Stichproben-

anteils zur Tail-Index-Schätzung zu motivieren, werden zunächst am Beispiel der Schweine-

preisdifferenzen die Ergebnisse des Hill-Estimators für verschiedene, willkürlich gewählte

Werte von k in Abb. 3 vorgestellt. Es ist offensichtlich, wie stark die Schätzergebnisse von

der Zahl der in die Schätzung einbezogenen Extremwerte abhängen. Den in Abb. 4 darge-

stellten Extremwertverteilungen liegt dagegen bereits die optimierte Anzahl von Extremwer-

ten zugrunde. Sie beträgt für die Ferkelpreise 6, für die Schweinepreise 9 und für die Marge 3

Extremwerte. Zum Vergleich sind die mittels VKM und HS bestimmten empirischen Vertei-

lungen abgebildet.

Die geschätzten Tail-Indices der Extremwertverteilungen für die 1-Wochen-Differenzen der

Ferkelpreise bzw. der Schweinepreise lauten 5,37 bzw. 4,08. Auf Grund der positiven Korre-

lation der Veränderung der Schlachtschweine- und Ferkelpreise sind die Schwankungen der

Veredlungsmarge weniger extrem als die der beiden Preisreihen selbst. Dies drückt sich in
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Abbildung 3: Tailschätzungen für verschiedene Sample-Fractions (1 Woche)
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einem vergleichsweise großen Tail-Index von 7,23 aus und steht in Einklang mit den QQ-

Plots und den Ergebnissen der Tests auf Normalverteilung, die für die Marge eine geringere

Ausprägung von "Fat-Tails" angedeutet haben.

Um das angestrebte Ziel – die Bestimmung des 12-Wochen-VaRs – zu erreichen, werden die

aus Abb. 4 abzuleitenden 1-Wochen-VaRs hochgerechnet. Für die mittels HS und VKM be-

rechneten VaRs geschieht dies mit der Square-Root-Regel, d.h. durch Multiplikation mit dem

Faktor 3,464. Die zu der Extremwertverteilung gehörigen Quantile werden dagegen mit der

Alpha-Root-Regel, d.h. unter Verwendung des jeweiligen Tail-Indexes á, hochgerechnet.

Tab. 2 enthält die so ermittelten VaRs für verschiedene Konfidenzniveaus. Zur besseren Ver-

gleichbarkeit wurden in Tab. 2 für die EVT-Schätzung auch für das Konfidenzniveau von

95% die Werte der Extremwertfunktion ausgewiesen, obwohl diese bereits „rechts“ von dem

durch das Bootstrap-Verfahren bestimmten Grenzwertes 1+kX  liegen und entsprechend dem

o.a. Vorschlag von DANIELSSON und DE VRIES (2000) schon die Werte der HS verwendet

werden sollten.
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Abbildung 4: Vergleich von Extremwertverteilung, Normalverteilung und empirische Verteilung
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Tabelle 2: 1- und 12-Wochen-VaRs für die drei Zeitreihen und für verschiedene Konfidenzniveaus
(95%, 99%, 99,9%).

Ferkelpreis Schweinepreis Marge
Konfidenz-
niveau

95,00% 99,00%
Euro

99,90% 95,00% 99,00%
Euro

99,90% 95,00% 99,00%
Euro

99,90%

EVT
1 Woche 0,130 0,176 0,270 0,088 0,131 0,230 6,786 8,476 11,653
SE 0,012 0,005 0,085 0,006 0,009 0,058 1,034 0,203 1,862
12 Wochen 0,207 0,280 0,429 0,162 0,240 0,422 9,567 11,950 16,429
HS
1 Woche 0,104 0,182 - 0,077 0,128 - 5,358 8,303 -
SE 0,439 1,001 - 0,877 0,995 - 0,366 0,501 -
12 Wochen 0,361 0,631 - 0,266 0,443 - 18,562 28,764 -
VKM
1 Woche 0,105 0,148 0,197 0,081 0,115 0,153 5,607 7,947 10,571
SE 0,004 0,005 0,007 0,003 0,004 0,005 0,199 0,281 0,373
12 Wochen 0,362 0,514 0,684 0,282 0,400 0,532 19,422 27,531 36,620

Im Vergleich zur EVT weist die VKM für eine kurzfristige Ein-Wochen-Prognose eine Un-

terschätzung auf. Diese Unterschätzung durch die VKM nimmt mit einem steigenden Konfi-

denzniveau zu. Das Ein-Wochen-VaR der VKM für die Ferkelpreise (Schweinepreise und

Marge) ist auf dem 99,9% Niveau mit 0,197 Euro (0,153 und 10,571), bei einem durch-

schnittlichen Preis von 1,938 Euro (1,399 und 73,192) deutlich geringer als das der EVT mit

0,27 Euro (0,230 und 11,653). Die zunehmende Unterschätzung ist durch die Annahme der

Normalverteilung bei der VKM zu erklären, die, wie oben gesehen, im Widerspruch zu den

beobachteten "Fat Tails" der Verteilungen steht.

