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HANDLING DURABLE AND NONDURABLE FARM INPUT DECISIONS 
USING A SINGLE THEORETICAL FRAMEWORK

ABSTRACT

Students in economics are taught that the optimal usage of a nondurable input occurs when the value of its
marginal product (VMP) equals its marginal cost (MC).  However, this fundamental condition has rarely been
extended to durable inputs.  Even advanced textbooks have done little to compare and contrast the optimality
conditions for durables versus nondurables.  This paper outlines and compares a common VMP-MC decision
framework for (1) nondurables in a single-period time horizon, (2) durables in a finite planning horizon, and
(3) durables in an infinite planning horizon.

INTRODUCTION

In introductory production economics, students are taught that the optimal level of a nondurable input occurs
when the value of its marginal product equals its marginal cost, VMP = MC.  In more advanced courses,
students see that this optimality condition can be extended to encompass durable inputs.  However, a valid
and comprehensive extension requires a precise delineation of the conditions necessary to accommodate the
realities regarding nondurables and durables.

Two realities must be dealt with.  First, durables are lumpy and their productive services tend to be non-
divisible.  The quantities of their services often cannot be precisely quantified and assigned to the production
of a particular product in a given time period.  Second, the relevant investment and production horizon for
durables may not be constant, or even finite.  Consequently, investment and production decisions cannot
adequately be viewed in a timeless fashion.  To be more realistic, time must be explicitly considered in the
analysis.  For more background on theory underlying the handling of these two realities, see Lutz and Lutz
[8, pp.3-8]. 

The objective of this paper is to outline the salient features of a single, fundamental VMP-MC framework
that can be employed, in a limited sense, to solve optimal investment and allocation decisions for both
nondurable and durable inputs.  Marginal optimality conditions for three input (asset) situations are delineated
and compared: (1) nondurables in a single-period time horizon, (2) durables in a finite (N-period) horizon, and
(3) durables in an infinite horizon.  Due to space limitations, the analysis is confined to pre-tax situations.

For durable inputs, the problem situation is not new.  But it has not been completely solved, even theoretically.
Almost half a century ago, Lutz and Lutz [ 8, pp. 3-15 ] devoted most of their  first chapter to discussing its
nature and its evolution in the literature.  More recently, Robison and Barry [10] devoted a large part of their
text to its solution.  They indicate  [10, pp. 1-2] “... the link between timeless (static) profit functions and PV
[Present Value] models will be explicitly established.”  However, they do very little, at least explicitly, in the
way of defining and employing a derived VMP-MC framework. 

DEFINITIONS

Before comparing and elaborating on the three input situations listed above, some common problems of
ambiguous definitions and consequent incorrect usage of fundamental terms must be considered.  To avoid
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VMPi ' Ci % rBi ,

ambiguity, we define and classify inputs and their productive services in Table 1.

  Table 1.  Definitions of Terms.a

Production Production is the process of combining and coordinating materials and forces (inputs or productive
services) in the creation of some output of a specified product.  A production function is a
specification of the various technical production possibilities faced by the firm.  The function
specifies the maximum output in physical terms for each level of the inputs.

Durable Input An input (asset) that will provide productive services to the firm for more than a single time period,
e.g., a farm tractor or grain bin.

Nondurable 
Input

An input (asset) that will provide productive services to the firm for a single time period, e.g., animal
feed or crop fertilizer.

Fixed Input 
Service

Occurs whenever an input has productive services that do not vary with the amount of output
produced.  Thus, in an ex post sense, an input is fixed in the productive process if/when its services
have already been expended (sunk).  In an ex ante sense, three conditions determine fixity: (a) length
of the decision-maker’s planning horizon, (b) the particular time point on the horizon, and (c)
feasible, alternative productive uses of the input.

Variable Input 
Service

Occurs whenever an input has productive services that do vary with the amount of output
produced.  Thus, an input’s services are variable if/when the costs of the service are expected to
vary with the quantity of output produced; otherwise they are fixed.

a Definitions and explanations in this table are adapted, in part, from Beattie and Taylor [2], Carlson [3], and Lutz
and Lutz [8].

