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1 Introduction 

Most empirical work in agricultural economics tries to explain or to project the use of 

agricultural inputs and outputs. The measurement of any of these is fraught with numerous difficulties. 

For capital, they tend to be the worst. 

- For all other input or output quantities some proxies are observed and collected in official 

statistics on an annual basis like purchases of fertilizer, production of grains, use of land and labour. 

For capital we can also observe yearly purchases of investment goods. Because these are used over 

several years, however, we cannot identify capital input with investments. Only some part of this 

year’s investment purchases can be imputed to represent present capital use and there is a myriad of 

ways to do so. 

- If this year’s investments do not represent this year’s capital input then the price of the 

capital input will not coincide with the price of investment goods. We can observe the (rental) price 

of using the capital stock in this year only when it is rented, but this is the exeption rather than the 

rule. Again, there are many ways to allocate the cost of investment goods to the years of their service 

live. 

For partial analysis, we might be tempted to simply neglect capital. However, in a 

comprehensive analysis, this easy solution is no way out. For productivity analysis, production 

function estimation and supply side analysis in general we need at least some measure of the quantity 

of capital. If we want to explain it’s movement or if we want to aggregate (types of) capital, it’s price 

is needed as well. 

The following sections decribe in detail how to compute time series for the aggregate capital 

stock in German agriculture and it’s user cost. The resulting series are given in section 5 and for these 

results the paper serves as a technical documentation. For readers less interested in the German 

example the paper should provide as a step by step introduction into the methods involved in the 

computation of capital stocks in general. 
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2 Theoretical background 

2.1 Perpetual inventory method for capital stocks  

The general principles of the perpetual inventory method are well known (e.g. Kirner 1968, 

Behrens 1980, Ball, Matson, Somwaru 1992) and may be summarized as follows. The capital stock 

is composed of the assets purchased in the past. Only those assets that have not yet reached the end 

of their useful service life can enter the present capital stock, however. Older assets have been 

scrapped before (discards). Old assets that have not been scrapped yet probably have lower 

productive capacities than younger assets. Consequently, there is physical depreciation (decay) of 

each single item which must be taken into account in any measure of capital stock. Both discards and 

decay cause the productive capacity of older investment cohorts to be lower than that of the most 

recent investment cohort. The productive capacity of an investment cohort relative to the youngest 

one is called cohort efficiency in this study. We will assume that it only depends on age. This 

neglects any dependency of discards and decay on economic incentives but simplifies things 

considerably. 

If there is an initial capital stock, the following equation summarizes the perpetual inventory 

method to calculate the capital stock Kt  in year t: 

 Kt  = Σ i=0
t-1  e(i) It-i + e(t) K0 (1) 

i = age of the investment cohort 

e(i) = cohort efficiency at age i [= cohe(age)]1 
It -i = investments in year t-i 

For the youngest cohort, e(0) = 1. Conversely, if T is the maximum useful service live of assets 

of our type, e(i) = 0 for any i > T, i.e. for all cohorts completely scrapped. An example of a cohort 

efficiency function is shown in the following figure 1. The procedure to construct this cohort efficiency 

function from underlying assumptions on discards and decay will be explained later. 

                                                 
1  All expressions in [special] typing refer to names used in the acompanying file [capsg.xls] which contains 

the initial data, the „visual basic“ program to do the calculations and the detailed results.  
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Figure 1: Cohort efficiency of machinery as a function of age (in years) 

Equation (1) requires additional comments on the exact date in year t that we have in mind for 

the capital stock Kt . Figure 1 essentially depicts the cohort efficiency for end year stocks, because 

only then will this year’s investments (i = 0) enter this year’s capital stock (at the end of the year) 

with a weight of 1.  

