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Direct Payments, Cash Rents,
Land Values, and the Effects of
Imputation in U.S. Farm-level Data

Michael W. Robbins and T. Kirk White

Research using the Agricultural Resource Management Survey (ARMS) and other
data shows that direct government payments to farmers increase rents and the
price of land. However, some ARMS data is imputed and does not account for
relationships between payments and other variables. We investigate various
imputation methods and benefits gained from a method with a wide scope rather
than a parsimonious range of variables. Using our method, we estimate that an
additional dollar of direct payment increases land value about $2.69 more per acre
than ARMS imputation methods and that our imputations (using an exhaustive
iterative sequential regression) outperform other methods and/or smaller models.

Key Words: Agricultural Resource Management Survey, cash rents, direct payments,
farm subsidies, land values, missing data, multiple imputation, robust regression

Agricultural economists and policymakers have long been interested in the
effect of federal farm program payments on the value of agricultural land to
which the payments are attached (Floyd 1965, Gardner 1992, Kuchler and
Tegene 1993, Barnard et al. 2001). Several recent studies have analyzed the
effects of such farm subsidies on farm land rents and the value of the farm
land. Using data from the U.S. Department of Agriculture’s (USDA’s) Census
of Agriculture for 1992 and 1997 and various econometric models, Roberts,
Kirwan, and Hopkins (2003) found that an additional dollar of government
payment results in an increase of between $0.21 and $2.31 in land rents per
dollar of payment. Using their preferred model, the authors concluded that
this value fell between $0.34 and $0.41. In more recent research using the
same data, Kirwan (2009) found that landlords captured roughly 25 percent
of each additional dollar of government payment to farmers in the form of
higher cash rents. Using data from USDA’s Agricultural Resource Management
Survey (ARMS) for 1998 through 2001, Goodwin, Mishra, and Ortalo-Magné
(2011) found that an additional dollar of expected loan deficiency payment
appeared to add $27.00 to the value of the land. These researchers also found
that an additional dollar per acre of direct payment (or production flexibility
contract payment, as they were called prior to 2002) raised cash rents by
$0.72 per acre.
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Several of the variables included in the ARMS and pertinent to the
aforementioned models involve imputed data. Like most surveys, the data
generated by the ARMS suffers from item non-response, and the National
Agricultural Statistics Service (NASS), which conducts the ARMS, uses imputed
data for missing values in about 150 variables for which the missingness rates
range from just 1 percent to 43 percent (Robbins et al. 2011a). For example, in
the 2008 ARMS, imputed farm-level data made up 23 percent of LDP Payments
for Target Commodity, 31 percent of Countercyclical Payments for Target Crop,
43 percent of Value of Commodity Certificates, and 31 percent of Wetland
Reserve Program Payments. For relationships between direct payments, cash
rents, and land values, one can compare estimates from the ARMS data to
results from other data sources, such as panel data used by Ifft, Kuethe, and
Morehart (2013).! However, for many questions of interest to researchers and
agricultural policymakers, ARMS is the only nationally representative source
of data. Given the key role ARMS data thus plays in agricultural research and
policy discussions, it is important for researchers and policymakers to be aware
of the potential effects of imputed data on regression results.

Both NASS and USDA’s Economic Research Service (ERS) impute for missing
items using conditional means.? Since the deficiencies of these methods
have been demonstrated (Miller, Robbins, and Habiger 2010), our analysis
includes imputations generated using the recently developed iterative
sequential regression (ISR) procedure for imputation (Robbins, Ghosh, and
Habiger 2013).3 ISR is a regression-based Markov chain Monte Carlo (MCMC)
algorithm, and unlike the NASS and ERS methods, it includes the flexibility to
greatly expand the scope of data incorporated into the imputation procedure,
thereby tasking the imputer with selection of an imputation model. We
compare the imputation methods generally used by NASS and ERS with three
types of ISR imputations—exhaustive, parsimonious, and deficient—and
evaluate the biases attributable to each method in estimates of incidence of
farm subsidies on farm land values and cash rents, focusing on the effect of
the method and model on the presence and magnitude of such biases. Since
ISR is computationally intensive, our discussion of imputation models focuses
on depth of input in terms of the number of variables used with the hope that
a parsimonious model that minimizes the computing burden is satisfactory.
However, the preferred ISR method is the exhaustive imputation because it
incorporates the most variables.

It is well-established in the literature that the choice of imputation method
can have a profound effect on point estimates pertinent to econometric
analyses (Robbins and White 2011, Robbins, Ghosh, and Habiger 2013). For
example, when using the official USDA imputations, we find that one dollar
of direct payment per acre increases the per-acre value of land by $16.78,
whereas the value shifts to $19.47 when calculated using our preferred
imputations (ISR with an exhaustive imputation model). The higher value
is more in line with recent research involving relatively comprehensive

1 The ability to compare results from ARMS to other data sources is one of our reasons for

focusing on the effects of imputation on direct payments, cash rents, and land values.

2 For NASS imputations, the conditioning variables are farm type, farm sales class, and farm
region.

3 This method and study were developed as part of a two-year cooperative agreement between
NASS and the National Institute for Statistical Sciences (NISS) to improve the imputation methods
NASS uses for Phase III of the ARMS.
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field-level panel data (Ifft, Kuethe, and Morehart 2013). Those results suggest
that estimates based on official USDA imputations in the ARMS miss about
16 percent of the increase in land value for the average acre of program
crop land. In 2008 (the year of our sample), the average direct payment per
acre was about $19.57 (Ifft et al. 2012). Thus, estimates using our preferred
imputation method point to an additional $52.64 in land value per acre
(payment of $19.57 x $2.69 additional increase in land value) associated with
direct payments. In 2008 there were about 260 million base acres enrolled
in the Direct Payments program (Ifft et al. 2012). A back-of-the-envelope
calculation therefore suggests that using exhaustive ISR imputations instead
of the official NASS imputations would increase the total land valuation
associated with direct payments by about $13.7 billion. The magnitude of the
increase in per-acre value of land drops from $19.47 to $18.13 when using
ISR with a parsimonious (seemingly sufficient) imputation model.