As Grant [5] first explained in 1930, the nondurable-durable distinction is straightforward.  It is strictly physical
in nature.  Further, as Carlson explained [3, pp.104-105] “(t)his distinction...must not... be confounded with
the distinction between fixed and variable.”  Even so, modern texts sometimes incorrectly equate durables
with fixed inputs, e.g. [10, pp. 55, 424]. 

This ambiguity could be avoided if analysts would distinguish between fixed and variable inputs and also
distinguish between durable and nondurable inputs.  As the Table 1 definitions imply, whenever the decision-
maker is considering a multi-period time horizon, a durable input can give rise to either fixed or variable
services.  Likewise, a nondurable input can give rise to either fixed or variable services.  What is fixed and
what is variable is essentially a function of the decision-maker's mind.  The decision-maker is in a planning,
not a historical mode.  So, the three ex ante  conditions listed in Table 1 determine fixity (or variability) of both
nondurable and durable input services. 

NONDURABLES IN A SINGLE PERIOD

This is the simplest and most limited of all input investment/production situations.  It is the only decision
situation covered in most introductory production textbooks (e.g., [4]).  Unfortunately, it also is the only one
covered in some advanced production texts (e.g., [ 2 ]). 

In a single-period time horizon, the optimal amount of the ith input for i = 1, 2, ..., k variable inputs that should
be employed by the firm in a certainty environment occurs when

(1)
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VMPijt ' Cijt % ÄAijt % rAijt ,

where VMP i denotes the input's value of marginal product; Ci denotes the opportunity marginal cost (often
designated as the operating cost ) of the ith input; Bi denotes the amount of the ith nondurable input acquired
at the beginning of the time period (t = 0); r denotes the applicable periodic interest rate; and the quantity rBi

denotes the interest on the operating cost due to the ith variable input during the period.   

Adopting the logic set forth by Carlson [ 3, pp. 14-15 ] and by Lutz and Lutz [8, pp.5-6 ], both the set of
durable (A) and nondurable (B) inputs are acquired at the beginning of the time period.  Separating rBi from
the other operating costs, though not commonly done, is consistent with the separate estimation of "interest
on operating costs" in farm enterprise budgets.  

Each marginal product (MP) is determined by the single-period production function, which in its simplest form
has a single product, k variable inputs, and j fixed inputs.  The j fixed inputs comprise what is commonly
defined as the firm's "plant."  In this situation at t = 0, all of the k variable inputs are nondurable and  all of the
j fixed inputs are durable (see Table 1).  This is convenient but often unrealistic. 

By definition, none of the input services of the k nondurables lasts for more than a single period.  The quantity
of a nondurable that the firm should acquire equals the quantity that should be used to achieve allocative
optimality.  In reality, however, it is entirely possible that the optimal quantity of a nondurable input (Bi) that
should be acquired (and used) equals zero.  That is, C + rB could exceed VMP for every amount of the input
that might be used.  As a practical example, consider the low MP that would occur when corn is fertilized
by zinc, an element that is not deficient in most soils. 

DURABLES IN A FINITE PLANNING HORIZON

In more advanced courses, students are taught that, in addition to employing nondurables in the production
process, the firm also invests in and uses durable inputs, such as grain combines.  Limited attention has been
given in the literature to the parallels and differences with the optimality conditions for nondurables.  The lack
of attention is not new, having been noted by Carlson [3, pp.103-09] and by the Lutzes [8].

In a certainty environment, the optimal investment in and use of a durable, like a nondurable, occurs when
the input's VMP equals its MC.  More precisely,

(2)

where VMP ijt denotes the value of the ith durable (and, in this finite horizon, variable) input's production of
product j in time period t.  The right side of (2) contains three MC components - -  not the single component
one commonly sees written in a nondurable optimality equation, or the two right-side components shown in
expression (1).  Specifically, C denotes the opportunity marginal cost of the ith durable input during period t;
A represents the stock value of the durable input at the beginning of the investment/ production period; ÄA
represents any value change (depreciation or appreciation) during period t; and rA denotes the opportunity
interest cost on the firm's investment in A during the period. 