On the other hand, if we want the stock that is determining this year’s production there are 

essentially 2 possibilities, beginning year stocks and mid year stocks. For beginning year stocks 

eb(0) = 0, because this year’s investments only become part of next year’s stock (at the beginning of 

the year), e.g. as in Ball et al. 1993 and here in most runs. Assuming that investments usually occur 

on December 31, eb(1) = 1, because last year's investment goods would have an age of 0 at the 

beginning of the year (runs2 1 and 9). Alternatively and more realistically, we may assume a uniform 

distribution of investments over the year or that investments usually occur on June 30. In this case, 

the average age of investment goods purchased last year will be 0,5 and eb(1) will be slightly smaller 

than 1 (runs 2-4, 6-8).  

In the case of mid year stocks, this year’s investments enter this year’s stock of capital, but 

only if they are made in the first half of the year. For simplicity we will assume that investments occur 

on June 30. This results in an average cohort efficiency for this year’s investments of em(0) = 0,5 , 

because it is 0 for all investments in the second half and 1 for the first half of the year (run 5). 

                                                 
2  The different „runs“ of capital stock calculations conducted for this study are explained in more detail in 

section 5. 
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2.2 User cost of capital 

For most purposes like productivity calculations and econometric analysis, we do not only 

need the stock of capital but also its price, i.e. the cost per period of using the capital stock. This 

user cost of capital summarizes nominal interest, asset revaluation and depreciation for the decline of 

physical capacity over time as it is expressed by the cohort efficiency function. In a static framework, 

this price per period, i.e. the rental price, will be equated to the marginal value product of capital. 

Given that rental prices are usually not available, the user cost of capital has to be derived from asset 

prices.  

This derivation starts from the intertemporal profit maximization problem of the firm: 

 [ ]{ }max ( ) ( )
I

t
t t t t

tt

r K P I1
1

+ −∑ −

=

∞
π  (2) 
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where  

It  = Investment in year t (t = 1, 2, 3, ....) 

e(i) = relative efficiency of a cohort of assets of age i [cohe(age)] 
r = nominal interest rate (assumed constant) 

Pt  =  asset price in year t 
Kt  =  capital stock in year t 

πt  = Momentary, restricted profit function in year t. Depends on the capital stock, other fixed 
factors and prices (indicated by subscript t).  

 

The Lagrangean associated with problem (2) looks as follows: 

 [ ]{ } ( )[ ]{ }L r K P I e t i I e t K Kt
t t t t

t
t ii

t
t

t
(. ) ( ) ( ) ( ) ( )= + − + − + −−

=

∞

=
=

∞
∑ ∑∑1

1
1 0

1
π λ  (3) 
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The present value of all future increases of profits due to a unit increase of today’s investment 

will be equated to today’s price of the asset. With non-static expectations and e(t-τ) not geometric 

(e(t-τ) ≠ (1-δ)t -τ), there is no explicit expression for ∂π 1/∂K1 which equals the user cost of capital in 

the next year. Simplification is only possible with static expectations. In this case Pτ and the prices 

implicit in ∂πτ/∂Kτ will be constant and the optimal capital stock will also be constant, as the FOC 

assume the same form for all τ. Therefore, we can take the marginal profit out of the infinite sum to 

obtain a formula for the user cost of capital: 

 { }∂π
∂

ττ

τ
τ τ τK

uc P r e ii

i

= = + ⋅ =−

=

∞

∑ ( ) ( ) , , , , ...1 1 2 3
0

 (7) 

A time subscript has been added for the interest rate also, because it will vary from year to 

year in the calculations. However, as the decision makers are assumed to form static expectations, 

they will apply the present interest rate to all future periods. Essentially therefore, the user cost 

follows from multiplying the asset prices Pτ with a time varying factor 1/Σ{.} [= ucfac]. The 

development of the resulting user cost series will be dominated by the movement of the asset prices, 

because the variation of the interest rate will be much smaller than the variation of the strongly 

upward trending asset prices. 

