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Abstract 

This paper presents an application of Bayesian analysis to an AIDS model of Japanese meat 

demand extending previous approaches in three ways: (1) The methodology employed is 

robust with respect to the likelihood function but retains the generic, easily programmable 

character of algorithms offered by Monte Carlo Integration approaches based on the normal 

likelihood function. (2) In addition to inequality constraints, linear exact restrictions and 

stochastic prior information are subjected to a Bayesian posterior analysis of validity and 

incorporated into Bayesian point estimates of model parameters and elasticities. (3) In order 

to assess the influence of the prior density on posterior distributions of model parameters 

relative to the likelihood, a measure quantifying the "degree of prior influence" on the 

posterior is defined.  

 

Zusammenfassung 

Das Diskussionspapier stellt eine Bayes'sche Analyse eines AIDS Modells japanischer 

Fleischnachfrage vor, die eine Erweiterung früherer Ansätze in den folgenden drei Punkten 

darstellt:(1) Die verwendete Methode ist robust bezüglich der Likelihood Funktion, erhält 

dabei aber die Flexibilität und einfache Umsetzung von Algorithmen basierend auf Monte 

Carlo Integration und der Annahme der Normalverteilung. (2) Zusätzlich zu 

Ungleichheitsbedingungen werden exakte Restriktionen und stochastische a-priori 

Information einer Bayes'schen a-posteriori Analyse unterzogen und in die Bayes'sche 

Punktschätzung von Parametern und Elastizitäten einbezogen. (3) Ein Index zur Messung des 

Einflusses der a-priori Information auf die a-posteriori Verteilung der Modellparameter wird 

vorgestellt. 

1 Introduction 

In recent years, empirical economists have shown increasing interest in Bayesian methodology 

either to enforce and evaluate "objective" prior restrictions derived from economic theory that are 
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difficult to implement using classical statistical techniques, or to formally incorporate "subjective" prior 

beliefs about model parameters in order to obtain defensible results in policy modeling work 

(Chalfant and White; Chalfant, Gray, and White; Hayes, Wahl, and Williams). Applications have 

been fostered by the development of generic, algorithmic approaches to Bayesian analysis based 

largely on normal likelihood functions and Monte Carlo integration of posterior distributions. Such 

approaches allow a flexible formulation of prior information, especially with regard to the use of 

inequality constraints, and also facilitate substantially the analysis of posterior distributions of the 

model parameters (Kloek and van Dijk; van Dijk and Kloek; Geweke 1986, 1989, 1991). Along 

the same lines, Heckelei, and Heckelei and Mittelhammer (1996a,b) have relaxed the normality 

assumption to allow Bayesian analysis of econometric models based on bootstrapped Regression 

Structure Likelihoods that are robust with respect to the underlying probability model. 

This paper presents a Bayesian analysis of an Almost Ideal Demand System (AIDS) model of 

Japanese meat demand (originally analyzed by Wahl and Hayes) that in addition to substantive 

empirical results, extends previous approaches in three ways. First, in addition to inequality 

constraints, linear exact restrictions and stochastic prior information are subjected to a Bayesian 

posterior analysis of validity and incorporated into Bayesian point estimates of model parameters and 

elasticities. Second, the methodology used is robust with respect to the likelihood function but retains 

the generic, easily programmable character of Monte Carlo integration approaches usually based on 

the normal likelihood function.  Finally, in order to assess the influence of the prior density on 

posterior distributions of model parameters relative to the likelihood, a measure is defined quantifying 

the "degree of prior influence" on the posterior. 

The remainder of the paper is organized as follows. We first introduce the AIDS model of 

Japanese meat demand and present various types of prior information on the model parameters.  

Next, a description of the Bayesian bootstrap inferential methodology is given. The method is then 
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applied to the meat demand model, and the different types of prior information are evaluated a 

posteriori.  Finally, the economic results are interpreted and conclusions are drawn regarding the 

usefulness and limitations of the methodology. 

2  The Japanese Meat Demand Model 

The AIDS model developed by Deaton and Muellbauer (1980a,b), is now a widely used 

systems approach for modeling consumption behavior.  It is consistent with the axioms of choice, 

allows perfect aggregation over consumers, and is capable of providing first-order approximations to 

any demand system. Moreover, properties of demand systems deduced from consumer choice 

theory - adding up, homogeneity, and symmetry conditions - can be straightforwardly imposed 

through linear restrictions on the parameters of the model.  Consequently, AIDS has been used 

extensively to test hypotheses relating to the economic theory of the consumer. 

Our Bayesian analysis utilizes the same linearized AIDS expenditure share specification of 

Japanese meat demand and data as was used by Wahl and Hayes. The share equations are  

(1) w g p E P i j m,i i ij
j

j i= + + =∑α βlog log( / ), , , . . . ,1  

where wi  is the share of meat group expenditure allocated to meat product i, pj is the price of 

meat product j, E is total expenditure on the meat group and P =  exp( j jp )
j

w  log ∑ denotes 

Stone´s price index. Wahl and Hayes estimated this model using Japanese meat expenditure and 

price data on five different meat products: Wagyu beef, import quality (IQ) beef, pork, chicken, and 

fish.  Their analysis focused on the question of whether prices are exogenous or endogenous, i.e., 

whether supply curves are perfectly elastic or upward sloping. They rejected the exogeneity 
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hypothesis for all but one meat (chicken) and showed that ignoring simultaneous equation bias has a 

significant impact on parameter and elasticity estimates.  

Following the findings of Wahl and Hayes, we perform a Bayesian analysis of the Japanese 

linearized AIDS system that takes the endogeneity of prices into account.  Instruments used in the 

estimation procedure are in the form of ten principal components created from variables which are 

considered to be predetermined with respect to the supply of each of the five meats. The price and 

expenditure data, as well as observations on instruments, are for the period 1965-86 and are given in 

tables A1 and A2 of the appendix.  For a detailed description of the data and instruments, see Wahl 

and Hayes. 

3  Prior Information on Model Parameters 

The prior information utilized in this study is a collection of theoretical restrictions, expert 

opinion, and empirical observations that place exact, inequality, and probabilistic restrictions on the 

admissible values of demand model parameters. Prior information used in Bayesian analyses is often 

differentiated on the basis of whether the information is "objective" or "subjective". In the context of 

this study, prior information considered to be "objective" includes exact and inequality restrictions on 

the parameters of the demand model derived from the neoclassical theory of the consumer. The 

purely "subjective" information consists of inequality restrictions that express a prior conjecture that 

net substitutability should exist among the demands for the various meat products in the model.  

There is also prior information in the form of a prior distribution on own-price elasticities 

derived from past research on the demand for meat in the Korean and Taiwanese markets that, in 

our context, might best be described as containing elements of both objective and subjective 
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information.  The objectivity of the information derives from the fact that the prior elasticities are 

deduced from a reproducible economic analysis based on observed data and a widely accepted 

econometric approach.  Its subjectivity derives from the professional judgments that were made by 

the original demand analysts in the selection of particular functional forms, commodity definitions, and 

types of variables included in the demand models, as well as from our decision to provisionally 

consider meat demand responses in the Korean and Taiwanese markets as providing informative 

guides to Japanese meat demand response.   

3.1 Theoretical Restrictions  

The neoclassical restrictions of additivity, homogeneity, and symmetry define linear exact 

restrictions on the parameters of the AIDS share equations.  These restrictions are given by 

(2)  α γ βi
i

ij
i

i
i

∑ ∑ ∑= = =1 0 0; ; ,  

(3) γ ij
j

=∑ 0,  

(4) γ γij ji i j= ∀ ≠ ,  

respectively. A prior belief that these neoclassical assumptions hold is tantamount to prior information 

stating that equations (2), (3), and (4) are jointly satisfied with prior probability 1. 

Theoretical considerations relating to the concavity of the cost function and bounds on the 

admissible values of budget shares provides additional prior information in the form of inequality 

restrictions on functions of the AIDS parameters. Concavity of the cost function can be represented 

in terms of a prior probability of one that the eigenvalues of the Slutsky substitution matrix, S, are 

nonpositive.  Equivalently, one can also check the signs of the eigenvalues of the elasticity of a 

substitution matrix whose typical (i,j)th entry is defined by σ εij ij jw= * / , where 
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ε ∂ ∂ij i j j iq p p q* * *( / )( / )=  denotes a Hicksian price elasticity and q i
*  denotes the Hicksian demand 

for product i.  For given values of the budget shares in Stone's price index, the substitution elasticities 

in the AIDS model are defined as 

(5) σ
γ δ

ij
ij

i j

ij

j
i jw w w

= + − ∀1 , ,  

where δ ij is the Kronecker delta such that δij = 1 if i=j and δ ij = 0 otherwise.  [See Chalfant, 

Gray, and White; for extensive discussion on the calculation of AIDS elasticities, refer to Green and 

Alston (1990, 1991), and Buse.] The prior information regarding concavity of the cost function then 

states that the eigenvalues of the substitution matrix, whose typical (i,j)th entry is σij, are all 

nonpositive with prior probability 1.  