We address another avenue of analysis of imputed econometric data that
has been largely untouched in the agricultural economic literature to date: the
effect of imputation on standard errors. In addition to influencing the value of
survey indicators, imputations can induce bias in the standard errors of such
indicators. Further, one must adjust confidence intervals to incorporate error
contained within the imputations. A popular statistical procedure for making
such adjustments is called multiple imputation (MI) (Rubin 1987), but MI is
considered to be inappropriate for use with data that have characteristics that
are common in agricultural surveys (Kott 1995). Nonetheless, by applying MI,
we demonstrate that an exhaustive imputation model can increase the accuracy
of the imputations and thereby decrease the width of confidence intervals of
the resulting econometric estimations.

To validate and expound upon conclusions drawn from our empirical
analysis, we conduct a simulation study using complete cases from the ARMS
data. We randomly “poke holes” in the complete cases and replace those
data with imputations calculated using various methods and models. The
simulation study verifies the quality of our preferred imputations in two ways.
First, the simulations show that our preferred method reduces bias in the
estimates of subsidy incidence and in standard errors. Interestingly, ISR with
a parsimonious imputation model produced biased point estimates of key
regression coefficients. Second, the simulations demonstrate that the precision
of respective interval estimates may increase under the exhaustive imputation
model. In addition, the simulation study illustrates the potential utility of MI in
analyses of complex economic survey data.

Although we focus on the effects of imputation in USDA’s ARMS, our findings
are broadly applicable. Economic surveys generally suffer from item non-
response, and the imputation methods used by most statistical agencies are
not well-suited to microdata analysis. Agencies that generate imputations in
economic surveys such as the ARMS will be interested in the benefits of the
broad imputation model we outline here, and researchers who are analyzing
imputed data should be aware of the abilities and limitations of the imputation
methods and models used. Researchers must be particularly careful when a
relatively large percentage of the estimation sample includes data imputed
by the statistical agency that collected it and should consider alternative
imputation methodologies that incorporate relevant explanatory variables
if the original imputation model fails to do so. In addition, our conclusions
regarding the performance of specific statistical machineries (the handful of
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algorithms, including ISR) provide insight into the efficacy of similar algorithms
used by many statistical agencies.

Direct Payments, Cash Rents, and the Value of Land

Farmers in the United States receive several types of federal payments,
including subsidies for individual commodities, emergency and disaster relief,
conservation program payments, and crop-specific program payments (e.g.,
the peanut quota buyout). We focus solely on the Direct Payments commodity
program because direct payments do not depend on market prices or current
production.* In 2008 (the year of our sample), total direct payments were
about $5.2 billion in 2009 dollars (White and Hoppe 2012) while the average
direct payment was about $19.57 per acre (Ifft et al. 2012). At the time, the U.S.
average cash rental rate for crop land was about $96 per acre and the average
value of crop land was $2,970 per acre (USDA 2008).

The direct payments are made annually and are based on the producer’s
historical number of acres (the so-called “base acreage”) and the yields of
the program crops in prior years. A farmer is allowed to determine the base
acreage in several ways, but the simplest one is to use the average number of
acres planted to that crop in the historical years (1998 through 2001 under
current legislation). The payment to a given farmer is calculated as the product
of a percentage of the base acreage (83.3 percent under the 2008 Farm Act), the
farm'’s gross income from selling the historical yield of that commodity, and the
direct payment rate for the commodity. Landlords who share-rent their land
to farmers participating in the program are eligible to receive direct payments
while landlords who cash-rent the land are not.’ The farmer’s direct payment
does not depend on the farm’s current acreage or yield for the crop although
farm-level production tends to be highly correlated over time. Since the direct
payment can be calculated in advance, economic theory suggests that landlords
who cash-rent can extract higher rents for crop land that is associated with
greater direct payments.

Following Roberts, Kirwan, and Hopkins (2003), we hypothesize that rent,
r;, received for a unit of land i is a function of expected revenue (including
government payments) associated with the land net of variable costs:

(1) ry= E[Zk(pk + ) - Zjoin] + X, DPy;

where E is the expectation operator, p, is the market price received for
commodity k, c, is the government payment (excluding the direct payment)
received per unit of production of commodity k, g, is the quantity of
commodity k produced on land unit i, x; is the quantity of input j (other than
land) used on unit i, w; is the marginal cost of that input, and DP,; is the direct
payment received on land unit i for commodity k. Commodity payments that

4 Because the value of such payments is known in advance, it is easier to measure the incidence of

these subsidies relative to other types of subsidies since there is essentially no difference between
observed payments and the payments recipients expected to receive when they negotiated prices
and cash rental agreements for land. Several other studies have done the same (Roberts, Kirwan,
and Hopkins 2003, Goodwin, Mishra, and Ortalo-Magné 2011, Ifft, Kuethe, and Morehart 2013).
Thus, our focus on direct payments also facilitates comparisons with the existing literature.

> Under a share-rent arrangement, the tenant gives the landlord a share of the crop as payment
for use of the land. Under a cash-rent arrangement, the tenant pays the landlord a specified amount
of cash per acre.
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are tied to current production of the commodity can induce a greater supply,
which may lead to a lower price for the commodity. Greater production may
also induce an increase in the price of inputs other than land, w;. Thus, by
equation 1, if commodity payment c, is increased, some of the increase may
be captured by landlords and by other market participants if the commodity
price, p,, falls and the cost of inputs, w, rises (see Roberts, Kirwan, and Hopkins
(2003) for a more thorough discussion). Since direct payments are not tied to
current production, under equation 1 landlords will capture any increase in
the direct payment by charging greater cash rents. In practice, direct payments
may induce a supply response if, for example, farmers expect to be allowed to
update the amount of base acreage in the future, as they were in 2002. In that
case, landlords may not be able to capture 100 percent of an increase in direct
payments.