Theoretically, each MP is determined by an N-period production function.  At the beginning of each period
in the horizon, all nondurable inputs are expected to give rise to variable services.  Likewise, all durable inputs
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VMPijt ' Cijt % ÄAijt% rAijt%[r][1&(1%r)&N]&1[PV(N)]

that are subject to being replaced during the period also are expected to give rise to variable services.  Only
the durable  inputs that are not expected to be replaced during that period (such as land) are regarded as fixed
at the beginning of each period in the finite horizon.
Each of the three right-side MC components should be valued as an opportunity cost, not as an acquisition
(historical) cost.  This is a point explained by Johnson and Pasour, Jr. [6], Perrin [ 9 ], and Johnson and
Quance [7 ].  In these writings, however, the meaning of "asset fixity" is not necessarily the same as the
meaning of a fixed input (asset) as defined in Table 1.  Rather, it pertains to a situation where the acquisition
price for a new (replacement) durable input is greater than the present (stock) value of marginal product of
the current (like) input; but, at the same time, this value exceeds the salvage (sales) price of the old, current
input.  Thus, a firm in an "asset fixity" mode is, in a sense, stuck with continuing to use the old asset, rather
than entering into any replacement investment of the durable input in question.  

Whenever the decision-maker is interested in the acquisition (investment) of a new durable, the focus usually
is on selecting the correct time interval (t) that allows the equality in expression (2) to exist.  Alternatively,
if the decision-maker is interested in the optimal level of durable input production usage, the focus, in effect,
shifts to the subscript i.  As Lutz and Lutz [8] emphasize, it is difficult, if not impossible, to link particular units
of input to particular units of output in the specified period, t.  "All that we can say is that all the inputs
embodied in the durable good [asset] are jointly responsible for the whole stream of output [over several
periods] [8, p. 7]."   

DURABLES IN AN INFINITE PLANNING HORIZON

Identical Durables

When the decision-maker's planning horizon extends beyond the economic life of the currently owned durable
input, it is more precise to consider an infinite time horizon.  This facilitates the explicit expression of expected
earnings from the series of replacement inputs.  In other words, it allows for the consideration and
measurement of intertemporal opportunity costs.  The VMP-MC optimality equation can be written as a
logical extension of expression (2), viz.,

(3)

where VMP and the first three MC terms of the right side are identical to the specifications delineated for
equation (2) for durables in a finite horizon. 

The latter multiplicative, compound term models the intertemporal opportunity costs, valued at the same time
point(s) in the horizon as the finite-horizon terms.  In particular, r denotes the appropriate periodic opportunity
interest rate; N denotes the identical, replacement time interval that is to be determined; [1-(1+r) -N ] -1

denotes the present value of a $1 perpetual annuity paid at the beginning of each and every N periods; [r][1-
(1+r) -N ] -1 denotes the ordinary annuity certain with a present value of $1 (i.e., the capital recovery factor);
and [PV(N)] denotes the present value for an N-period replacement interval for the identical (“new”) durable
replacement input under consideration.  More precisely,
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PV(N) '

N
3

t'1
(VMPijt& Cijt)(1%r)&t&Ao % AN (1%r)&N

(4)

where VMP - C denotes the periodic stream of expected annual opportunity operating incomes for the
replacement input (asset), referred to by the Lutzes [ 8, p. 12] as “quasi-rents;” A0 denotes the value at t =
0 of the investment in the durable replacement asset; AN denotes the value of the asset at t = N; and (1 + r)-t

and (1 + r)-N are the respective discount factors.  

One can describe numerous practical examples of intertemporal opportunity costs in an effort to illustrate why
they should not be ignored.  For example: (a) the cost of continuing to own and use a stream of a particular
model of farm pickup trucks for, say, eight years as opposed to owning and using them for seven years, or
(b) the cost of continuing to own and feed steers for, say, 150 days as opposed to owning and feeding them
a more efficient 120 days.  It could be argued that the magnitude of such intertemporal opportunity costs is
inconsequential.  But this is an empirical contention that is missing from Johnson and Pasour [8].  Clearly, their
durable resource adjustment rule, either inadvertently or by design, fails to consider intertemporal opportunity
costs – the latter term in expression (3).  