Woodland pointed out that typical share model specifications, such as those based on a 

normal error distribution, do not account for the fact that budget shares must all be nonnegative and 

less than or equal to unity.  Therefore, a more appropriate representation of the probability model is 

desirable and a prior probability of one should be assigned to the event that the vector of budget 

shares resides in the unit simplex. Inequality constraints on budget shares that jointly hold with prior 

probability 1 are then given by 

(6) 0 1 1≤ ≤ =w i mi , , . .. , .  

3.2 Net Substitutability 

Prior beliefs about substitutability or complementarity between certain commodities within a 

product group are often considerably strong.  For example, within a food group such as meats, and 

in the context of U.S. tastes and preferences, it is generally expected that meat commodities would 

be net substitutes for one another.  Unfortunately, most demand systems with high theoretical 

structure, like the AIDS, do not have sufficient parameter flexibility to enforce these prior beliefs 
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globally via reparameterization, and classical statistical techniques for enforcing these beliefs locally 

via parametric constraints are generally cumbersome (if at all tractable). In contrast, within the 

Bayesian methodology net substitutability between meat commodities in the context of the AIDS 

model can be ensured by assigning prior probability 1 to the event that the following inequality 

constraints on the Hicksian price elasticities hold jointly: 

(7) ε δ
γ

ij ij
ij

i
jw

w i j* , .= − + + ≥ ∀ ≠0  

3.3 Prior Elasticities 

Oftentimes more informative prior information is available than merely the signs of certain 

functions of model parameters.  Based on previous studies or expert opinion, it may be possible to 

construct proper prior probability distributions on model parameters that can be combined with 

observed data in order to broaden the base of information and narrow the uncertainty regarding 

demand response.  However, there are often problems concerning the comparability of different 

types of information.  For example, the current demand model being analyzed differs from previous 

demand models in terms of data periods, functional forms, and underlying theoretical assumptions.  A 

review of publications relating to meat demand in Japan (for a survey, see Dyck) revealed that all 

have problems of comparability with the demand model employed here, one significant problem 

being that other studies do not treat Wagyu beef and IQ beef as separate commodities. Also, 

Bayesian elasticity estimates from the current AIDS model based on ignorance (uninformative or 

diffuse) priors (see tables 1 and 2) are generally well within the range of estimated elasticities 

obtained from past studies such that prior information based on these past analyses is generally not 

very informative. While there are specific elasticities from past studies that deviate substantially from 
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current ignorance prior-based AIDS estimates, these earlier estimates tend to be statistically 

insignificant and highly unreliable. 

In this study, we follow a different tack with regard to the use of prior elasticity information.  In 

particular, we analyze prior own-price demand elasticities for pork and chicken from non-Japanese 

markets (obtained from Capps et al.) that refer to definitions of pork and chicken commodities and a 

time period of analysis (1962-1991) that are comparable to those utilized in our Japanese AIDS 

model and that are derived under the imposition of all neoclassical equality restrictions on 

parameters. The elasticities refer to South Korean and Taiwanese meat demand.  We engage in a 

posterior analysis of the relative similarity of price response in Japan to price response in South 

Korea and/or Taiwan for these two meat commodities. To accomplish this, we formulate two 

different bivariate normally distributed prior distributions on the mean-level Marshallian own-price 

elasticities for pork and chicken having respective mean vectors  (-0.6468, -0.4698) and  (-0.9192, 

-0.2779), and a common diagonal covariance matrix equal to  (0.019, 0.126). The means of the 

prior densities correspond precisely to the mean-level elasticities for South Korea and Taiwan 

reported in Capps et al. Variances of the elasticity estimates were not reported by Capps et al., and 

so prior variances are set equal to the posterior variances of the corresponding elasticities calculated 

from our AIDS model based on an ignorance prior. This approach can be interpreted as assigning an 

equal measure of imprecision to both the prior elasticity information and the purely data-based 

information relating to these elasticities. Marshallian price elasticities for the linearized AIDS model, 

which are reported in the results section and are needed for comparison with the South Korean and 

Taiwanese prior information, are calculated as 

(8) ε δ
γ

βij ij
ij

i
i

j

iw

w

w
= − + − .  
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4 Bayesian Bootstrapping of Reduced Form Mappings 

Zellner, Bauwens, and van Dijk developed several posterior mappings of reduced form 

coefficients that allow for limited information Bayesian posterior analysis of the parameters of 

structural equations. In their approach, the posterior distributions of structural equation parameters 

must be analyzed via Monte Carlo integration based on random samples from the posterior 

distribution of reduced form coefficients.  The posterior distribution of the reduced form coefficients 

is a matrix Student-t density if it can be assumed that the errors are normally distributed and a 

standard ignorance prior is specified for the reduced form parameters (Zellner, Bauwens, and van 

Dijk, p. 46).  

Heckelei (Part 2, 1995), and Heckelei and Mittelhammer (1996b) introduced a robust and 

simplified alternative procedure for sampling from the reduced form posterior by demonstrating how 

a random sample from a posterior distribution based on a "Regressione Structure Likelihood" (RSL) 

could be obtained.  In essence, the bootstrapped joint sampling distribution of the usual OLS 

location and scale estimators of reduced form parameters is used to form a distribution-robust 

representation of the likelihood function of the reduced form parameters, thereby rendering the 

specification of a parametric family for the likelihood function unnecessary and introducing robustness 

to the representation of the underlying error distribution (see also Heckelei and Mittelhammer 1996a 

for a discussion of the single -equation case).  Heckelei (1995), and Heckelei and Mittelhammer 

(1996b) further extended the 2SLS-mapping of Zellner, Bauwens, and van Dijk to a "3SLS 

mapping" for the case where more than one structural equation is of interest. 

The algorithm we use here to generate sample outcomes from a posterior distribution of 

reduced form parameters is based on the algorithm given in Heckelei and Mittelhammer (1996b).  

We present below a brief account of the theory and algorithm in sufficient detail so that the interested 

reader can reproduce the results reported here as well as adapt the procedure to his/her own 
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applications. Proofs and further conceptual details are deferred to the references (i.e., Zellner, 

Bauwens, and van Dijk, Heckelei, and Heckelei and Mittelhammer (1996a,b)). 

4.1 Robust Bayesian Bootstrapped 2SLS and 3SLS Mappings  

Represent the AIDS model of Japanese meat demand in matrix notation [compare to equation 

(1)] as follows: 

(9) W U =   +   +  ια δΖ , 

where W is an (n H m) matrix of budget shares, ι is an (n Χ 1) vector of ones, α  is a (1 Χ m) 

vector of unknown constants, Z is an (n Χ k) matrix of right-hand-side endogenous variables 

[containing observations on ln(Pi), where i = 1, ..., m and on ln(E/P) in the AIDS model], δ  is a (k Χ 

m) matrix of coefficients (the elements are the γ ij’s and βi’s in the current application), and U is an (n 

Χ m) matrix of structural equation errors.  

Let the reduced form representation of the right-hand-side endogenous variables be given by 

(10) Z X V =   +  Π , 

where V is an (n x k) matrix of disturbance terms whose rows are independently distributed 

according to some multivariate probability distribution with mean vector zero and finite positive 

definite covariance matrix Σ , X is an (n x p) matrix of predetermined and/or exogenous variables, 

and Π  is a (p x k) matrix of reduced form coefficients. Let the posterior distribution of the parameter 

matrix Π  implied by (10) be given by p(Π  Z). Then a 2 SLS mapping of the posterior distribution 

of the parameter matrix Π  into the posterior distribution of δ , h(δ | Z), based on an ignorance prior 

for the structural equation parameters, is defined in accordance with Zellner, Bauwens, and van Dijk 

(p. 54) as 

(11) { } ( ) ( ) ( )Z* * * *and ~ | ' ' W ~ h | .= → = −ι δ δX p Z Z Z Z ZΠ Π Π 2 1SLS  
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For purposes of posterior inference, a sample outcome of  δ 2SLS from h(δ |Z) can be derived 

by first obtaining a sample outcome of Π  from p(Π  *Z), then calculating Z* based on the sample 

outcome of Π , and then finally calculating δ 2SLS as a function of the realized value of Z*.   