We operationalize equation 1 by estimating the following equation, which is
similar to equation 2 in Roberts, Kirwan, and Hopkins (2003):

(2) CR;/ AR, = oy + o, (NFI, / A) + oy(DP; / A) + X,y + u;

where CR, is the farm’s cash rents for unit i, NFI, is net farm income excluding
direct payments, DP; is direct payments, X; is a vector of categorical variables,
and u, is an error term. In this formulation, 4; and AR, are acreage variables
(described in greater detail under sample selection and data for regression
analysis) and a, is the coefficient of interest. As noted by Roberts, Kirwan, and
Hopkins (2003), the coefficient a; may be biased in a linear regression of CR; on
NFI, and DP; when using cross-sectional data for several reasons. Differences
between expected and realized net farm income show up in the error term
and bias a, toward zero. And since direct payments tend to be geographically
correlated, estimates of a; may be biased because of unobserved geographic
heterogeneity in factors such as yields. With panel data, we could control for
unobserved heterogeneity with, for example, farm fixed effects.® We have only
cross-sectional data.” However, our main goal is to assess the effect of various
imputation methods on estimates of a,.

6 Some previous studies of the effects of government payments on cash rents and/or land values

have used farm-level panel data. Roberts, Kirwan, and Hopkins (2003) used a farm-level panel
constructed from the 1992 and 1997 Census of Agriculture. Neither the imputation methods used
nor the ways in which the imputed data were identified in those censuses have been made available
to researchers. Furthermore, while the 2007 Census of Agriculture asked a separate question about
direct payments, previous versions lumped direct payments together with other types of government
payments. Thus it is not yet possible to construct a farm-level panel data set from the agricultural
census that includes direct payments as a farm-level variable. Ifft, Kuethe, and Morehart (2013) used
a five-year rotating field-level panel constructed from NASS’s annual June Area Survey (JAS). The
JAS includes information about farm land values but does not include data on program payments.
The authors obtained program payment information from Internal Revenue Service Form 1099 data
aggregated at a county level. Information on the methods used for imputation in the JAS also has
not been made available to researchers. Unfortunately, also, one cannot construct a farm-level panel
data set from the ARMS data. To reduce the burden on respondents, the ARMS sampling procedure
is designed to minimize the probability that a farm that was sampled in the last ARMS survey is
sampled in the current one.

7 In theory, the bias in our estimators of a, and B, could be positive or negative depending on
the correlation between unobserved geographic heterogeneity and the level of direct payment
per acre. However, in practice, the bias seems to be positive. Roberts, Kirwan, and Hopkins (2003)
constructed 40 estimates of the effect of government payments on cash rents (analogous to our
coefficient a,) using three estimators, three samples, five specifications with county fixed effects,
and five specifications without county fixed effects. In every case, they found that the estimate from
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Following the same logic, the value of crop land should increase with both
net farm income (excluding direct payments) and direct payments. We
operationalize this by regressing the per-acre value of land rented from others
(VLR)) on NFI; and DP;:

(3) VLR, / AV;= B, + B,(NFI; / A) + B,(DP; / A) + X;Bx + v;

where AV, is another acreage variable (more fully described under sample
selection and data for regression analysis) and v, is an error term. For the
vector X, we use three categorical variables (farm type, farm sales class, and
farm region) that form a framework for the strata of the ARMS data. We exclude
interactions to avoid augmentation of the design matrix. As is standard practice,
each categorical variable is input into the regression scheme as a sequence of
binary variables (each indicating the category of the categorical variable).

Sample Selection and Data for Regression Analysis

Ourdatasetisthe 2008 ARMS survey, which isjointly designed and administered
annually by NASS and ERS. The survey covers U.S. farming operations and
their operators in the 48 contiguous states. In our model, when estimating the
quantities given in equations 2 and 3, we limit the sample to farms that had
nonzero values for crop land acreage, direct payments, cash rents paid, and
acres rented.

The amount of direct payment received is an ARMS survey variable that is
to be scaled by an acreage variable, 4, that identifies the number of acres of
the farm associated with the appropriate payment program. It is unclear which
ARMS variable should be used as A4; the two best options are crop land acres
and acres operated. For the empirical analysis, we use the total crop acreage
of the farm, which will yield the most economically meaningful estimations. In
the simulation study (the purpose of which is to gauge the efficacy of various
procedures rather than to produce meaningful estimations), on the other hand,
the results are based on direct payments being scaled by both crop land acres
and acres operated.

We use the ARMS variable Cash Rent Paid for Land and Buildings as a measure
of rents, and that variable is scaled by AR, the number of acres rented. We
measure NFI as follows. First we subtract direct payments and cash rents paid
from the ARMS variable Net Farm Income, which ERS constructs from other
farm-level revenue and cost variables. That quantity also must be scaled by A.
The dependent quantity in equation 3 is calculated by dividing VLR (represented
by the ARMS variable Market Value of Land Rented from Others) by AV, which is
the sum of Acres Cash-Rented, Acres Share-Rented, and Acres Rented for Free.