Non-identical Durables 

For some problems the assumption that the input should be replaced with another of its own kind, having an
identical time pattern of cash flows, is too simplified.  Rather, the decision-maker must turn to a non-identical
series present value model such as expression (6) in Perrin [9] or (5) in Bradford and Reid [1].  Further, when
desiring to make endogenous the intertemporal opportunity costs attributable to factors such as capital
constraints, machine capacity, or the lumpiness of machines (or similar lumpy inputs), one would be well
advised to rely upon a comprehensive programming-future value model.

The valid marginal optimality expression of acquisition and usage decisions in the non-identical durable input
case depends on the expected time pattern of technical and market parameters.  It can be very unwieldy and
virtually impossible to write in a VMP-MC context.  Robison and Barry [10, pp. 525-537] present the
mathematics when it is assumed that the durable series are related to each other by a multiplicative factor,
  1 + h, where h is the expected rate of periodic technological change.  Perrin [9, pp. 62-63] presents an
expression and short discussion when only a one-time change in technology is expected.  In appearance, it
is similar to expression (3), but the decision-maker must recompute the value of PV (N) at the beginning of
each and every successive production period.  In short, in this complicated, yet realistic, input acquisition and
usage situation, the standard VMP = MC is too simple to accommodate all the parameters and their dynamics
that deserve to be modeled.

CONCLUDING REMARKS

The objective of this appear will be achieved if the reader understands that adding a durable-nondurable
classification to the usual fixed-variable distinction enhances the clarification of the study of the decision
making process for investment and production in a multi-period environment.  Hopefully, the door has been
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opened for re-examining the extension of a VMP-MC optimality framework to the world of durable inputs.
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R (S) % M ) (S) ' ñ M (S) % ñ C (0, S, 4)

R(C) % M ) (C) ' ñ M (C) % ñ C(0, S, 4)

APPENDIX: THE PERRIN BENCHMARK ARTICLE

Perrin’s 1972 article in the American Journal of Agricultural Economics on optimal replacement-
investment decision modeling remains widely regarded by many applied economists as the conceptual
benchmark for conducting research and graduate teaching in capital investment-replacement.  His article
deals mostly with identical Challenger modeling and selected applications, both continuous models and
their discrete analogs.  Marginal analysis optimality conditions are derived from present value models. 
The two types of models are shown by Perrin (p. 65) to yield equivalent replacement intervals.

The article, notwithstanding its continued widespread acclaim, is really quite limited in scope.  Present
value and marginal analysis models of non-identical asset replacement are only briefly discussed, and then
only for selected replacement situations - - specifically “replacement with technologically improved
assets.”  This appendix first focuses on identical-challenger models and secondly on what may be called
two-segment replacement models.  More specifically, the appendix deals with (a) limitations and
imprecisions in Perrin’s treatment of such models, and with (b) extension of such models to handle
specific replacement-investment problems other than replacement due to expected changes in technology. 
Like Perrin’s article, certainty of all expectations is assumed.  With only minor modifications, all
definitions and notation are identical to that employed by Perrin.

The marginal optimizing condition for replacement of a Defender with an infinite series of identical
Challengers was shown by Perrin (p. 61) to be:

(4) 

where S is the replacement interval (optimal or nonoptimal) which is selected by the decision maker, R(S)
denotes the residual earnings from the asset or project in period S, M(S) is the market (or salvage) value
of the asset (project) at the end of period S, M! (S) is the change in the asset’s (project’s) capital value in
period S, C(0, S, 4) is the present value of the infinite stream of residual earnings and capital value
changes from the infinite series of Challenger assets or (projects) acquired at age t (time) = 0 and
replaced at the end of t = S, and ñ is the appropriate periodic interest rate.  Wording of these definitions is
modified very slightly from that used in Perrin’s article, in order to be consistent with the context of the
discussion and contentions of this paper.  Specific modifications will be explained as used.