A likelihood-robust Bayesian bootstrapped version of the preceding 2SLS mapping is 

obtained by utilizing Heckelei and Mittelhammer´s (1996b) Bayesian bootstrap multivariate 

regression (BBMR) technique for generating outcomes from a bootstrapped posterior distribution of 

Π , but otherwise following the remainder of the calculations implied by (11). The BBMR procedure 

is based on a posterior distribution for Π , say, p( SΠ Π| $ , ), , that is defined by taking a regression 

structure likelihood (RSL), for Π  and Σ , L( , | , )Π Σ Π$ S , weighting the RSL by the standard 

ignorance prior for Σ, and then integrating out Σ. The RSL is the likelihood for Π and Σ  implied by 

the probability distribution of the standard least squares estimators, $ ) 'Π  =  ( 'X X X W−1  and 

n S n− −= − −1 1 ( $ )' ( $ ),Y X Y XΠ Π  of the reduced form parameters and, when used to define the 

posterior in (11), leads to a posterior distribution for δ  of the form h( | ,  S)δ $Π . In the event that the 

error terms V are multivariate normally distributed, the posterior distribution for the structural 

parameters based on the RSL is identical to the distribution implied by the Zellner, Bauwens, and van 

Dijk approach.  More generally, the BBMR is robust within the entire class of elliptically contoured 

probability distributions (Heckelei and Mittelhammer, 1996b, p. 8), which includes the multivariate 

normal distribution as a special case. (See Johnson for a discussion of the class of elliptically 

contoured distributions.) 

The specific steps in the BBMR algorithm for obtaining sample outcomes from p(Π Π| ,  S)$  

and h( | ,  S)δ $Π ,  are as follows (see Heckelei and Mittelhammer 1996b, p. 11) : 

 

Step 1 Obtain OLS estimates of Π  and the reduced form residuals as 
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$ X X X Z $V Z X $Π Π =  =  , ( ' ) '  and (  -  )-1   

and calculate 

(13)  1 2 1 2/ /( ' )S $V $V =  , 

where the exponent 1/2 denotes the symmetric square root matrix1. 

Step 2 Generate N bootstrap random samples (i.e., sampling with replacement) of size n 
from 1 n,  . . . ,  $V $V , with the subscripts indicating the rows of the matrix $V , resulting 
in the (n × m) matrices V*i, for i = 1, ..., N. Transform each bootstrapped matrix 
outcome as 

(14)  V V S SS S)** *
/

*
/

i i i =   − −1 2 1 1 2(  

where S V 'MV , M I X(X' X) X' .* * *i i i= and = − −1  

Step3 Generate N bootstrapped sample outcomes from the posterior 
distributionL( | ,  )δ $ SΠ based on an ignorance prior and the bootstrapped outcomes 
of the RSL as 

(15)  P $P (X' X) X'V , ,. .. , .* **i i i N= − =−1 1  

Step 4 Insert the N outcomes from (15) into (11) to generate N bootstrapped outcomes 
from the posterior distribution of δ 2SLS, yielding δ i

2SL S,  i = 1, ... ,N.  
 

Calculation of an iterated restricted 3SLS(R3SLS) mapping of reduced form parameters into 

structural equation coefficients that enforces linear restrictions of the form Rvec(δ ) = r,  (e.g., 

additivity, homogeneity, and/or symmetry constraints) can be accomplished by first calculating2 

(16) ( )δ 3 1 1 1SLS
b b b= − ⊗ ⊗− − −Z ( $ I) Z Z ' ( $ I) (W)* * *Ω Ω vec  

where 

 { }Z I Z , $ (W Z )' (W Z ) / ,Z X ,* * *b m
SLS SLS n= ⊗ = − − =∗ ∗Ω Πδ δ ι3 3  

and Π* represents an outcome from the BBMR algorithm described above.   

 
Then the R3SLS mapping is calculated as 
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(17) R3SLS 3SLS -1 3SLS =  vec  +   -  vec ,δ δ δ( ) $CR (R $CR ) (r R ( ))' '  

where [ ]$C Z ( $ I) Z ,*
'

*= ⊗ −
b bΩ 1

1
, and (16) and (17) are iteratively reapplied until convergence is 

achieved. The whole process is repeated for all N bootstrapped outcomes of A*i to obtain N 

outcomes of the restricted 3SLS mapping as δ i
R3SLS , i = 1, ..., N (see footnote 2). 

Note that it is often the case in empirical analyses of demand systems that a complete model 

for determining market equilibrium prices and quantities is not specified, so that a  reduced form 

representation of the right-hand-side endogenous variables is not explicitly determined. In these 

cases, (10) is to be interpreted as an equation expressing the right-hand-side variables of the 

equation system (9) in terms of instrumental variables contained in the matrix X. The preceding 2SLS 

and R3SLS mappings then can be interpreted as instrumental variable mappings. 

4.2 Posterior Expectations Based on Reduced Form Mappings 

The preceding mapping outcomes are based on an ignorance prior-bootstrapped posterior 

distribution representing only data-based information about the structural coefficients via the 

respective mappings of reduced form coefficients.  By Bayes’ theorem, the posterior distributions 

h( | ,  )δ $Π S  derived from these mappings are proportional to the product of the prior density p(δ ) 

and the likelihood L( ,  )δ| $ SΠ as 

(18) h ,  p( L S( | $ ) ) ( | $ , ).δ δ δΠ ΠS ∝  

                                                                                                                                                         
1) Let λ, P denote the vector of eigenvalues and the matrix of eigenvectors of a square matrix A. Then, the 

symmetric matrix square root of A, A1/2, can be calculated as PΛ1/2P', with Λ1/2 = (P'AP)1/2, i.e., a diagonal 
matrix with the vector of square roots of the entries in λ as the diagonal.  

2) Compare to Judge et al. (p. 457) for restricted system estimation.  Note that unrestricted 3SLS and 2SLS 
applied to each structural equation separately will yield identical results since the right-hand-side variables 
of the equations in (9) are the same for all equations. Thus, in the current context, there is no difference 
between posterior analyses based on an unrestricted 3SLS mapping and a 2SLS mapping. 
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When an ignorance prior is used, so that p(δ ) ∝ c, then the posterior distribution of δ  equals the 

normalized (to unit mass) likelihood function for δ . Since to this point such an ignorance prior has 

been effectively assumed in the construction of both of the preceding mapping procedures, 

bootstrapped sample outcomes from the posterior distribution of δ  based on either of the 

aforementioned mappings can be equivalently interpreted as bootstrapped sample outcomes from a 

normalized likelihood for δ . 

Informative prior information can be incorporated into the calculation of posterior expectations 

of structural coefficients or functions thereof (means, variances, probabilities, and elasticities) by 

forming weighted averages of mapping outcomes, with values of the informative prior density 

providing the weights. In the case of 2SLS mappings, the expectation calculation, justified by laws of 

large numbers, is given by  

(19) E[ ( )]g   
g( )p( )

p( )
.i

N

i
2SLS

i
2SLS

i

N

i
2SLS

δ
δ δ

δ
≈

∑

∑
=1

=1

 

Posterior expectations for R3SLS mappings are obtained analogously by simply replacing 

2SLS mapping outcomes with those generated from the R3SLS mapping.  

Much of the prior information on the AIDS parameters discussed previously is in the form of 

inequality restrictions on functions of the structural parameters. This type of prior information leads to 

a simplification in the preceding expectation calculation because the prior distribution p(δ ) then only 

takes on a value of either zero (if the constraints are not satisfied) or one (if the constraints are 

satisfied). In this case, the posterior expectation of g(δ) is the simple average of all bootstrapped 

outcomes of g(δ2SLS) or g(δ R3SLS ) that satisfy the constraints (compare to Chalfant, Gray and White, 

p. 483). 
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4.3 A Measure of Prior Influence 

In evaluating prior information on δ , it is of significant interest to assess the extent to which the 

prior density influences the posterior distribution. A prior on δ  that equals a positive constant over 

the entire support of the likelihood function leads to a posterior that is equal to the normalized (to unit 

mass) likelihood. This type of prior is referred to as an "ignorance prior" because it adds nothing to 

the information about δ  over what is contained in the data itself. The more the posterior deviates 

from the normalized likelihood, the more information the prior contains relative to the data. When 

sampling from the likelihood for δ (or equivalently, from a posterior based on an ignorance prior), 

this deviation can be measured by the index 

(20) p
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where EL(⋅) and varL(⋅) denote an expectation and a variance taken with respect to the normalized 

likelihood of the data. 