With e(i) properly chosen, equation (7) applies to beginning year (subscript b), mid year and 

end year stocks (subscript e). However, because eb(0) = ee(-1) = 0, eb(1) = ee(0) =1, eb(2) = ee(1) 

etc., we can rewrite the user cost of beginning year stocks as 

 { } { }uc P r e i P r r e ii

i

i

i
τ τ τ τ τ τ= + ⋅ − = + + ⋅−

=

∞
−

=

∞

∑ ∑( ) $ ( ) ( ) ( ) $ ( )1 1 1 1
1 0

 (8) 

if we „borrow“ the cohort efficiencies ê(i) = ee(i) applying to end year stocks from above3. 

Checking this formula for the special case of a geometric cohort efficiency, e(t-τ) = (1-δ )t -τ,  the 

familiar result (ucτ = Pτ (r+δ )) emerges. 

Equation (8) looks different from the one presented in Ball, Matson, Somwaru 1992. They 

start with an optimality condition stated in Coen 1975 to end up with the following expression for the 

user cost of capital with static expectations: 

                                                 
3  Thus ucfac  has been calculated slightly differently for beginning year and mid year stocks. 
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where m(i) = e(i-1) - e(i) , the mortality at age i, rτ is the interest rate and Pτ the asset price. 

The equivalence of (8) and (9) is not evident, but for a geometric cohort efficiency, we may easily 

check that we get the same result4 (ucτ = Pτ (r+δ)).  

3 A necessary distinction: decay, discards and depreciation 

As mentioned above we are carefully distinguishing between decay, discards and 

depreciation. 

Decay is the loss of productive capacity that affects each individual machine while in use. A 

one year old tractor will require less repair and perform better than the same tractor 5 years later. In 

special cases („one-hoss-shay“) is possible to imagine that there is no decay, say for a light bulb that 

burns for 5 years and then suddenly breaks down. In general we will observe a loss of efficiency that 

is related to the asset’s age and service live by an item efficiency function ε(i, L). 

Discards are the items from the capital stocks that are being scrapped, because they are out-

dated, broken or require costly repairs. The end of the asset’s useful service live will depend on it’s 

type, quality, utilization, maintenance etc. Because these factors are not observed statistically, they 

will be modelled as causing the actual service lives of all buildings and machinery items to be 

dispersed around some mean service live. The aggregate efficiency of a cohort of assets then 

declines because an increasing proportion of the initial assets are being scrapped and in addition 

                                                 
4  In Ball, Matson, Somwaru 1992 the user cost of capital in a certain year t has been calculated aggregating 

vintage specific user costs, where these were based on the historical interest rates when the vintage had 
been installed. This procedure is inconsistent with the decision problem (2) and returns to some degree to a 
valuation at purchase costs instead of replacement costs. The FOC (4) implies that there is a common 
marginal product of the total capital stock, i.e. for the contribution of each vintage e(i)It -i. Historical interest 
rates explain the value of the initial condition K0, but they are irrelevant for today’s decisions. Investment 
(or disinvestment) in the current year will be made to equalize ∂π1/∂K1 with the current relevant user cost 
uc1 which depends only on current prices (with static expectations). The initial conditions and therefore 
historical in centives only determine the size (and sign) of current investment to obtain the equality  ∂π1/∂K1 
= uc1. 



 

 

7 

 

because each item decays even before being scrapped. This decline due to the combined effects of 

discards and decay is expressed by the cohort efficiency function.  

Depreciation is the decline of economic value of an asset that corresponds to the loss of 

productive capacity and which may be observed in second hand markets. Depreciation is more 

accelerated than the loss of productive capacity. This is most clearly seen at our extreme example of 

the light bulb. After 4 years, it’s value has dropped to 20% of the original price, but the productive 

capacity is still 100% (for one more year). Because the data in this study will be used to characterize 

the physical quantities of capital to be used in production, only decay and discards are directly 

relevant here. On depreciation and replacement values see Ball et al. 1993. 