When the series of Challengers are expected to yield residual earnings or capital value changes which
differ from the cash flow series for the Defender, but which are identical across the infinite series of
Challengers, the marginal maximizing condition was shown by Perrin (p. 63) to be:

  (6)

where the optimal replacement age for the Defender is determined to occur at t = C, and the optimal
replacement interval of the series of Challengers is expected to occur each and every S periods.  This is
the marginal condition which can be derived, as Perrin explains, from a two-segment, present value
model.
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Five points are pertinent regarding a more precise presentation and practical use of these marginal
conditions, (4) and (6), above.
Point  1

Values for C(0, S, 4) in (4) and (6) must be optimal present values of the infinite series of identical
assets or investment projects.  Thus, even though the marginal criterion may be preferred by many
economists, perhaps because its terms are easily defined and it appeals to their intuition, when
employing any marginal criteria it is still necessary to derive and understand present values of infinite
series.  To be quite precise, the replacement age (S) of Challengers must be specified as the optimal
age.  That is, the value for C(0, S, 4) is an optimal value - - a constant insofar as used and interpreted
in (4) and (6).  Therefore, the clarity of exposition in Perrin’s article could have been improved by
using S* to denote the optimal replacement age or by using Max C(0, S*, 4), or Min as the case might
be.  Then, in keeping with this distinction, C(0, S, 4) would denote replacement at any non-optimal
age, S.

Point 2

One should realize that determining the appropriate value for C(0, S, 4) for the nonidentical
Challenger model, (6), usually is more complex than determining the value of this variable for the
identical Challenger model, (4).  For model (4) one knows the type of asset for all replacement
intervals from t = 0 until t approaches 4.  It is identical to the Defender, meaning that the time
incidence of cash flows for the infinite series of assets are constrained by the model’s assumptions to
be identical.  For model (6), however, one must select the Challenger asset (or project type).  This
selection process, of course, could be fairly routine.  For example, consider a slightly larger farm
machine but otherwise essentially the same as the current machine.  More realistically, the selection
process, at t = 0, could involve consideration of numerous prospective Challengers.  Selection then
would entail a prior, separate capital budgeting process - - presumably a comparison of mutually
exclusive projects.  These qualifications were not discussed by Perrin.

Point 3

Both ñ M(S) and ñ C (0, S, 4) in (4) [ñ M(C) and ñ C(0, S, 4) in (6)] are opportunity costs of
postponing the replacement of the Defender.  In most parts of Perrin’s article the two terms are
lumped together into what he refers to as “average opportunity gain associated with the replacement
asset.”  But it seems more instructive or clear to recognize that only the value of ñ M(S) is the
traditional measure of opportunity cost, the intra-temporal opportunity cost, sometimes expressed
simply as “interest on investment.”  For example, if an old tractor (Defender) is retained for one more
period the foregone interest proceeds on the tractor’s resale or trade-in revenues will equal ñ M(S). 
Then, as Perrin (pp. 61-62) notes, one can discuss why ñ C(0, S, 4) equals the opportunity cost of
postponing the earnings which will be forthcoming from the series of Challengers.  This intertemporal
opportunity cost component often is ignored.  Or, at least sometimes it is regarded as inconsequential
in magnitude (e.g., Boehlje and Eidman, p. 600).  Readers should realize that the consequences of
ignoring intertemporal costs can be dire in many real world replacement situations.