The measure mp has a number of useful properties. First, mp is bounded over its domain of 

definition as 0 < mp ≤ 1. It takes on a value of one if either an ignorance prior is employed or if the 

likelihood is degenerate on a particular parameter value that is in the support of the prior density.  In 

either case, the prior is uninformative relative to the data information represented by the likelihood 

function. Second, whenever the prior is in the form of an indicator function, as in the case of 

inequality constraints, mp equals the proportion of sampled likelihood outcomes that satisfies the 

constraints. Thus mp represents (for large enough N) the ignorance-based posterior probability that 

the constraints are satisfied, and provides a measure of the reasonableness of the constraints as 

judged by the likelihood function (compare to P*  in Geweke 1986, pp. 131-32).  Third, the 
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measure is invariant to any arbitrary scaling of an improper (i.e., does not integrate to 1) prior 

density. 

Finally, mp is measuring a deviation of the posterior from the likelihood in the sense that it 

approximates (arbitrarily close depending on the sample size N) the expected prior density value 

with respect to the normalized likelihood, EL[p(δ )], relative to the expected prior density value with 

respect to the posterior, Eh[p(δ )].  To see this, note that 

(21) L
i=1

N

iE p( )  =   p( )L( | ,  ) d   
N

 p[ ] $ S ( )δ δ δ δ δ∫ ≈ ∑Π
1   

when the δ i are outcomes from L | , ( $ )δ Π S . Furthermore, EL[p(δ )] in (21) is equal to the reciprocal 

of the normalizing constant of the posterior density of δ  such that 
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Dividing (21) by (22) yields mp in (20), validating that mp equals the ratio of the 

aforementioned two expectations.  The more the prior density differentiates between outcomes from 

the likelihood function (i.e., the more it influences the shape of the posterior relative to the likelihood), 

the smaller is the value of (21) relative to (22), i.e., the smaller is the measure mp. 

5 Posterior Analysis of Prior Information in the Japanese Demand Model 

 In this section, we apply the likelihood-robust Bayesian bootstrap procedure to the Japanese 

meat AIDS demand system and assess the various types of prior information presented earlier. We 

begin with an examination of a base model generated via the 2SLS mapping that incorporates an 

ignorance prior with no restrictions on model parameters. Then we assess the validity of the 
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neoclassical equality and inequality restrictions relative to the information contained in the data and 

present theoretically consistent estimates of coefficients and elasticities.  Last, the support for net 

substitutability is assessed and the Korean and Taiwanese prior price elasticities are evaluated.  

5.1 Base Model Using Ignorance Prior and 2SLS Mapping  

The Bayesian point estimate that minimizes the expected value of any positive definite 

quadratic loss function is the mean of the posterior distribution (Judge et al., p. 135). Posterior 

variances measure the precision of the posterior information on model coefficients. To determine 

whether a bootstrap sample size is large enough to provide stable estimates of the posterior means, 

one can calculate numerical standard errors, j$σ , of the posterior mean estimates as 

(23) 
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where δij is the ith bootstrap outcome (here defined by either the 2SLS or R3SLS mappings), and 

jδ  is the estimated posterior mean for the structural coefficient δ j (Geweke 1989). This measure is 

analogous to the usual standard error of the estimate of a population mean, but through incorporating 

prior weights it accounts for the fact that one is not sampling directly from the posterior distribution, 

but from the likelihood.  

 Posterior means and standard deviations of the parameters, as well as numerical standard 

errors of the means for the 2SLS mapping under an ignorance prior, are presented in table 1 based 

on a bootstrap sample size of 5,000. Generally, the posterior standard deviations of the 2SLS 

mappings are larger than the respective coefficients, or are at least of the same order of magnitude.  

The data information on the coefficients is evidently not very precise and the supports of the marginal 

posterior distributions generally include positive and negative signs.  If one were in a sampling theory 
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context (i.e., for classical 2SLS estimation), the analyst would be led to conclude that most 

coefficients are not significantly different from zero.  However, note that the posterior standard 

deviations reported here are Bayesian and do not refer to the sampling distribution of an estimator as 

do the standard errors of 2SLS coefficients. The numerical standard errors are quite low, so that the 

bootstrap sample size of 5,000 seems sufficient in this case to yield stable estimates of posterior 

means. 

5.2 R3SLS Mapping With Neoclassical Restrictions Imposed 

An R3SLS mapping that imposes homogeneity, symmetry, and additivity constraints on model 

parameters, but otherwise utilizes an ignorance prior on model parameters, was generated based on 

a bootstrap sample size of 5,000 (see table 1).  Note because of the covariance matrix singularity 

inherent in demand systems based on budget shares, one equation (fish) was deleted in the R3SLS 

mapping calculations, and then the additivity condition was used to recover the coefficients of the 

deleted equation.  The posterior means of the R3SLS mapping are of course consistent with the 

theoretical constraints and imposing the neoclassical constraints also increases the precision of the 

posterior information. The posterior standard deviations of the R3SLS mappings are - with one 

exception (γ33) - lower than the respective standard deviations from the 2SLS mappings. 

Furthermore, the efficiency of the posterior mean calculations is improved, as indicated by the lower 

numerical standard errors, despite the unchanged bootstrap sample size of 5,000. 
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Table 1. Posterior Means, posterior Standard Deviations, and Numerical Standard Errors of the 
Means: 2SLS and R3SLS Mappings with Ignorance Prior  

  2SLS Mappings  R3SLS Mappings 

    Numerical    Numerical 
  Posterior Posterior Std. Err.  Posterior Posterior Std. Err. 
  Mean Std. Dev.  of the Mean  Mean Std. Dev.  of the Mean 

Wagyu Beef α1 0.056 0.423 0.00599  -0.086 0.257 0.00363 
 γ11 -0.060 0.029 0.00041  -0.041 0.027 0.00039 
 γ12 0.024 0.029 0.00041  0.012 0.020 0.00029 
 γ13 -0.004 0.031 0.00044  0.029 0.025 0.00035 
 γ14 0.047 0.043 0.00061  0.026 0.021 0.00029 
 γ15 0.000 0.052 0.00073  -0.026 0.033 0.00047 
 β1 0.000 0.106 0.00150  0.035 0.064 0.00091 
 

IQ Beef 
 

α2 
 

-0.044 
 

0.512 
 

0.00724 
 
 

 
-0.079 

 
0.254 

 
0.00360 

 γ21 0.023 0.036 0.00051  0.012 0.020 0.00029 
 γ22 0.004 0.037 0.00052  0.006 0.027 0.00038 
 γ23 -0.022 0.039 0.00055  -0.004 0.020 0.00029 
 γ24 -0.032 0.052 0.00073  -0.028 0.022 0.00031 
 γ25 0.020 0.063 0.00089  0.015 0.033 0.00046 
 β2 0.029 0.128 0.00182  0.038 0.064 0.00090 
 

Pork 
 

α3 
 

0.310 
 

0.415 
 

0.00588 
 
 

 
0.485 

 
0.275 

 
0.00389 

 γ31 0.087 0.030 0.00043  0.029 0.025 0.00035 
 γ32 -0.014 0.030 0.00042  -0.004 0.020 0.00029 
 γ33 0.041 0.031 0.00044  0.036 0.031 0.00045 
 γ34 -0.027 0.043 0.00060  -0.033 0.024 0.00034 
 γ35 -0.083 0.050 0.00071  -0.028 0.035 0.00050 
 β3 -0.032 0.104 0.00147  -0.076 0.069 0.00098 
 

Chicken 
 

α4 
 

-0.011 
 

0.427 
 

0.00603 
 
 

 
-0.004 

 
0.374 

 
0.00529 

 γ41 0.027 0.032 0.00045  0.026 0.021 0.00029 
 γ42 -0.034 0.032 0.00045  -0.028 0.022 0.00031 
 γ43 -0.041 0.032 0.00046  -0.033 0.024 0.00034 
 γ44 0.024 0.044 0.00063  0.031 0.034 0.00048 
 γ45 0.012 0.052 0.00074  0.004 0.044 0.00063 
 β4 0.030 0.107 0.00151  0.028 0.094 0.00133 
 

Fish 
 

α5 
 

0.646 
 

0.755 
 

0.01068 
 
 

 
0.683 

 
0.583 

 
0.00825 

 γ51 -0.077 0.053 0.00075  -0.026 0.033 0.00047 
 γ52 0.020 0.055 0.00077  0.015 0.033 0.00046 
 γ53 0.027 0.057 0.00080  -0.028 0.035 0.00050 
 γ54 -0.010 0.078 0.00110  0.004 0.044 0.00063 
 γ55 0.047 0.092 0.00130  0.035 0.075 0.00106 
 β5 