4 Decay and item efficiency 

The item efficiency function ε(i, L) [eff(age,l)] relating the efficiency of each asset item to it’s 

age i and service live L is approximated by a rectangular hyperbola: 

 ε(i,L) = (L−i) / (L−b i),        0 ≤ i ≤ L 

 ε(i,L) = 0, i > L (10) 

where b is a curvature parameter. This function incorporates many of the commonly used 

forms of decay as special cases. The upper limit of b is 1. This corresponds to the 'one-hoss shay' 

form of decay where an asset (the light bulb above) is fully productive until it reaches the end of its 

service life, at which point its productivity falls to zero. For 0 < b < 1, decay occurs at an increasing 

rate over time. If b is zero, the function corresponds to linear physical decay, i.e. in even increments 

over the life of the asset. Finally, if b is negative, decay occurs most rapidly in the early years of 

service live corresponding to accelerated forms of decay such as geometric decay. Some possible 

values of b and their corresponding item efficiency functions are depicted in figure 2. 
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Figure 2: Efficiency of an asset item with a 35-year service life under various forms of decay 

Anecdotal evidence suggests that decay occurs at an increasing rate over time rather than 

being concentrated in the first years. Especially for buildings, there will be very little decay in the first 

years. Therefore, the value of b has been set to 0,5 for machinery and 0,75 for buildings, following 

the arguments in Ball et al 1993. 

In addition the relative efficiency of an asset depends on it’s service life, as may be seen from 

figure 3. 
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Figure 3: Efficiency functions for different service lives L (in years, parameter b = 0,75) 
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5 Discards and cohort efficiency 

Although each single asset item has a single service live, for a whole cohort of machinery or 

building items there will exist a distribution of service lives around some mean due to differences of 

type, quality, utilization, maintenance etc. within a cohort. We will work with the normal distribution 

and, to compare with a highly skewed distribution, with the log-normal. The parameters of both are 

determined if the mean and the variance or standard deviation is known.  

The mean service live L- for machinery [lmeanm] will be taken to be 10 years in most 

calculations as in Behrens 1981. This value might appear low compared to older capital stock 

calculations in Hrubesch 1967 (13,6 years), Kirner 1968 (15 years). Recent years might have seen a 

shortening of service lives, however, due to a higher utilization per year and increased structural 

change. On the other hand, even in 1991, the average age of all tractors registered at the federal 

motor vehicle office (Kraftfahrtbundesamt) was still approximately 19 years (Beck 1994, p. 94). 

While a large part of these will be in use only occasionally and other machinery items might have 

shorter service lifes, the value of L- = 9 used in Ball et. al. 1993 appears to be somewhat small and 

has been increased slightly. 

For buildings we assume a mean service live [lmeanb] of 35 years. Again, this is somewhat 

lower than in older studies, i.e. in Hrubesch 1967 (50 years), Kirner 1968 (70 years) or Behrens 

1981 (50 years). More recent studies, on the other hand, also preferred shorter mean service lives. 

Hockmann 1988 assumed 20 years, Folmer 1989 35 years and Ball et al. 38 years for buildings. 

Again it is structural change that suggests to set the mean service considerably lower than a mean 

physical life. If some 3% of all farms close down each year, a certain number of (older) buildings will 

be removed from productive use even if they could be used technically and have not been scrapped. 

However, because the appropriate values are not known precisely, the sensitivity of results with 

respect to service lives has been checked (see below, run 3). 

In addition to the mean, we need the variance or the standard deviation of the distribution 

[stab]. Here we assume that the standard deviation is 50% of the mean, as in Ball et al. 1993. In the 

case of the normal, for example, this implies that the service lives of 95% of all assets fall in the range  

L-  ± 1,96*(0,5*L- ) = [0,02 L-; 1,98 L- ] = [lmin; lmax]. The variances are even less known than the 

means and have been subjected to sensitivity analysis as well (run 7). 
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From both the normal and the log-normal distribution the lower and upper tails will be 

truncated such that only the range from 0,025 to 0,975 of the original cdf is retained. For the 

technical details in the case of the log-normal see the appendix 1. The truncation is necessary, 

because the data on investments do not stretch infinitely far in the past (see below) and because the 

normal would yield a positive probability of negative ages. The probabilities in the remaining 

admissible range are scaled up with a factor 1/0,95 to obtain densities that integrate to one again5.  