Der Vergleich von HS und EVT zeigt für eine Wahrscheinlichkeit von 99% nur geringe Un-

terschiede, d.h. Verteilungsfunktionen der EVT und der HS schneiden sich in diesem Bereich

(siehe Abb. 4). Für die Ferkelpreise ist das VaR der HS mit 0,182 Euro sogar höher als das

der EVT mit 0,176 Euro. Für das 99,9% Niveau können die Quantile mit HS nicht bestimmt

werden, da sie außerhalb der in den Preiszeitreihen enthaltenen extremen Preisschwankungen

liegen. Dieser eingangs angesprochene Nachteil der HS wird hier offenkundig.

Im Gegensatz zur tendenziellen Unterschätzung beim Ein-Wochen-VaR, ist mittelfristig eine

Überschätzung der VaRs bei der HS und der VKM im Vergleich zur EVT zu beobachten. Das

mittels EVT bestimmte 95-Prozent-Quantil für die Ferkelpreise (Schweinepreise und Marge)

ist mit 0,207 Euro (0,162 und 9,567) geringer gegenüber der VKM mit 0,362 Euro (0,282 und

19,422), als auch der HS mit 0,361 Euro (0,266 und 18,562). Die kurzfristige Unterschätzung
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des VaRs durch die HS und die VKM wird, abhängig von der Länge des Prognosehorizonts,

durch eine zu konservative Hochrechnung mit der Square-Root-Regel überkompensiert11.

In Bezug auf den (asymptotischen) Standardfehler (SE) der verschiedenen Schätzer ist Fol-

gendes festzustellen12: Die VKM weist in Tab. 2 scheinbar den geringsten Schätzfehler auf.

Dabei ist allerdings zu berücksichtigen, dass die Annahme der Normalverteilung als Bedin-

gung für die hier vorgenommene Berechnung des SE der VKM nicht erfüllt ist. Der bereits

angesprochene Nachteil der HS, der in relativ großen Schätzfehlern besteht, zeigt sich bei

dem hier vorliegenden Stichprobenumfang von 405 Beobachtungen deutlich. Die EVT stellt

diesbezüglich eine bessere Alternative dar.

Üblicherweise schließt sich an die VaR-Schätzung eine Validierung der Ergebnisse an. Dies

geschieht meist in Form einer Quasi-Exante Prognose (Backtesting, Out-of-Sample-

Prediction). Dazu wird der Beobachtungszeitraum in einen Schätzzeitraum und in einen Pro-

gnosezeitraum unterteilt. Durch Vergleich der theoretisch erwarteten und der tatsächlich be-

obachteten VaR-Überschreitungen im Prognosezeitraum kann die Plausibilität der verschie-

denen Modelle getestet werden. Eine solche Validierung ist auf Grund des relativ kurzen Be-

obachtungszeitraums der Preisreihen in dieser Anwendung nicht möglich. So würde bei-

spielsweise die Überschreitung eines 99%-VaR nur einmal während 100 Perioden auftreten;

im vorliegenden Fall wären dies 100·12 Wochen, also alle 23 Jahre. Dies stellt eine grund-

sätzliche Schwierigkeit dar, wenn der traditionell kurzfristige Prognosehorizont des VaR-

Konzeptes deutlich erweitert werden soll. Die Problematik wird dadurch verschärft, dass die

EVT-Schätzung sehr datenaufwändig ist, so dass eine Validierung hier besonders schwer fällt.

5 Zusammenfassung und Schlussfolgerungen

Die in diesem Beitrag vorgenommene exemplarische Anwendung verdeutlicht zunächst, dass

das Konzept der EVT grundsätzlich auf Problemstellungen im Agribusiness übertragbar ist,

was im Grunde nicht überrascht. Es gilt nun zu bewerten, ob und wann eine solche Übertra-

gung sinnvoll und notwendig erscheint. Dazu sind der zusätzliche Aufwand und der zusätzli-

                                                          
11 MC NEIL und FREY (2000) kritisieren die hier angewendete Hochrechnung mit α1

h  und favorisieren ein zwei-
stufiges Verfahren, das in einer ersten Stufe bedingte Heteroskedastizität via GARCH-Schätzung berücksich-
tigt und in einer zweiten Stufe die EVT auf die Residuen des bedingten Schätzmodels anwendet.