 
-0.016 0.189 0.00268  -0.025 0.146 0.00207 
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Moving from 2SLS to R3SLS mappings changes the values of the posterior means of the 

parameters substantially,  and in some cases even the signs of the parameters change. Table 2 reports 

the implications regarding posterior means of Marshallian and Hicksian elasticities together with their 

respective posterior standard deviations for both the 2SLS and R3SLS mappings. Analogous to the 

parameters themselves, the information on Marshallian and Hicksian elasticities is more precise when 

homogeneity, symmetry, and additivity are imposed.  Under both mappings, all Marshallian own-

price elasticities are negative, as expected, and constraining the coefficients did not notably change 

the elasticity values - with the exception of the Wagyu beef share which shows less own-price 

sensitivity under the constraints. In addition, all own-price elasticities are within the ranges of 

estimation results from other studies, as reported and updated by Dyck. This is also true for the 

cross-price elasticities (insofar as previous studies were successful in producing significant cross-

price elasticity estimates), so that no discrimination between the 2SLS and R3SLS mappings can be 

made on the basis of elasticity magnitudes. For the 2SLS mapping, substitution effects are not 

constrained to be symmetric, so that the corresponding Hicksian elasticities for certain pairs of 

commodities can have different signs (as in the case of Wagyu beef and fish); consequently, they are 

inconclusive regarding the question of substitutability or complementarity. Negative signs on Hicksian 

elasticities for beef-pork, beef-chicken, and pork-chicken indicate complementarity. For the R3SLS 

mapping, beef and pork are estimated to be net substitutes, but the respective Hicksian elasticities 

have high posterior standard deviations relative to their size and thus the substitute characterization is 

quite tenuous.  
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Table 2. Posterior Means of Marshallian and Substitution Elasticities and Their Posterior Standard 
Deviations (in parenthesis): 2SLS and R3SLS Mappings with Ignorance Prior 

  2SLS-Mappings  R3SLS-Mappings  
  Marshallian Hicksian    Marshallian Hicksian  
  Elasticities Elasticities 

 
   Elasticities Elasticities 

Wagyu beef Wagyu Beef -2.01 (0.52) -1.95 (0.49)   -1.58 (0.38) -1.47 (0.37) 
 IQ Beef 0.40 (0.46) 0.47 (0.49)   0.14 (0.26) 0.20 (0.27) 
 Pork -0.07 (0.49) 0.11 (0.52)   0.29 (0.29) 0.59 (0.33) 
 Chicken 0.80 (0.60) 0.90 (0.73)   0.30 (0.23) 0.45 (0.28) 
 Fish 0.01 (1.89) 0.58 (0.87)   -0.63 (0.92) 0.23 (0.44) 
 

IQ Beef 
 

Wagyu Beef 
 

0.31 
 

(0.58) 
 
0.40 

 
(0.55) 

 
 
 

 
 

0.21 
 
(0.51) 

 
0.35 

 
(0.47) 

 IQ Beef -0.96 (0.51) -0.87 (0.55)   -0.91 (0.59) -0.83 (0.62) 
 Pork -0.41 (0.55) -0.14 (0.58)   -0.26 (0.49) 0.12 (0.46) 
 Chicken -0.53 (0.64) -0.38 (0.78)   -0.74 (0.40) -0.56 (0.50) 
 Fish 0.04 (2.04) 0.88 (0.94)   -0.16 (1.58) 0.92 (0.75) 
 

Pork 
 

Wagyu Beef 
 

0.48 
 

(0.17) 
 
0.53 

 
(0.16) 

 
 
 

 
 

0.17 
 
(0.13) 

 
0.21 

 
(0.12) 

 IQ Beef -0.07 (0.15) -0.01 (0.16)   0.00 (0.10) 0.03 (0.10) 
 Pork -0.75 (0.16) -0.60 (0.17)   -0.75 (0.14) -0.62 (0.15) 
 Chicken -0.12 (0.19) -0.04 (0.23)   -0.13 (0.10) -0.06 (0.12) 
 Fish -0.34 (0.59) 0.14 (0.27)   0.08 (0.36) 0.44 (0.17) 
 

Chicken 
 

Wagyu Beef 
 

0.24 
 

(0.32) 
 
0.32 

 
(0.30) 

 
 
 

 
 

0.24 
 
(0.23) 

 
0.34 

 
(0.21) 

 IQ Beef -0.34 (0.28) -0.25 (0.30)   -0.30 (0.20) -0.24 (0.22) 
 Pork -0.44 (0.30) -0.20 (0.31)   -0.39 (0.27) -0.13 (0.24) 
 Chicken -0.80 (0.36) -0.67 (0.42)   -0.71 (0.27) -0.59 (0.34) 
 Fish -0.05 (1.08) 0.70 (0.50)   -0.12 (0.98) 0.62 (0.45) 
 

Fish 
 

Wagyu Beef 
 

-0.13 
 

(0.10) 
 
-0.07 

 
(0.91) 

 
 
 

 
 

-0.04 
 
(0.06) 

 
0.03 

 
(0.06) 

 IQ Beef 0.04 (0.09) 0.10 (0.94)   0.03 (0.05) 0.07 (0.06) 
 Pork 0.05 (0.09) 0.23 (0.97)   -0.04 (0.06) 0.16 (0.06) 
 Chicken -0.01 (0.11) 0.09 (0.13)   0.01 (0.06) 0.11 (0.08) 
 Fish -0.90 (0.34) -0.34 (0.16)   -0.92 (0.27) -0.36 (0.13) 

 

5.3 Homogeneity and Symmetry  

The R3SLS mapping imposes homogeneity and symmetry, but does not allow for testing the 

reasonableness of these neoclassical restrictions with respect to the data. Therefore, a Bayesian 

posterior analysis of these equality constraints on the basis of the unrestricted 2SLS mapping is of 

some interest. The posterior means in table 1 certainly violate the restrictions in a point comparison 
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sense, but in order to assess to what extent the posterior information contradicts or supports 

homogeneity and symmetry, one must examine the posterior distributions of appropriate functions of 

the parameters. 

Figure 1: Posterior distribution of the degree of homogeneity for the IQ-beef Equation: 2SLS mapping 
and ignorance prior  

 

Figure 1 and 2 present posterior distributions of the degree of homogeneity, i.e., the sum of 

own-price and cross-price coefficients [see equation (3)], for the IQ beef and pork equations, 

respectively.  In the case of the IQ beef equation, the distribution is very well centered on the 

theoretically expected value of zero and is nearly symmetric. For the pork equation, the distribution is 

also nearly symmetric but the highest posterior density lies somewhat to the right of the zero value. 

The other posterior distributions of the degrees of homogeneity are shaped similarly to the ones 

shown and the value of zero is always easily contained within the 95% highest posterior density 

(HPD) regions, defined as the region that contains 95% of the probability mass with all density values 

inside the region being no less than any density value outside the region.  
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If one were to adopt Lindley's hypothesis testing procedure for a simple versus composite 

hypothesis under an ignorance prior, homogeneity of degree zero would consequently not be 

rejected for all five equations at a significance level of 0.05 (Lindley, p. 58ff; Zellner, p. 298f).  

However, the use of significance levels conflicts somewhat with the Bayesian philosophy of 

examining the entire posterior distribution to evaluate all information available about a hypothesis 

rather than merely comparing test statistics to predetermined critical values.  Even in sampling theory-

based econometrics, it is increasingly the case that probability values (P-values) of test statistics are 

reported in addition to, or instead of, significance values, suggesting dissatisfaction with the "pure" 

testing procedures. The smaller the probability value, the more justification there is to reject the null 

hypothesis.   

Figure 2: Posterior distribution of the degree of homogeneity for the pork equation: 2 SLS-mapping and 
ignorance prior 

 

To obtain measures in the Bayesian context that serve a purpose similar to P-values in the 

sampling theory context, the analyst can start from Lindley's testing approach and measure the 

support of the posterior distribution for homogeneity of zero degree by the probability mass 
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contained within the smallest HPD region that still contains the homogeneity value of zero. The 

smaller this region, the larger is the marginal significance level at which the null hypothesis could be 

rejected by Lindley´s procedure (or the closer is the zero value to the mode of the posterior), and - 

since we are still utilizing only ignorance priors - the stronger is the support from the data for the null 

hypothesis. The upper portion of table 3 reports the sizes of these smallest HPD regions for all five 

equations and they support the graphical impression that zero degrees of homogeneity are well inside 

the posterior for all share equations.  