NASS imputes data for about 150 ARMS variables that may be missing
values. Table 1 presents the total number of observations, the number of
missing values, and the number of missing values as a percentage of total
observations for the key variables in our analysis, including DP and VLR.
Table 1 also lists missingness rates for the variables used in the exhaustive
ISR model. The percent missing varies considerably, from only 1 percent for
ARMS'’s Income from Federal Crop Insurance to 43 percent for Government
Payments Received by Landlord. It is also important to note the variables that

the specification with county fixed effects was lower than the estimate without county fixed effects.
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Table 1. Number of Observed and Missing Values for Selected ARMS
Variables

Observations

ARMS Number Percent
Item  Variable Name Total Missing  Missing
855 Market value of land rented from others 10,495 2,185 17
525 Direct and countercyclical payments received 9,342 329 3
520 Direct payments as percent of item 525 8115 931 10
552 Income from federal crop insurance 1,544 24 1
543 Government payments received by landlord 1,719 1,297 43
852 Value of other farm buildings 15,298 940 5
854 Value of land 17,365 2,556 13
878 Value of inputs owned on January 1 8,523 540 6
883 Value of tractors owned 18,398 1,188

Source: ARMS (2008).

are not included in Table 1. Most of the acreage variables (e.g., Acres Cash-
Rented, Acres of Crop Land, and Acres Share-Rented) are not imputed by NASS;
they are fully observable (have no missing values) in the ARMS data set. Cash
Rent Paid for Land and Buildings is also not eligible for computer imputation
by NASS.

Estimation for Regression Analysis

Both NASS and our study use imputation to create a complete data set, and we
now describe how the coefficients in equations 2 and 3 are estimated using that
data set. The ARMS'’s design weights are crucial to analysis of its data. Letting
w; represent the calibrated design weight for unit i, we prefer to estimate the
regression coefficients with weighted least squares while using w,” = w, x A, as the
weights. However, the ARMS data tend to be highly skewed (Robbins, Ghosh, and
Habiger 2013), and per-acre versions of the pertinent variables are highly skewed
as well. This skewness results in several extreme observations that have a large
influence on the values of coefficients found using least squares. To compensate
for these influential observations, Roberts, Kirwan, and Hopkins (2003) removed
the largest 1 percent of each relevant variable as outliers. We instead employ
robust regression (Huber and Ronchetti 2009) in which outliers are iteratively
reweighted (as opposed to being discarded) to reduce their influence. We use
the package RLM in R to calculate regression coefficients (the algorithm returns
estimates of all regression coefficients and their standard errors), and we input
the vector of w; as prior weights into the algorithm.

We calculate our estimates using MI, which includes an assumption that
the imputation method randomly samples from a predictive distribution.
Therefore, the imputation process can be repeated to create m imputed data
sets for which the imputations are assumed to be independent across the
data sets. After creating m data sets, we use the estimation process previously
described to determine values for all of the regression coefficients and their
respective variances (i.e., standard errors squared) for each imputed data set.
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We pool information across data sets using Rubin’s combining formulas
for MI (Rubin 1987). Let 3 represent a regression coefficient of interest and
BlM represent the estimated value of § found using the kth completed data set.
The MI point estimate of B thus is B = Xp=,pK / m. Let v(BM) represent the
estimated variance of Bl*.. The quantity is called within-imputation variance and
represents a point estimate of the variance of B had there been no missingness.
A confidence interval for 3 is calculated using the total variance of B, which is
calculated as T = #(B¥) + (1 + [1 / m])B where B is the between-imputation
variance and is calculated as the sample variance of BX. The between-
imputation variance provides a measure of the error of the imputations and is
included to ensure that imputation error factors into the interval estimate.

The Imputer’s Model: Iterative Sequential Regression
with Varying Depth of Input

Our preferred method of imputation is ISR (Robbins et al. 2011b), which was
developed specifically for use with ARMS and designed with the flexibility to
include a wide range of input data. A similar procedure (Robbins and White
2011) was shown to improve econometric analysis of ARMS data relative to
older methods, and Robbins, Ghosh, and Habiger (2013) describe the procedure
in detail and give several illustrations of the utility of the method. Our focus is
to study the effect of the imputer’s model on the value of regression coefficients
estimated from the models in equations 2 and 3.

ISR involves two primary phases: transformation and imputation. The
transformation phase applies robust transformations that were designed
specifically for ARMS data and were used in Robbins, Ghosh, and Habiger (2013).
Note that the ARMS data predominantly consist of skewed semicontinuous
variables (i.e., variables that are positive, continuous, and highly skewed apart
from a large mass at zero). Such variables are handled by first creating dummy
(0/1) variables that indicate whether the variable is positive and then by treating
all observed zeroes in the original semicontinuous variables as missing. Since
survey enumerators are usually able to determine whether a respondent should
have positive values for each item, all of the values originally coded as missing are
treated as being positive—a longstanding characteristic of machine imputation
in the ARMS. As a result, all of the dummy variables are fully observed. Next,
a density-based transformation (here, as in Robbins, Ghosh, and Habiger
(2013), the transformation is of a skew normal density family) is applied to the
continuous portions of the variables, which ensures approximate normality
(following transformation) of all of the variables with missing values.

The second phase is a form of data augmentation (Tanner and Wong
1987, Little and Rubin 2002) that uses the MCMC algorithm to iteratively
draw imputations from a predictive model. A key characteristic of the data
augmentation phase is that it jointly models all of the variables that require
imputation. Specifically, letting X;, . . ., X, (Where the index now denotes the
variable) represent the variables (there are p of them) that have missing values
following transformation and letting Z denote a set of fully observed covariates,
the ISR constructs a joint model for pertinent ARMS variables using the fact that
the joint distribution of the variables that have missing values can be expressed
as a product of conditional distributions. That is,

14
(4) PXy ... % |2) =1I_ P(X|Z,X,,...,X_)
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where P(-) denotes general notation for a distribution function. This formula
allows the imputer to specify the form of each conditional distribution occurring
in the righthand side of the equation. Here, we assume the linear form

(5) )(j=Y].0+Y]Z+ Yj,1X1+ "'+yj,j—1)(j—1+ Ej

for j=1,...,p where y; represents a vector of regression parameters that
correspond to the fully observed variables and ¢; represents a standard
normal error. One advantage of using this expression for imputation of high-
dimensional economic data is that the imputer has the liberty to remove
variables from inclusion in any of the conditional linear models.