With the pdf at hand, the cohort efficiency function e(i) [cohe(age)] can be constructed as a 

weighted sum of the item efficiency functions ε(i, L) for each possible service live L using the density 

at each service live, pdf(L), as weights. The cohort efficiency function thus reflects the decline of the 

average efficiency of a cohort due to decay and due to discards: 

 e(i) = ε( ) ( )
min

max

i, L pdf L dL
L

L

∫  (11) 

where pdf(L) comes from a truncated normal or log-normal distribution. This is a problem of 

numerical integration for which different procedures are available. One of the more precise is 

Simpson’s approach (e.g. Berck, Sydsaeter 1991, p. 39) 

 

{

( )[ ]
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e i
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min min
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≈

+ − − + +

+
=

−

∑

3

3 1
1

1

ε

ε

ε

 (12) 

where n is the (even) number of steps [steps], and h = (Lmin - Lmax)/n is the step size [step] in 

the numerical integration. 

The calculation of cohort efficiencies as a weighted aggregation of item efficiencies is illustrated 

in figure 4. For example, the top cohort efficiency for a 1 year old machine, approximately 0,90 (if L-  

= 9, b = 0,5), is the weighted average of the top item efficiencies weighted by the pdf at the bottom 

of the figure. The cohort efficiencies for ages of 7 and 13 years follow analogously.  

                                                 
5  In the case of the log-normal, truncation of the 2,5% lower and upper tails reduces the mean of the truncated 

distribution, because the log-normal is heavily skewed to the right. This „downward bias“ of the mean 
proved to be approximately 2,5% in preliminary calculations and has been corrected by an upward scaling of 
the mean to be used in the log-normal. 



 

 

11 

 

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0 2 4 5 7 9 11 13 14 16

L

pdf
 eff.(1,L)
coh.eff.(1)
 eff.(7,L)
coh.eff.(7)
 eff.(13,L)
coh.eff.(13)

 

Figure 4: Normal pdf, item efficiency and cohort efficiency as a function of service life and age for 
machinery (with L

-
 = 9, b = 0,5) 

The following figure 5 illustrates the effects of choosing the log-normal instead of the normal 

probability distribution in this kind of calculation. 
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Figure 5: Cohort efficiency for an 11 year old building (L
-
 = 35, b = 0,75) from a normal and log-normal 

probability distribution 

The figure shows the different shape and 2,5% cut off points for the two distributions. The log-

normal yields a somewhat higher cohort efficiency for an 11 year old building than the normal (0,85 

vs. 0,80) because it assigns very low (= 0 for the truncated log-normal) probabilities to service lives 

under 12,7 years. However, switching from the normal to the log-normal does not increase the 
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cohort efficiency at all ages. The complete cohort efficiency functions for the two distributions are 

depicted in the following figure 6. 
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Figure 6: Cohort efficiencies for buildings (L
-
 = 35, b = 0,75) based on a normal and log-normal 

probability distribution 

As is evident from figure 6, the differences are very small. The log-normal yields smaller cohort 

efficiencies at ages around the mean service life and higher cohort efficiencies at high ages. From this, 

it is to be expected that the capital stocks and capital costs are not very sensitive to the choice of the 

distribution (see run 8 in section 5). Therefore the normal distribution has been retained as the 

standard assumption due to it’s ease of interpretation. 

The following figure 7 illustrates the effect of assuming a smaller dispersion of service lifes on 

the cohort efficiency, maintaining the normal pdf. More specifically we will assume that the standard 

deviation is only 39% of the mean or equivalently that 80% of all assets have service lives in the 

range L-  ± 50%*L- . A standard deviation of 50% of the mean implies, on the contrary, that only 68% 

of all assets have service lives within this range. 
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Figure 7: Cohort efficiencies for buildings (L
-
 = 35, b = 0,75) for normal distributions of L with different 

standard deviations  

A smaller standard deviation of service lives raises the efficiency of young cohorts and lowers 

it for old ones because a smaller percentage of young cohorts and a higher percentage of old cohorts 

will be discarded, if the service lives are more concentrated around the mean. Given that these 

differences are small and go in opposite directions, large differences in the resulting capital stocks 

and capital costs would be surprising (see run 7). In view of the heterogeneity of our categories 

„machinery“ and „buildings“, however, the higher dispersion seems to be more appropriate and will 

be maintained. 