Point 4
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C(0, S, 4) ' [(1&e &ñS)&1] [

S

m
0

R(t) e &ñt dt % M(S) e &ñS
& M(0)]

Perrin’s definition of C(0, S, 4) as “the present value of the stream of residual earnings [underlines
added] from a Challenger to be purchased at age 0 and replaced at age S by an infinite series of
identical Challengers” is ambiguous.  More emphatically, a strict interpretation of this wording is at
odds with traditional economic capital theory (Lutz and Lutz) and with contemporary literature in
financial economics and accounting (Weston and Brigham).  Recall that 

   

(7)

To be precise, residual earnings in any period, t, equals only R(t).  In traditional treatments of capital
theory, R(t) is known as Q(t) - - the “quasi-rent” addition attributable to an (new or old) investment
project.  Alternatively, in applied firm management writings Q(t) is known as the “added net returns
due to the investment,” i.e., the net returns over operating costs.  In contemporary financial
economics and accounting literature R(t) is usually defined as earnings before depreciation, interest
and taxes (EBDIT) or as net operating income plus depreciation (NOI + DEP).

In any event, it is precisely the stream of undiscounted R’s that comprises the stream of residual
earnings from the asset or project.  The other two terms in the second bracketed expression, above, -
- M(S) e -ñS - M(0) - - comprise the capital appreciation (depreciation) in present value units.  Hence,
the entire second bracket is the expected incremental gain (loss) in wealth, or the expected addition
(loss) in the firm’s value for each asset or project.  Multiplication of the second bracket by the
perpetual annuity term - - [1 - e -ñS )-1] - - converts the infinite stream of projects, which are expected
to provide identical undiscounted additions to wealth, to a single present value number.

Possibly Perrin was aware of such definitional and conceptual distinctions when his article was
published.  Nevertheless, the article itself fails to adequately recognize or delineate such specifics.

Point 5

When discussing the two-segment model, (6), Perrin states (p. 63): “As a practical matter, a decision
maker might compute C(0, S, 4) each year using the best data available on the Challenger and
compare net returns expected next year from the old asset with ñ [M(C) + C(0, S, 4)].  If net returns
from the old asset are larger, he will continue with it for another year at which time an updated
comparison is made, and so on, making a decision each year with the best information available at the
time.”  Upon initial reading, this advice may seem obvious, even trivial.  But this is precisely the
essence of any methodology which will allow researchers (or decision makers) to handle the
dynamics of technological change or of inflation (or more importantly to account realistically for
changes in relative prices), and to evaluate through time the changing sets of relevant investment
projects.

In essence, this methodology is in keeping with the “best-first-move” approach advocated by
Modigliani and Cohen (1961).  As time and conditions change, expectations regarding technology and
market prices are altered.  Specifically, the parameters of model (6) must be periodically reestimated. 
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Relative prices and discount rates must incorporate new information and expectations regarding
technology or inflation rates.  Inflation must be dealt with whether nominal or real dollar values are
used in the model.  Of course, the estimated nominal discount rate for Challenger projects could be
larger (or smaller) than rates for the current Defender.  Smaller rates for the Defender can be
justified if the set of Challengers are expected to entail added business risks or to involve more
inflation.

Theoretically, infinite-series, present-value counterparts of model (6) may be employed over time to
structure and alter the portfolio of the firm’s assets.  Two decision rules are appropriate for choosing
or altering the portfolio.  They are: (a) for each set of mutually exclusive projects select the project
with the largest net present value (NPV), assuming the firm is maximizing, and (b) for the remaining
set of independent projects, including accepted projects from (a), select all projects with net present
values $0.  Keep in mind that these are NPVs for an infinite series.  Replacement decisions,
alternatively viewed, are a special type of mutually exclusive investment decision.  For each Defender
project, when viewed over the infinite horizon the time periods of ownership are mutually exclusive.

These clarifications, in points (1) - (5), will help the analyst handle unequal horizons in comparing
investment (or disinvestment) in a set of independent projects.  Also, assuming the optimal debt-equity
ratio is known, or can be estimated, the optimum portfolio can be specified.  In reality, of course, the
optimal capital structure could depend upon the portfolio which is selected, and conversely.  One must
admit that, when using marginal analysis, capital funds constraints either are ignored or addressed in a
very implicit manner.  Finally, questions of how to select “production activities” (as opposed to
“investment activities”) across time periods in the horizon are subsumed within the investment choices. 
These sort or problems provide researchers with legitimate rationale for building more complex models. 
The present value approach by itself may be viewed as too partial in scope.
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