Like most data augmentation methods, ISR uses a Bayesian model to place
distributional assumptions on parameter values. Within each iteration of the
MCMC are two steps. In the first (the I step), ISR samples imputations, and
in the second (the P step), it samples parameter values. In this description,
“sampling” is used in a Bayesian (or Monte Carlo) sense in that the imputations
and parameter values are sampled by simulating values from theoretical
probability distributions. In the regression, 6 represents the set of all model
parameter values, X, represents the missing portion of the data, X,
represents the observed portion of the data, and xg)is and 01 denote the values
of ... and 0, respectively, at the ¢ iteration. P(-) represents general notation
for a distribution function. The I step of the (t + 1)th iteration samples updated
imputations using

Xobs 9)

and the P step samples updated parameters values using

pt+) . p (e(t)|x£fl)is,xobs).

X(t+1) -~ P (X(t)

mis mis

The form of

X9 Xors)

P( X9 | Xos, 6) and P( (1Q)
can be determined using the models expressed in equations 4 and 5 with the
assumption of a noninformative prior for parameters in each conditional model.
After a fixed number of iterations (b), the process is stopped and {xgzi)s, Xobst
is returned as the imputed data set. To generate multiple imputations, the
Markov chain can be extended to sample one more set of imputations after
each additional c iteration beyond the bth iteration (see Schafer (1997), among
others). Here, we use b = 500 and ¢ = 250, which have been shown to be
sufficient for the ARMS data by prior analysis.

Asisevidentfromitsdescription, ISRisarather costly process computationally.
Each imputed data set requires hundreds to thousands of iterations of the
MCMC algorithm plus several imputed data sets must be created to implement
MI. In addition, there are 30,000 to 40,000 data units included in this process.
Incorporating hundreds of the available ARMS variables into the model used
for imputation results in an algorithm that takes weeks (or months) to run even
when using sophisticated computing, time that agencies involved do not have.

With such a vast amount of computation time at stake, how does one select
the scope of input for use in the imputation model? Is it sufficient to use only
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variables that are relevant for the analysis? Or are marked gains produced
when the scope of the imputation model is broadened? Consequently, we apply

the ISR method under three input regimes (i.e., imputer’s models):

e The deficient model uses only the three categorical variables incorporated
into equations 2 and 3 as covariates for imputation.

Table 2. Explanatory Variables in the Exhaustive Iterative Sequential
Regression Imputation Models

Imputation Model
ARMS Value of
Item Variable Name Cash Rents Rented Land
21 Acres cash rented ® °
23 Acres share rented ® °
26 Total acres operated o L
30 Total crop land acres ® °
39 Acres covered, federal insurance ® ®
44 Cash rent paid for land and buildings ® °
47 Farm type ® °
54 Count of landlords °
501  Major grains, cash sales L
502  Other grains and oilseeds, cash sales ®
503  Tobacco and cotton, cash sales
511 Cattle and calves, cash sales ®
— Direct payments ® °
— Adjusted net farm income ® °
— Region Ll L
— Gross value of sales ® ®
— Cash crop sales ® ®
— Fertilizer expenses ® °
— Tax expenses ® °
— Calibrated design weights ® °
— Design weights, crop land acres L L
477  CRP / CREP / WRP payments? ®
552 Income from federal crop insurance ®
543  Government payments received by landlord ®
852  Value of other farm buildings °
854  Value ofland °
878  Value of inputs owned on January 1 °
883  Value of tractors owned ®

@ CRP stands for Conservation Reserve Program, CREP for Conservation Reserve Enhancement Program,

and WRP for Wetlands Reserve Program.

Notes: Variables without item numbers are constructed from other variables in the survey questionnaire.
Adjusted net farm income is net farm income less direct payments.
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o The parsimonious model uses only the information that is directly relevant
to the analyst’s models (i.e., all of the variables in equations 2 and 3 but no
others) as input into the imputation procedure.

e The exhaustive model incorporates variables for information that is not
directly relevant to the analyst’s model as input. The variables used in this
model are given in Table 2.

We follow Schenker et al. (2006) and use sample weights as predictors for
imputation in the exhaustive model. Robbins et al. (2011b) illustrated that
incorporating such weights can improve the reliability of weighted estimations.
Since product weights (w;) are used in the estimation procedure, those
are included in the regression as predictors for both the exhaustive and the
parsimonious imputation models. We are interested in determining whether
the parsimonious model is sufficient for estimation and whether improvements
are gained using the exhaustive model.

Rudimentary Procedures: NASS and Approximate Bayesian Bootstrap

ISR was designed in 2011 to replace the method used by NASS to create the
official imputations. The prior method (hereafter referred to as the NASS
procedure) used a stratum-based form of conditional mean imputation.
Specifically, NASS created a donor pool for a missing value of variable Y by
collecting all positive and observed values of Y for farms observed to have
the same values for sales class, farm type, and region (the three variables
used as fixed effects in the analyst’s models) as the farm with the missing
value of Y. The imputation was set as the mean of the donor pool, and fall-
back groupings were used when the donor pool was not sufficiently large.
We refer the reader to Banker (2007) for a more detailed description of this
method.

Drawbacks of the NASS procedure are many (see Miller, Robbins, and
Habiger (2010) for further details regarding the drawbacks) and range from
its limited scope of input to its incorporation of mean imputation. Conditional-
mean imputation distorts the marginal distributions of the imputed variables,
leading to downward-biased estimates of the variance of the variable (e.g.,
Little and Rubin 2002, Schafer and Graham 2002). Robbins and White (2011)
and Robbins, Ghosh, and Habiger (2013) illustrated that the NASS procedure
has little utility compared to more sophisticated procedures such as ISR, which,
when used in conjunction with ARMS data, has been shown to preserve all of
the characteristics of marginal distributions as well as all relevant aspects of
the joint distribution (neither is achieved by NASS’s method). As a result, ISR
exceeds the ability of the NASS procedure in estimating large numbers and
types of parameters, including means (when missingness is not completely
random), variance components, and regression parameters.