Whereas these variations of the variance and skewness of the distribution do not have 

tremendous effects on the cohort efficiencies, any increase in the mean service life or in the parameter 

b raises the item efficiencies associated with each service live and consequently the cohort efficiency 

at all ages (see figures 1 and 2 above). This is illustrated for a variation of the curvature parameter in 

figure 8 
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Figure 8: Cohort efficiencies for buildings with different curvature parameters (L
-
 = 35, st.dev. = 0,5 L

-
, 

normal pdf) 
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Variations that raise or lower the cohort efficiencies of all ages will have a marked effect on 

the resulting capital stocks, see eq. (1). The user cost of capital, on the other hand, will vary in the 

opposite direction, because the cohort efficiencies enter the denominator of (7). Therefore the effect 

on total capital cost, i.e. the product of capital stock and user cost, is ambiguous and likely to be 

small (see runs 3 and 6). 

6 Data and results 

Investment series 

Estimation of capital stocks requires annual data on gross expenditures for capital goods. To 

conform with the notion of quantities, the data have to be expressed in constant prices. For the 

calculation of user costs of capital corresponding price indices are required as well. 

The principal source for these data is the Economic Accounts of Agriculture as published by 

Eurostat or the German ministry of agriculture. They date back until 1949. To calculate the capital 

stock of buildings in 1965, however, data on investments from 1896 onwards are needed, if the 

cohort efficiency function drops to zero only after an age of 70 years (see the previous figure 8). Of 

course, these data are not directly available from published statistical yearbooks. Fortunately Kirner 

(1968) has estimated investments in machinery and buildings for 18 sectors including agriculture in 

constant 1954 prices, taking into account damages in wartimes and changes in the German territory.  

Because data corresponding to Kirner's were not available for all EU-9 members, Ball et al. 

1993 relied on a heroic assumption used already in Behrens 1979, i.e. that investments grew linearly 

from a level of 0 in 1850 to the observed value in 1950. Checking this assumption with a long 

French series on investments in buildings, where investments were actually declining instead of 

rising, Ball et al. found that growth rates and even the level of the French capital stock series was 

little affected by the Behrens assumption (1993, p. 445). The reason is the decline of the cohort 

efficiency below 0,5 after about 25 years. Old investment cohorts do matter, but they did not seem 

to matter much.  
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For West Germany, the following table 1 shows the capital stocks resulting from the 

assumptions of Ball et al.6 and the two approaches to meet the data requirements. Apart from the 

levels in the years 1965 and 1992 and the usual average yearly growth rates between these years, 

the table gives the root mean square yearly growth rates (RMS(%change)7) from 1965 to 1992. 

This indicates the average yearly growth rates where positive and negative changes do not cancel 

and large changes are weighted more heavily due to the squares. Summary indicators for the average 

yearly deviations of the resulting series are given at the bottom of the table. First, the root mean 

square deviation of the yearly growth rates (RMSD(%changes)8) indicates the average (absolute) 

deviation of the yearly growth rates of each approach. Second, to compare the average deviation in 

the levels, the table shows the percentage root mean square deviation of the levels 

(%RMSD(levels)9). 