Table 3: Smallest HPD-Regions for Homogeneity and Single Symmetry Restrictions: 2SLS Mappings 
with Ignorance Prior 

 
Constraint Type 

 
Constraint Form 

Smallest HPD 
Probability 

Homogeneity   
 γ11+γ12+...+γ15=0: 

γ21+γ22+...+γ25=0: 
γ31+γ32+...+γ35=0: 
γ41+γ42+...+γ45=0: 
γ51+γ52+...+γ55=0: 

0.599 
0.175 
0.534 
0.174 
0.730 

Symmetry   
 γ12-γ21=0: 

γ13-γ31=0: 
γ14-γ41=0: 
γ15-γ51=0: 
γ23-γ32=0: 
γ24-γ42=0: 
γ25-γ52=0: 
γ34-γ43=0: 
γ35-γ53=0: 
γ45-γ54=0: 

0.564 
0.957 
0.737 
0.925 
0.542 
0.441 
0.491 
0.411 
0.792 
0.825 

 

Similarly, one can measure the support from the data for each symmetry restriction by deriving 

posterior distributions for differences in the relevant parameters in order to assess the degree to 

which they support a value of zero [see equation (4)]. All but one of these posteriors have smallest 

HPD regions containing zero that have probability mass smaller than 95% (lower portion of table 3).  
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The exception is the difference between the cross-price effects of Wagyu beef and pork, γ13 - γ31  

(figure 3) for which the zero value is notably in the right tail of  the distribution but with the smallest 

HPD region still quite close to 95%. As an example of a "well-behaved" symmetry difference, we 

show the posterior for γ34 - γ43  (pork and chicken) in Figure 4. 

Classical tests performed by Hayes, Wahl, and Williams could not reject homogeneity and 

symmetry restrictions for the data set.  Together with our preceding Bayesian posterior analysis 

based on the unrestricted 2SLS mappings, it seems largely appropriate to treat these restrictions as 

maintained hypotheses in our subsequent Bayesian analysis and to henceforth use R3SLS mappings 

to derive posterior distributions of coefficients and elasticities. However, we will continue to report 

some results for the unrestricted 2SLS mappings to show some interesting differences with regard to 

the evaluation of other prior information. 

Figure 3: Posterior distribution of the difference between the cross-price effects of Wagyu beef and 
pork: 2SLS mapping and ignorance prior 
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Figure 4: Posterior distribution of the between the cross-price effects of pork and chicken: 2SLS 
mapping and ignorance prior 

 

5.4 Concavity and Consistent Budget Shares 

The matrix of posterior means of the substitution elasticities [recall (5)] under an ignorance 

prior (table 2) has eigenvalues that are positive, and so the concavity restriction is violated by the 

point estimates derived from both mappings. Employing a prior distribution that assigns zero weight 

to positive eigenvalues yields estimates of substitution elasticities that satisfy concavity (table 4). The 

probability that the concavity constraints hold, as measured by the proportion of the bootstrapped 

sample outcomes satisfying the constraints is 0.0036 for the unrestricted (2SLS) mapping and 

0.2802 for the restricted (R3SLS) mapping (see also table 5). Thus, the likelihood function with 

homogeneity, symmetry, and additivity imposed evaluates concavity as far more reasonable than 

does the unrestricted likelihood. 

Consistency of budget shares is not in conflict with either type of mapping. All bootstrapped 

outcomes satisfy budget share restrictions to the unit simplex (see also table 5).   
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Table 4 presents Bayesian estimates of parameters as well as estimates of Marshallian and Hicksian 

elasticities based on R3SLS mappings that are consistent with all theoretical restrictions.  Note that 

imposing a combination of equality constraints (homogeneity, symmetry, and additivity) and inequality 

constraints (concavity and consistent budget shares) in the Bayesian context would not have been 

tractable with a traditional analytical Bayesian analysis of simultaneous equation systems (Zellner).  

Table 4. Posterior Means, Posterior Standard Deviations, and Numerical Standard Errors of the 
Coefficients, and Posterior Means and Posterior Standard Deviations (in parentheses) of 
Marshallian and Substitution Elasticities:  R3SLS Mapping with Concavity and Consistent 
Shares Imposed 

Numerical 
Posterior Posterior Std. Err. Marshallian    Hicksian 

Share Mean Std. Dev. of the Mean Price Elasticities  Elasticities 
 
Wagyu Beef 

 
α1 -0.077 0.233 0.00624

 γ11 -0.044 0.026 0.00069 Wagyu Beef -1.62 (0.36) -1.51 (0.35)
 γ12 0.016 0.016 0.00043 IQ Beef 0.19 (0.21) 0.26 (0.22)
 γ13 0.030 0.023 0.00061 Pork 0.31 (0.26) 0.61 (0.31)
 γ14 0.023 0.018 0.00047 Chicken 0.27 (0.19) 0.41 (0.24)
 γ15 -0.025 0.032 0.00085 Fish -0.60 (0.86) 0.24 (0.43)
 β1 0.033 0.059 0.00157  
 
IQ Beef 

 
α2 

 
-0.060

 
0.219

 
0.00586

 
 

    

 γ21 0.016 0.016 0.00043 Wagyu Beef 0.31 (0.40) 0.44 (0.37)
 γ22 -0.002 0.020 0.00053 IQ Beef -1.09 (0.43) -1.01 (0.46)
 γ23 -0.005 0.018 0.00047 Pork -0.26 (0.42) 0.10 (0.40)
 γ24 -0.027 0.018 0.00047 Chicken -0.69 (0.32) -0.52 (0.41)
 γ25 0.018 0.028 0.00076 Fish -0.02 (1.36) 1.00 (0.65)
 β2 0.033 0.055 0.00147  
 
Pork 

 
α3 

 
0.466

 
0.258

 
0.00690

 
 

    

 γ31 0.030 0.023 0.00061 Wagyu Beef 0.17 (0.12) 0.22 (0.11)
 γ32 -0.005 0.018 0.00047 IQ Beef -0.01 (0.08) 0.02 (0.09)
 γ33 0.031 0.029 0.00077 Pork -0.77 (0.12) -0.64 (0.14)
 γ34 -0.028 0.021 0.00057 Chicken -0.10 (0.09) -0.04 (0.10)
 γ35 -0.029 0.034 0.00090 Fish 0.06 (0.34) 0.44 (0.17)
 β3 -0.071 0.065 0.00173  
 
Chicken 

 
α4 

 
0.065

 
0.312

 
0.00833

 
 

    

 γ41 0.023 0.018 0.00047 Wagyu Beef 0.23 (0.19) 0.31 (0.18)
 γ42 -0.027 0.018 0.00047 IQ Beef -0.28 (0.16) -0.23 (0.18)
 γ43 -0.028 0.021 0.00057 Pork -0.30 (0.22) -0.08 (0.21)
 γ44 0.020 0.027 0.00072 Chicken -0.81 (0.21) -0.70 (0.27)
 γ45 0.011 0.038 0.00101 Fish 0.06 (0.83) 0.69 (0.38)
 β4 0.010 0.078 0.00209  
 
Fish 

 
α5 

 
0.606

 
0.524

 
0.01399

 
 

    

 γ51 -0.025 0.032 0.00085 Wagyu Beef -0.04 (0.06) 0.03 (0.05)
 γ52 0.018 0.028 0.00076 IQ Beef 0.03 (0.04) 0.08 (0.05)
 γ53 -0.029 0.034 0.00090 Pork -0.05 (0.05) 0.15 (0.06)
 γ54 0.011 0.038 0.00101 Chicken 0.02 (0.05) 0.12 (0.07)
 γ55 0.024 0.069 0.00184 Fish -0.95 (0.25) -0.38 (0.12)

β5 -0.005 0.131 0.00351  
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5.5 Net Substitutability 

Comparing the Hicksian elasticities between tables 2 and 4 for the R3SLS mappings reveals 

that the imposition of the concavity restriction left all signs unaltered. In particular, according to the 

Hicksian elasticities, chicken remains a net complement to IQ beef and pork. For the 2SLS 

mappings (table 2), the IQ beef and pork are also estimated to be complementary goods, whereas 

Wagyu beef and fish show conflicting signs regarding their respective Hicksian elasticities. In order to 

evaluate formally the posterior support for net substitutability the posterior probabilities that the net 

substitute inequality restrictions hold [recall (7)] with respect to the 2SLS and R3SLS mappings 

(without any inequality constraints imposed) were calculated for all meats jointly, for all meats but 

fish, all meats but fish and chicken, and between all possible pairs of meats (see table 5). Again, 

these probabilities represent the proportion of the bootstrap sample outcomes that satisfy the 

relevant inequality restrictions on the elements of the Hicksian elasticity matrix. Since the matrix of 

substitution effects is not symmetric in the case of the 2SLS mappings, the signs of two Hicksian 

elasticities need to be checked for each pair of meats in this case. Without exception, the model with 

neoclassical equality restrictions imposed provides greater posterior support for net substitutability 

than the unrestricted one.  However, for both mappings, the posterior probabilities that all meats, or 

all meats but fish, are simultaneously net substitutes is .006 or less, indicating a strong rejection of net 

substitutability by the model.  Overall, high posterior probabilities for some pairs of goods suggest 

that there are subsets of meat and fish commodities that might reasonably be considered substitute 

goods, although complementarity among some subsets of goods is also strongly supported.  