12 Der asymptotische Standardfehler für die VKM lautet: SE( px̂ ) pcn
21

)2(
−

= σ  mit px̂  dem geschätzten p-

Quantil und pc dem p-Quantil der Standardnormalverteilung. Die Standardfehler für die HS wurden nach

JORION (1998 S. 99) und die der EVT nach DANIELSSON und DE VRIES (1997) berechnet.
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che Informationsgewinn im Vergleich zu konventionellen Verfahren der VaR-Schätzung ein-

ander gegenüberzustellen. In Bezug auf den Rechenaufwand ist festzuhalten, dass dieser im

Vergleich zur Varianz-Kovarianz-Methode oder zur Historischen Simulation zunimmt. Dies

liegt weniger an der Tail-Schätzung selber als vielmehr an dem Bootstrap-Verfahren zur Be-

stimmung des Stichprobenanteils, das sich als notwendig für die Schätzung erwiesen hat. Da-

bei ist allerdings zu berücksichtigen, dass die Häufigkeit, mit der diese Schätzung durchge-

führt wird, deutlich geringer sein dürfte als bei kurzfristigen finanzwirtschaftlichen Anwen-

dungen, die auf sich verschiebenden Zeitfenstern basieren und bei denen neue Preisinforma-

tionen ein permanentes Updaten der VaR-Prognosen erfordern.

Im Hinblick auf den Informationsgewinn durch Anwendung der EVT war in der vorliegenden

Untersuchung drei Punkte zu erkennen:

1. Bei kurzfristiger Betrachtung wird das VaR im Fall leptokurtischer Verteilungen für ex-

treme Wahrscheinlichkeiten durch die Varianz-Kovarianz-Methode aber auch durch die

Historische Simulation unterschätzt.

2. Bei mittelfristiger Betrachtung fällt der Unterschied zwischen Square-Root-Regel und

Alpha-Root-Regel besonders ins Gewicht und überwiegt den erstgenannten Effekt.

3. Gegenüber der Historischen Simulation kann die Schätzgenauigkeit (gemessen als Stan-

dardfehler) erhöht werden.

Die Belastbarkeit der ersten beiden Aussagen wird allerdings dadurch gemindert, dass wir

unsere Ergebnisse nicht durch eine Quasi-Exante-Prognose absichern können.

Um den Nutzen einer EVT-gestützten VaR-Prognose würdigen zu können, ist weiterhin nach

der Notwendigkeit der Prognose extremer Ereignisse zu fragen, denn dort (und nur dort) lie-

gen deren Vorzüge. Während in Finanzinstituten auf Grund des Basel-Akkords eine unmittel-

bare Verknüpfung zwischen VaR und der erforderlichen Mindesteigenkapitalausstattung her-

gestellt wird, sind derartige Implikationen für Unternehmen des Agribusiness nicht gegeben.

Die Motivation liegt hier in der Identifikation von Situationen, die ruinöse Auswirkungen auf

das Unternehmen haben können und in der Ableitung geeigneter Gegenmaßnahmen. In die-

sem Zusammenhang ist noch einmal auf den bereits angesprochenen Unterschied zwischen

VaR und CFaR hinzuweisen. Um von einem hohen CFaR auf eine finanzielle Gefährdung des

Unternehmens schließen zu können, muss zum einen das Ausgangsniveau berücksichtigt

werden und zum anderen bekannt sein, wie lange der Cash Flow auf dem ausgewiesenen
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niedrigen Niveau verharrt. Die Erfahrung zeigt, dass Ferkelerzeuger und Schweinemäster

durchaus operative Verluste verkraften können, sofern diese Phase nicht zu lange andauert

und vorher oder anschließend durch entsprechende Gewinne kompensiert wird. Die Einbezie-

hung dieser Informationen dürfte wesentlicher sein, als der Übergang von einem 99%-Quantil

zu einem 99.9%-Quantil. Ein weiterer Einwand, der sich allerdings eher gegen VaR im All-

gemeinen als gegen dessen Schätzung mittels EVT richtet, ist die Beschränkung auf Marktri-

siken. Die extremen Risiken, die von MKS oder BSE für einen individuellen Produzenten

ausgehen können, sind produktionstechnischer Natur und drücken sich nicht allein in aggre-

gierten Marktpreisen aus.

Damit lässt sich folgendes Fazit ziehen: Ob eine Ausweisung extremer Quantile notwendig

erscheint, hängt von der Anwendungssituation ab. Hier unterscheidet sich die Sichtweise ei-

nes Schweinemästers oder Ferkelproduzenten von der eines Traders, der mit Terminkontrak-

ten auf Schweine handelt oder von der eines Versicherungsunternehmens, das Tierseuchen

versichert. Wenn eine Ausweisung extremer Quantile (z.B. 99% oder höher) wünschenswert

erscheint, dann sollten diese im Fall leptokurtischer Verteilungen ergänzend mit EVT ge-

schätzt werden. Der zusätzliche Rechenaufwand wird durch die höhere Schätzgenauigkeit im

äußeren Rand der Verteilung sowie durch markante Unterschiede bei der zeitlichen Aggrega-

tion der VaR-Prognosen gerechtfertigt.
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7 Anhang

Abbildung A 1 Preiszeitreihen
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Abbildung A 2 zeitliche Aggregation der Volatilität der GARCH-Modelle
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