Table 1: Capital stocks with the assumptions in Ball et al. 1993 using Behrens' assumption or the 
Kirner data 

buildings machinery

Kirner data:

1965 46109 38884

mean % growth per year 0,71% 0,06%

1992 55432 39450

RMS(%change) 1,91% 2,21%

Behrens' assumption:

1965 39939 38876

mean % growth per year 1,23% 0,06%

1992 54895 39450

RMS(%change) 2,55% 2,21%

Deviations:

RMSD(%changes) 0,70% 0,00%

%RMSD(levels) 5,85% 0,00%  

                                                 
6  End of year stocks, investment at December 31, L

-
 = 38 (buildings) / 9 (machinery), standard deviation = 0,5 L

-

, normal pdf, b = 0,75 (buildings) / 0,5 (machinery), contained as "run 1" in the file [capsg.xls]. The values 
in table 1 differ slightly from those given in Ball et al. due to different precision in the computations and 
minor revisions of the underlying investment series. 

7  ( )RMS change T
X X

Xt
T t t

t
(% ) = −

−
=

−

−
∑1

1 2

2
1

1
, Xt = capital stock.  

8  ( ) ( )[ ]RMSD changes T
X X

X
B B

Bt
T t t

t

t t

t
(% ) = −∑−

− −
=

−

−

−

−

1
1 2

2
1

1

1

1
, Bt  from benchmark, Xt  from alternative run. 

9  [ ]%RMSD( )levels T
X B

Bt
T t t

t
= ∑ −

=
1

1

2
, Bt  from benchmark, Xt  from alternative run. 
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Evidently old investment data prior to 1952 (where they differ) do not matter for machinery 

stocks. On the contrary, the difference in the 1965 building stock levels is sizable although the stocks 

do converge later. Because the building stock is more or less stagnating after the 60s (see figure 9), 

the resulting differences in the growth are relatively more important than in the French example 

reported above.  
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Figure 9: Capital stocks for buildings with the parameters in Ball et al. 1993 using Behrens' 

assumption or the Kirner data 

When it comes to computations for EU countries with missing data the results above 

recommend additional effort to compile the neccessary data or to obtain more reliable assumptions 

than Behrens' solution. 

Interest rates 

The first question is whether nominal or real interest rates should be used. In Ball, Matson, 

Somwaru 1992 nominal interest rates have been deflated for general inflation and expected (ex ante) 

real interest rates have been calculated from ARIMA-forecasts. This example will not be followed 

here, because the explicit derivation above presupposes static expectations for prices and a 

constant interest rate, see eq. (6). In addition, it seems to be inconsistent, to use ARIMA-forecasts 

for one variable and static expectations for all others. Finally, correcting the interest rate for inflation 

is only necessary when modelling the savings decision with imperfect capital markets. The explicit 

model above, on the contrary, is a simple intertemporal profit maximization with a given interest rate 

from a perfect capital market. 

The interest rates were obtained from data of the German farm accountancy network („TBS“) 

as published in the annual German report on agriculture (Agrarbericht, „Haupterwerbsbetriebe“). 
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Therefore some interest rate subsidies have been taken into account implicitly, because the interest 

rates were calculated as the ratio of interest actually paid to debt. A problem with this series is that 

these interest rates are an average for old and new debt. If interest rates for old debt are not 

variable, then these average interest rates will develop considerably smoother than interest rates only 

for new credit which conform better to the theory of static expectations. Because the advantage of 

using an interest series specifically relevant for agriculture was deemed more important, we retained 

the interest rates from the German farm accountancy network.  

As an alternative source, there is an interest rate series published in the framework of the 

economic accounts of agriculture („LGR“). Conceptually, this is also an average rate which is 

consistent with series on interest paid and total debt (e.g. BML, AB 1995, MB p. 35). Because the 

variation of these interest rates is even lower, they have been used only in exploratory calculations. 