It would be possible to generate posterior means for coefficients and elasticities that satisfy net 

substitutability for all meats, since the posterior probability of net substitutability is still positive for the 

R3SLS mappings. For this purpose one would need to increase considerably the bootstrap sample 

size until enough outcomes satisfied the inequality restrictions to yield stable estimates of posterior 
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expectations. Given the overwhelming rejection of the net substitutability proposition, we feel that the 

usefulness of such results would be quite limited and so we refrain from this exercise. 

Table 5. Posterior Probabilities of Concavity, Consistent Budget Shares, and Net Substitutability:  
2SLS and R3SLS Mapping with Ignorance Prior  

Prior Restrictions  2SLS Mapping  R3SLS Mapping 

    
Concavity 0.0036  0.2802 
    
Consistent Budget Shares 1.0000  1.0000 
    
Net Substitutability 
    All Meats 

 
0 

  
0.001 

    All Meats but Fish 0.0002  0.006 
    Wagyu Beef, IQ Beef, Pork 0.0546  0.46 
    Wagyu Beef, IQ Beef 0.6928  0.8008 
    Wagyu Beef, Pork 0.5924  0.9762 
    Wagyu Beef, Chicken 0.804  0.948 
    Wagyu Beef, Fish 0.1286  0.7068 
    IQ Beef, Pork 0.1844  0.5984 
    IQ Beef, Chicken 0.0588  0.1134 
    IQ Beef, Fish 0.7832  0.9144 
    Pork, Chicken 0.093  0.275 
    Pork, Fish 0.7208  0.993 
   Chicken, Fish 
 

0.7596  0.9304 

5.6 South Korean and Taiwanese Prior Elasticities 

We now evaluate the prior information on South Korean and Taiwanese Marshallian own-

price elasticities for pork and chicken to assess their informational content relative to the likelihood 

function for the Japanese demand model.  Posterior probabilities defined in terms of the  proportion 

of bootstrap outcomes that satisfy inequality constraints cannot be applied here since the prior 

information on elasticities is formulated in terms of bivariate normal distributions. Instead, we use the 

previously described prior influence measure mp for evaluation purposes. Relative to the Japanese 

likelihood defined by the R3SLS mapping the Taiwanese prior has a greater impact on the posterior 

(mp = 0.49) than the South Korean prior (mp = 0.73).  Since both priors had the same levels of 

dispersion by definition, and since in hindsight the Taiwanese prior means are more distant from the 
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means of the Japanese likelihood (compare the prior means to the posterior means of the R3SLS 

mapping based on the ignorance prior, table 2), this result was not surprising. Thus the South Korean 

price response would appear to be more in accord with Japanese demand than is price response in 

Taiwan. 

One should not jump to the conclusion that higher values of mp necessarily justify the use of 

certain priors for estimation purposes and lower values do the opposite because of data/prior 

information compatibility considerations. Adopting such a rule leads to a situation where only priors 

that do not add much information to the posterior are used.  Estimates that represent improvements 

over purely data-based results can only be achieved if effective prior information is included in the 

analysis. The question of proper use of priors can be answered only by assessing the validity of the 

prior. In the case at hand, if the analyst felt strongly that preferences in the Pacific Rim were not 

much different among countries (Capps et al., p. 223 did not), it would be justified to combine the 

different sources of information via the Bayesian approach and obtain estimates that were founded 

on a broader information base and consequently were more precise (posterior variances were 

notably smaller for a large majority of the coefficient when either of the prior elasticity distributions 

was imposed--results available upon request). The smaller the measure mp the more the prior 

influences the posterior distribution and inferences derived from it, and the more important is the 

issue of prior validity. Given current conventions in economic analysis, one most likely would have an 

easier time justifying a concavity prior with a lower value of mp (0.28 in the current application) than 

the Taiwanese prior with mp = 0.49 (at least among a group of neoclassically trained economists), 

despite the apparently larger conflict that the concavity prior has with the data-based information.  
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6 Summary and Conclusions 

The application of robust Bayesian bootstrap analysis to the Japanese AIDS meat demand 

system demonstrated that the method is relatively straightforward to implement in a typical 

econometric model.  The technique is a useful tool for the evaluation and/or incorporation of different 

types of prior information on model parameters. In particular, the technique does not require an 

explicit likelihood function specification, and combinations of equality restrictions and other types of 

prior information can be straightforwardly incorporated into the R3SLS mapping to obtain posterior 

distribution of parameters via bootstrap simulation. Furthermore, unrestricted 2SLS mappings allow 

an evaluation of the support from the data for the various types of prior information.  

The Japanese meat demand model was largely consistent with symmetry, homogeneity and 

additivity constraints on model parameters. The model was also completely consistent with restricting 

budget shares to the unit simplex. Net substitutability between certain pairs of meats was supported 

more by the R3SLS mapping than by the unrestricted mapping, but very low posterior probabilities 

regarding net substitutability between all meats suggests that not all meats are net substitutes in the 

diet of Japanese consumers. It was also found that Japanese demand for pork and chicken was 

more in accord with South Korean than Taiwanese demand in terms of price responsiveness. 

However, all substantive model results need to be tempered by the fact that posterior probabilities 

for concavity of the cost function were low, especially for the 2SLS mapping, suggesting possible 

deficiencies in the model specification or data. Further analysis would be advisable before 

conclusions generated from model results were considered definitive. 
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APPENDIX 

 
TABLES OF DATA AND INSTRUMENTS 

 



   

 

Table A1. Expenditure Shares, Total Expenditure, Stone's Price Index, and Prices of Wagyu Beef, Import Quality Beef, Pork, Chicken, and Fish  
Used in the Japanese AIDS Demand Model  

 
 

 
 

Expenditure Shares 
 

 
 

 
 

 
 

 
 

 
 

Prices 
 

 
 

  
 

Year 

 
Wagyu 
Beef 

 
IQ 

Beef 

 
 

Pork 

 
 

Chicken 

 
 

Fish 

 
Total 

Expenditure 
Stone's 
Index 

 
Wagyu 
Beef 

 
IQ 

Beef 

 
 

Pork 

 
 

Chicken 

 
 