However, several questions regarding the utility of ISR and the procedures
associated with it remain. One relates to the utility of MI with complex survey
data that has been subjected to imputation via ISR. Hence, we consider an
approximate Bayesian bootstrap (ABB) extension (Rubin and Schenker 1986)
of the NASS procedure to gauge the utility of its imputation strategy when
implemented in conjunction with MI to compare the efficacy of ISR when
used with MI. We use the same donor pools for the ABB method, but each ABB
imputation is a random draw from the donor pool.
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When estimating equations 2 and 3, we expect that the ISR method using
the parsimonious and exhaustive models will provide better imputations than
the ISR method using the deficient model, the NASS imputation method, and
the ABB imputation method, which use only three explanatory variables: sales
class, farm type, and region—the same categorical variables that we include on
the righthand side of equations 2 and 3. Any variation in direct payment per acre
that is independent of sales class, farm type, and region will not be captured by
those methods. Parsimonious and exhaustive ISR imputation models, on the
other hand, include all of the variables of interest from equations 2 and 3—
measures of cash rents, land values, net farm incomes, and direct payments.

Empirical Results

We produce five imputed data sets, one for each method—NASS, ABB, and the
three ISR models. For the NASS imputations, we use the official 2008 ARMS
imputations (which were not randomly sampled and thus are not conducive to
MI). For the other four, we generate ten imputations for each missing item and
method, resulting in ten complete data sets. We then estimate equations 2 and 3
separately for each data set to produce regression coefficients and standard
errors for each of the ten data sets for each method. Finally, we apply Rubin’s
combining formulas to pool the results from each method’s ten data sets and
calculate interval estimates of the regression coefficients for each method.

Table 3 presents our estimates of pertinent quantities related to estimation
of a, in equation 2 (cash rents per acre) for each imputation method: @, (the
MI point estimate of «,), se(@;) (the square root of the within-imputation
variance of the MI estimate of @, which quantifies the standard error of @,
under complete data), B (the between-imputation variance), and L, and U,
(the upper and lower bounds, respectively, of the MI interval estimate of o, as
found with 95 percent confidence). Recall that B is a quantity that measures
the variability induced into the estimate of a, by the imputations. Therefore,
a comparatively smaller value of B indicates that the imputations are more
accurate (contain less error).

Table 3. Regressions of Cash Rents per Acre on Direct Payment per Acre
and Adjusted Net Farm Income per Acre

Imputation Method

ISR
(1) (2) (3) 4 (5)
Quantity NASS ABB Deficient Parsimonious Exhaustive
g 0.7610 0.6351 0.5392 0.7489 0.7542
se(@y) 0.0357 0.0331 0.0305 0.0354 0.0358
B — 0.0020 0.0019 0.0010 0.0003
Ly — 0.5158 0.4245 0.6519 0.6740
Uy — 0.7543 0.6538 0.8459 0.8346

Note: Estimates of regression coefficients and standard errors were combined across the ten imputed
data sets using Rubin’s combining formulas. Observations were weighted by the product of total acres
and the sampling weight.

Source: ARMS (2008).
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Table 3 demonstrates that the imputation method chosen can influence the
estimated coefficient for the direct payment. For instance, the NASS procedure
and exhaustive ISR model produce similar values of @; while the ABB method
yields a noticeably different result. Only 10 percent of the direct payment data
(and none of the cash rent data) is imputed, so perhaps the small difference
between the NASS estimate and the exhaustive ISR estimate should not be
surprising. Habiger, Robbins, and Ghosh (2010) showed that NASS imputations
induced a downward bias into estimates of sample variances and covariances
whereas ABB imputations only added bias to estimates of covariance. As a result,
the NASS method may inadvertently preserve ratios of sample covariances to
sample variances (such ratios are used in calculating regression coefficients
via least squares). Table 3 also shows that the exhaustive and parsimonious
ISR imputations yield similar values of @; and se(@,). The primary distinction
between the results is the values of B. The exhaustive model yields a small
between-imputation variance (in fact, the confidence interval corresponding to
the exhaustive model is contained within the confidence interval corresponding
to the parsimonious model), suggesting that the imputations from the more
comprehensive model contain less error. Note also that the point estimates of
a, under the ABB method and the deficient ISR model lie outside the interval
estimates for that parameter from the parsimonious and exhaustive ISR
models. This result illustrates that the choice of imputation method and model
can profoundly influence the inferences drawn.

Table 4 provides results for quantities relevant to the estimation of 3,
in equation 3 (per-acre value of land rented from others), which mimic
those presented in Table 3. The values of B, show even greater sensitivity to
imputation method than values of &@;—perhaps because of the increase in the
missingness rate (in equation 2, the dependent variable has no missing values
while 17 percent of the farms have missing values for the dependent variables
in equation 3). Furthermore, there is again evidence that imputations created
using the exhaustive ISR model contain the least error.

Both tables illustrate the significant impact that choice of imputation method
can have on estimates of the interactions between farm subsidies and cash rents

Table 4. Regressions of the Per-Acre Value of Land Rented from Others on
Direct Payment per Acre and Adjusted Net Farm Income per Acre

Imputation Method

ISR
1) (2) (3) 4 (5)
Quantity NASS ABB Deficient Parsimonious Exhaustive
Ba 16.78 16.51 15.08 18.13 19.47
se(Bq) 0.902 0.994 0.929 1.046 1.030
B — 1.887 1.021 0.905 0.585
Ly — 12.86 12.19 15.21 16.85
Uy — 20.17 17.96 21.05 22.07

Note: Estimates of regression coefficients and standard errors were combined across the ten imputed
data sets using Rubin’s combining formulas. Observations were weighted by the product of total acres
and the sampling weight.