Fish  
65 

 
0.1010 

 
0.0347 

 
0.1910 

 
0.0892 

 
0.5840 

 
12.931 

 
0.3619 

 
1079.0 

 
867.4

 
745.0

 
718.0

 
265.3 

66 
 

0.0743 
 

0.0340 
 

0.2270 
 

0.0975 
 

0.5670 
 

13.922 
 

0.3859 
 

1279.9
 

1085.3
 

694.0
 

724.0
 

279.2 
67 

 
0.0744 

 
0.0388 

 
0.2110 

 
0.1010 

 
0.5750 

 
16.269 

 
0.4226 

 
1612.1

 
1169.9

 
714.0

 
728.0

 
314.4 

68 
 

0.0669 
 

0.0389 
 

0.2100 
 

0.0990 
 

0.5860 
 

19.152 
 

0.4704 
 

1745.4
 

1102.2
 

849.0
 

744.0
 

354.8 
69 

 
0.0748 

 
0.0448 

 
0.2190 

 
0.1060 

 
0.5550 

 
21.618 

 
0.5230 

 
1720.0

 
1034.5

 
960.0

 
748.0

 
400.0 

70 
 

0.0721 
 

0.0502 
 

0.1780 
 

0.1100 
 

0.5910 
 

25.299 
 

0.5689 
 

1783.5
 

1246.1
 

909.0
 

767.0
 

474.6 
71 

 
0.0664 

 
0.0548 

 
0.1810 

 
0.0990 

 
0.5990 

 
29.102 

 
0.6202 

 
1819.4

 
1343.4

 
930.0

 
712.0

 
549.5 

72 
 

0.0620 
 

0.0625 
 

0.1820 
 

0.1000 
 

0.5930 
 

33.168 
 

0.6712 
 

1967.5
 

1466.1
 

992.0
 

724.0
 

601.2 
73 

 
0.0514 

 
0.0932 

 
0.2010 

 
0.1020 

 
0.5520 

 
38.524 

 
0.8001 

 
3002.0

 
2113.5

 
1120.0

 
801.0

 
689.9 

74 
 

0.0452 
 

0.0598 
 

0.1870 
 

0.1040 
 

0.6040 
 

47.082 
 

0.9058 
 

3057.0
 

1631.1
 

1240.0
 

960.0
 

837.6 
75 

 
0.0504 

 
0.0713 

 
0.2010 

 
0.0927 

 
0.5850 

 
55.329 

 
1.0608 

 
3469.6

 
2466.8

 
1550.0

 
1000.0

 
951.1 

76 
 

0.0527 
 

0.0705 
 

0.1960 
 

0.1020 
 

0.5790 
 

62.773 
 

1.1847 
 

4201.6
 

2695.3
 

1680.0
 

1110.0
 

1069.9 
77 

 
0.0569 

 
0.0665 

 
0.1830 

 
0.0980 

 
0.5950 

 
66.696 

 
1.2422 

 
4246.0

 
2513.3

 
1590.0

 
1040.0

 
1203.9 

78 
 

0.0571 
 

0.0714 
 

0.1790 
 

0.0990 
 

0.5930 
 

72.636 
 

1.2680 
 

4100.0
 

2581.0
 

1570.0
 

1030.0
 

1253.9 
79 

 
0.0511 

 
0.0882 

 
0.1830 

 
0.0992 

 
0.5780 

 
75.661 

 
1.3066 

 
4349.7

 
2966.1

 
1500.0

 
993.0

 
1314.4 

80 
 

0.0458 
 

0.0801 
 

0.1720 
 

0.1120 
 

0.5900 
 

78.604 
 

1.3478 
 

4571.8
 

2691.0
 

1450.0
 

1140.0
 

1380.7 
81 

 
0.0430 

 
0.0807 

 
0.1710 

 
0.1140 

 
0.5910 

 
82.577 

 
1.3975 

 
4531.6

 
2526.0

 
1530.0

 
1200.0

 
1444.9 

82 
 

0.0434 
 

0.0850 
 

0.1680 
 

0.1140 
 

0.5890 
 

84.840 
 

1.4580 
 

4559.1
 

2672.0
 

1570.0
 

1180.0
 

1533.8 
83 

 
0.0488 

 
0.0855 

 
0.1750 

 
0.1180 

 
0.5720 

 
84.652 

 
1.4398 

 
4582.4

 
2638.2

 
1630.0

 
1190.0

 
1492.7 

84 
 

0.0565 
 

0.0806 
 

0.1720 
 

0.1180 
 

0.5730 
 

87.798 
 

1.4317 
 

4533.7
 

2557.8
 

1640.0
 

1170.0
 

1486.2 
85 

 
0.0575 

 
0.0832 

 
0.1660 

 
0.1160 

 
0.5780 

 
90.544 

 
1.4445 

 
4565.5

 
2642.4

 
1540.0

 
1150.0

 
1531.0 

86 
 

0.0528 
 

0.0877 
 

0.1570 
 

0.1150 
 

0.5880 
 

94.657 
 

1.4785 
 

4612.0
 

2733.4
 

1500.0
 

1110.0
 

1599.5
Source: Wahl and Hayes (table A-1). 



 

 

Table A2. Principal Components Used as Instruments in the Japanese AIDS Demand Model  
 
 

Principal  Components  
Year 

 

 
   1 

 
     2 

 
    3 

 
    4 

 
    5 

 
    6 

 
    7 

 
    8 

 
    9 

 
   10 

 
 

65 

 
 

-13.2635 

 
 

-2.6303 

 
 

-0.0802 

 
 

-2.2503 

 
 

-2.1223 

 
 

-2.9645 

 
 

-1.3349 

 
 

-1.1365 

 
 

-0.0536 

 
 

0.5837  
66 

 
-12.1535 

 
-1.8245 

 
-0.5728 

 
-2.0269 

 
-1.6034 

 
-0.7514 

 
0.2543 

 
0.2085 

 
-0.5307 

 
-1.0308  

67 
 

-11.8614 
 

-1.7275 
 

-0.7103 
 

-1.6891 
 

-0.2023 
 

0.5807 
 

1.8857 
 

0.9330 
 

0.3583 
 

-0.5214  
68 

 
-10.9681 

 
-1.3701 

 
-0.3346 

 
-0.8869 

 
0.7136 

 
0.9470 

 
1.4353 

 
0.6939 

 
0.1703 

 
-0.2322  

69 
 

-9.8652 
 

-0.9649 
 

-0.4336 
 

-0.3525 
 

1.5796 
 

0.9361 
 

1.3632 
 

0.3398 
 

0.0460 
 

0.6291  
70 

 
-8.5419 

 
-2.1155 

 
-0.5644 

 
0.7534 

 
1.7702 

 
1.2576 

 
-2.2821 

 
0.3328 

 
-0.8785 

 
0.8049  

71 
 

-7.0257 
 

-3.0196 
 

-0.3883 
 

0.7048 
 

1.1139 
 

0.7351 
 

-2.2892 
 

0.3538 
 

0.0187 
 

0.7234  
72 

 
-5.4682 

 
-0.9750 

 
4.6931 

 
5.1201 

 
0.4407 

 
-2.5225 

 
0.5797 

 
1.1682 

 
-0.1140 

 
-0.5250  

73 
 

-4.5689 
 

2.8661 
 

4.0864 
 

0.4634 
 

-0.6821 
 

1.9403 
 

0.1956 
 

-2.0011 
 

0.0758 
 

0.4215  
74 

 
-3.0591 

 
3.2400 

 
0.8372 

 
0.4892 

 
0.0910 

 
1.4005 

 
-0.3865 

 
-1.1184 

 
0.9098 

 
-1.4963  

75 
 

-1.8279 
 

3.0937 
 

-0.7379 
 

1.0088 
 

0.3136 
 

0.0732 
 

0.3579 
 

-1.0778 
 

1.3125 
 

0.8413  
76 

 
1.5073 

 
1.6144 

 
-4.0178 

 
1.9761 

 
0.0341 

 
0.0812 

 
0.3956 

 
-0.6853 

 
0.1982 

 
-0.7248  

77 
 

4.1596 
 

-0.1022 
 

-5.0094 
 

3.0636 
 

-0.7238 
 

-0.3236 
 

-0.3048 
 

-0.1082 
 

-0.1932 
 

-0.3716  
78 

 
4.2198 

 
4.5371 

 
-1.4798 

 
0.7726 

 
-1.1584 

 
-0.8556 

 
1.1992 

 
0.6644 

 
0.0749 

 
1.5898  

79 
 

5.7491 
 

4.6236 
 

1.0874 
 

0.1951 
 

-2.4125 
 

0.8912 
 

0.0235 
 

-0.0383 
 

-1.8404 
 

0.2071  
80 

 
6.7648 

 
3.6417 

 
0.4955 

 
-1.0081 

 
-0.9006 

 
1.3984 

 
-1.2099 

 
1.9800 

 
-0.6236 

 
-0.4568  

81 
 

7.0179 
 

3.9438 
 

0.6274 
 

-1.5886 
 

0.5410 
 

-0.7331 
 

-1.4631 
 

0.4824 
 

0.8815 
 

-0.8012  
82 

 
8.8061 

 
2.5449 

 
0.1688 

 
-1.3794 

 
0.8642 

 
-1.6610 

 
-0.1758 

 
0.1086 

 
0.7939 

 
0.3333  

83 
 

9.5938 
 

1.7673 
 

0.6127 
 

-2.0749 
 

2.1465 
 

-1.1807 
 

-0.4410 
 

-0.0176 
 

0.1216 
 

-0.2603  
84 

 
11.1651 

 
-0.6528 

 
0.6325 

 
-1.5462 

 
1.1951 

 
-0.1285 

 
1.8618 

 
-0.0900 

 
-0.7552 

 
0.6404  

85 
 

13.0217 
 

-6.5786 
 

-0.0673 
 

-0.0168 
 

1.2588 
 

-0.4571 
 

0.4873 
 

-1.5325 
 

-1.5543 
 

-0.6717  
86 

 
16.5981 

 
-9.9116 

 
1.1555 

 
0.2725 

 
-2.2568 

 
1.3368 

 
-0.1520 

 
0.5402 

 
1.5820 

 
0.3177 

Source: The instruments were provided by T. I. Wahl, Department of Agricultural Economics, Washington State University, Pullman.
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