Source: ARMS (2008).
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and land values, especially when a relatively large percentage of the data is
imputed. But which estimates are closer to the truth? While we caution against
interpreting any single estimate as the truth, we note that our estimates from
the exhaustive ISR model are similar to estimates from other studies that used
much larger panel data sets and employed a more complete set of controls. For
example, Goodwin, Mishra, and Ortalo-Magné (2011) used farm-level data from
the ARMS survey and county-level data from a variety of sources and found
that a one-dollar increase in direct payment is associated with a $0.72 increase
in cash rents, which is comparable to our estimate of $0.75 per acre but is not
economically significantly different from the estimate of $0.76 per acre using
the NASS procedure. Using field-level panel data from the JAS and county-level
data on federal payments to farms, Ifft, Kuethe, and Morehart (2013) found that
an extra dollar of a decoupled payment (which included any direct payment)
is associated with an increase in land value of $17.72 per acre under their
preferred specification. That estimate is well within the 95 percent confidence
interval ($16.85- $22.07) for our preferred-method estimate of $19.47 per acre
based on the exhaustive ISR model. In contrast, our estimate using the NASS
imputations ($16.78 per acre) is outside the 95 percent confidence interval for
the estimate from our preferred method.

What then is the value of ISR imputation methodology for applied researchers
and policymakers? According to the results in Table 3, the additional
computational cost associated with the exhaustive ISR method may not be
worthwhile when a relatively small percentage of the data is imputed (e.g.,
10 percent or less) and only one or two key variables contain imputed data. On
the other hand, as shown in Table 4, a larger percentage of imputed data and the
presence of imputed data in both the dependent variable and a key explanatory
variable could make the exhaustive ISR method worthwhile. Our estimate of
the per-acre value of land under the parsimonious ISR model ($18.13 per acre)
is closer to the estimate by Ifft et al. using their preferred method than to our
estimate under the NASS procedure. Furthermore, for the results shown in
Table 4, all three ISR models provide tighter 95 percent confidence intervals
than the ABB method, which used the same donor pools as the NASS method.
Intuitively, then, the estimates based on the ISR imputations have a smaller
degree of uncertainty due to imputations for missing data. Estimates based on
single imputations using the NASS method give researchers and policymakers
a false sense of certainty because they fail to account for uncertainty associated
with the imputation process.

Simulations

Tables 3 and 4 indicate that different imputation methods and models can yield
substantially different estimates of regression coefficients. However, we do
not know which value is closest to the truth. To provide guidance as to which
estimates are most trustworthy, we execute a jackknife-type simulation study
using the 2008 ARMS data to compare benchmark values of the parameters to
the ones estimated using each imputation method.

Since the ARMS data set contains missing values for a number of variables,
we cannot calculate benchmark coefficient values using only observed data.
One option is to remove units that have a non-response in at least one pertinent
variable. However, that approach yields a sample size that is too small because
of the large number of variables used in this study. Therefore, we first generate a
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single set of imputations (using a method described later) that we use to create
the completed benchmark data set of regression coefficients. We then randomly
“poke holes”—introduce missing values—in 50 percent of the observations
of cash rents and of value of land rented in the benchmark data set without
regard for which values were missing originally. This missingness mechanism
thus is “missing completely at random” (MCAR) (Little and Rubin 2002). For
each missing value, we create an imputation using each of the methods in the
study. Then, for each of the five completed data sets, we calculate MI points
and interval estimates using our previous estimation procedures. That entire
process is then repeated 249 times, generating 250 data sets with imputed
values standing in for the simulated missing ones. Finally, we calculate values
for each of the quantities listed in Tables 3 and 4 for each method.

Earlier exploratory studies similar to the one presented here and conducted
using only fully observed ARMS data indicate that ISR is preferable to more
rudimentary methods. Furthermore, other exploratory studies that used
benchmark data that contained imputations derived via the NASS method also
indicated that ISR was preferable. Therefore, to create the benchmark data set,
we use ISR with a range of inputs that exceeds the inputs in our exhaustive
model. Note, however, that the observed missingness rate of DP and VLR is
much lower than the missingness rate we impose in the simulation study so the
imputation method used to create the benchmark data set will not be of great
consequence (this belief was verified by exploratory studies).

We are interested in determining how well each imputation method
maintains the benchmark values for the regression coefficients and respective
standard errors. Letting 6 denote a quantity of interest (such as a,, (3, or the
corresponding standard errors), we calculate

A(®))=100(8" -8) /8,

which represents the percent change in 6 when 8% is the value of 6 estimated
from the jth data set with simulated missingness and 8 is the value of 8
calculated from the benchmark value.

We present the results as box plots for the 250 values of A(8)%) for each
imputation method and relevant quantities of interest. In each plot, the vertical
axis represents the percentage difference between estimates from the multiply
imputed completed data and the corresponding estimate from the benchmark
data. The thick dark line in each plot depicts averages of 100-percentage-point
differences for a given imputation, and the upper and lower ends of the boxes
show the upper and lower quartiles.

Our results for the cash rent model (equation 2) are presented in Figure 1.
The lefthand plots in Figure 1 show the coefficients on direct payments
(i.e, 8 = a,) and the righthand plots show the estimated standard errors of @j.
Corresponding results for the model of value of land rented (equation 3) are
presented in Figure 2. As previously mentioned, both figures provide results for
direct payments scaled by crop land acres and acres operated.

The results shown in the figures mirror the patterns seen in Tables 3 and 4.
The figures thus verify the efficacy of the exhaustive ISR model and specific
deficiencies of the other methods. Specifically, Figure 1 shows that the
parsimonious ISR results in biased estimates of a, This is not particularly
surprising. As mentioned earlier, the model in formula 2 incorporates
complexities such as sample design weights and per-acre forms of dependent
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Figure 1. Box Plots of Percentage Differences between Cash Rent Model
Estimates from Multiply Imputed Data and Fully Observed Data by
Imputation Method

Note: Methods plotted: (1) NASS, (2) ABB, (3) ISR deficient model, (4) ISR parsimonious model, (5) ISR

exhaustive model. For the plots in the top (bottom) row, estimators are calculated after scaling direct
payments by crop land acres (acres operated).

and response variables that are not directly incorporated into the imputation
procedure in the simulation. However, by expanding the depth of inputs and
thereby garnering more accurate imputations, we can improve the reliability
of estimates of the regression coefficients while using the same general
imputation method.

We are also interested in gauging the appropriateness of the confidence
intervals derived using MI in the simulation study so we monitor quantities
that are specific to MI while running the simulations. Specifically, we track the
value of the between-imputation variance, B, and the width of the 95 percent
confidence interval estimated using MI for each method for each of the 250 runs
of the simulation. Also of interest is the portion of runs in which the benchmark
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Figure 2. Box Plots of Percentage Differences between Value-of-Rented-
Land-Model Estimates from Multiply Imputed Data and Fully Observed
Data by Imputation Method

Note: Methods plotted: (1) the NASS method, (2) ABB, (3) ISR deficient model, (4) ISR parsimonious

model, (5) ISR exhaustive model. For the plots in the top (bottom) row, estimators are calculated after
scaling direct payments by crop land acres (acres operated).

value of the regression coefficient falls within the interval estimated using MI.
We refer to that portion of runs as the estimated coverage probability of the
interval estimate and denote it as p. Table 5 provides the results of this analysis
for the cash rent model and Table 6 provides the results for the land value
model. The tables give average between-imputation variances and confidence
interval widths across the 250 runs plus estimated coverage probabilities of
the 95 percent confidence interval for the coefficients on direct payment (o,
and 3,). As in Figures 1 and 2, these results are for direct payments scaled by
crop land acres and acres operated.

The results of this analysis confirm those presented in Tables 3 and 4:
increasing the scope of an imputation model decreases the between-imputation
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variance (and, thus, the width of resulting interval estimates), which is
indicative of more accurate imputations. Note that there is a discrepancy in
between-imputation variance values from Tables 3 and 4 and Tables 5 and 6,
a result of the fact that the missingness rates imposed in the simulation are
much larger than the ones observed empirically. Higher missingness rates tend
to yield higher values of between-imputation variance.

Table 5. Results for Multiple Imputation of Simulated Missingness for the
Cash-Rents Model

Imputation Method
ISR
(2) (3) 4 (5)
Quantity ABB Deficient Parsimonious Exhaustive

Acreage Measure: Acres Operated

B 0.0033 0.0023 0.0038 0.0014
Width 0.3259 0.2655 0.3470 0.2273
1 0.0000 0.0000 0.3880 0.9280

Acreage Measure: Crop Land Acres

B 0.0017 0.0011 0.0026 0.0008
Width 0.2396 0.1908 0.2944 0.1961
1 0.0000 0.0000 0.6120 0.9400

Note: Information provided includes average between-imputation variance (B) and interval width as
well as estimated coverage probability (p) of the 95 percent confidence interval. Results are given using
two separate acreage variables to scale direct payments.

Table 6. Results for Multiple Imputation of Simulated Missingness for the
Value-of-Land-Rented Model

Imputation Method
ISR
(2) (3) 4 (5)
Quantity ABB Deficient Parsimonious Exhaustive

Acreage Measure: Acres Operated

B 7.311 5.764 5.326 4.639
Width 15.22 13.13 13.19 12.29
1 0.9880 0.8040 0.9320 0.9560

Acreage Measure: Crop Land Acres

B 4.326 3.658 3.783 2.952
Width 11.71 10.62 11.25 10.11
1 0.9800 0.9720 0.9640 1.0000

Note: Information provided includes average between-imputation variance (B) and interval width as
well as estimated coverage probability (p) of the 95 percent confidence interval. Results are given using
two separate acreage variables to scale direct payments.
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The results presented in Tables 5 and 6 also illustrate that confidence intervals
calculated using MI with imputations sampled from the exhaustive ISR model
are likely to observe the appropriate coverage (i.e., p = 0.95). This observation
is of particular interest since the theory that validates the MI interval estimates
does not hold in these circumstances because of lack of congeniality between
the imputer’s and analyst’s models.

Conclusions

We investigate the effect of various imputation methods on regression
coefficient estimates and standard errors in two models of the effect of
direct payments on cash rents and the market value of land using data from
the ARMS. We replace NASS’s single imputations with multiple imputations
created using the ABB method plus the recently developed ISR method
applied with three levels of input. We find that regression coefficient
estimates and standard errors differ significantly based not only on the
imputation method used but also on the depth of the imputation model used
in ISR. Our comparison of estimates using the official USDA imputations with
estimates using our preferred imputation method and model—exhaustive
ISR—points to an additional $52.64 in land value per acre associated with
direct payments. At a national level, that could translate to a $13.7 billion
increase in land valuations associated with direct payments.

We also simulate missing data in fully observed cases and compare
regression coefficient estimates and standard errors based on ABB and ISR
multiple imputations to estimates based on the original fully observed cases.
We find that the ISR method consistently produces regression coefficient
estimates and standard errors with significantly less bias than those based
on ABB imputations. Furthermore, we make the surprising observation
that parsimonious ISR may produce biased point estimates of regression
coefficients while no such bias is seen in the exhaustive imputations. Likewise,
the exhaustive imputation model yields interval estimates that have a higher
level of precision (i.e., a smaller width) and appropriate coverage probabilities.
These observations lead us to conclude that an exhaustive imputation model
is indeed worth the computational cost in many cases. Furthermore, use of
an exhaustive imputation model may speed up the rate of convergence of the
Markov chain, thereby allowing for fewer MCMC iterations, which may help
compensate for the increased computational time required by an exhaustive
model to some degree.
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