Results 

Several runs of capital stock and user cost calculations have been carried out for machinery 

and buildings in West German agriculture from 1965-1992. They may be found in detail in the 

accompanying file [capsg.xls, table kirner!]:  
 
1 End of year stocks, investment at December 31, L- = 38 (buildings) / 9 (machinery), standard 

deviation = 0,5 L- , normal pdf, b = 0,75 (buildings) / 0,5 (machinery), 

2 End of year stocks, investment at June 30 (or uniform over the year), L-  = 38 (buildings) / 9 
(machinery), standard deviation = 0,5 L-, normal pdf, b = 0,75 (buildings) / 0,5 (machinery), 

3 End of year stocks, investment at June 30, L- = 45 (buildings) / 12 (machinery), standard 
deviation = 0,5 L- , normal pdf, b = 0,75 (buildings) / 0,5 (machinery), 

4 End of year stocks, investment at June 30, L-  = 35 (buildings) / 10 (machinery), standard 
deviation = 0,5 L- , normal pdf, b = 0,75 (buildings) / 0,5 (machinery), 

5 Mid year stocks, investment at June 30, L-  = 35 (buildings) / 10 (machinery), standard deviation 
= 0,5 L-, normal pdf, b = 0,75 (buildings) / 0,5 (machinery), 

6 End of year stocks, investment at June 30, L-  = 35 (buildings) / 10 (machinery), standard 
deviation = 0,5 L- , normal pdf, b = 0,9 (buildings) / 0,75 (machinery), 

7 End of year stocks, investment at June 30, L-  = 35 (buildings) / 10 (machinery), standard 
deviation = 0,39 L- , normal pdf, b = 0,75 (buildings) / 0,5 (machinery), 

8 End of year stocks, investment at June 30, L-  = 35 (buildings) / 10 (machinery), standard 
deviation = 0,5 L- , log-normal pdf, b = 0,75 (buildings) / 0,5 (machinery), 

9 End of year stocks, investment at December 31, L- = 35 (buildings) / 10 (machinery), standard 
deviation = 0,5 L- , normal pdf, b = 0,75 (buildings) / 0,5 (machinery). 
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The results will be presented in comparison to a base run to show the sensitivity with respect 

to the assumptions. Table 2 gives the complete results for run #4 which shall serve as the benchmark. 

The underlying cohort efficiencies for machinery and buildings are depicted in figures 1 and (e.g.) 6 

above. 

Table 2: Stocks [capi4], user costs [uci4] and total capital costs [icost4] for buildings [i=b], 
machinery [i=m] and the (Törnquist) aggregate capital stock in the benchmark run 4  

year capb4 ucb4 bcost4 capm4 ucm4 mcost4 cap4 uc4 ccost4

1965 42871 0,023 974 38919 0,090 3522 10503 0,428 4495

1966 45135 0,024 1066 40978 0,093 3820 11059 0,442 4887
1967 47500 0,024 1145 42097 0,096 4029 11421 0,453 5174

1968 49746 0,023 1159 41332 0,094 3899 11377 0,445 5058

1969 51532 0,027 1389 39891 0,106 4212 11168 0,502 5601

1970 52872 0,029 1530 39890 0,108 4305 11241 0,519 5835

1971 53598 0,035 1886 39966 0,115 4613 11299 0,575 6499

1972 53891 0,039 2098 39122 0,122 4785 11149 0,617 6883

1973 53829 0,041 2213 38453 0,127 4886 11013 0,645 7099

1974 53724 0,047 2546 38970 0,138 5369 11107 0,713 7915

1975 53812 0,053 2834 38733 0,151 5859 11067 0,785 8693

1976 53970 0,052 2793 38606 0,163 6299 11052 0,823 9091

1977 54198 0,051 2775 39079 0,168 6572 11161 0,837 9347

1978 54535 0,054 2921 40220 0,175 7054 11411 0,874 9975

1979 54789 0,058 3196 41547 0,182 7580 11691 0,922 10777

1980 54862 0,068 3710 42826 0,192 8235 11945 1,000 11945

1981 54777 0,082 4469 43055 0,207 8904 11982 1,116 13373

1982 54488 0,092 5024 42419 0,226 9593 11844 1,234 14617

1983 54236 0,094 5082 41702 0,238 9905 11693 1,282 14987

1984 54091 0,088 4759 41725 0,239 9959 11687 1,259 14718
1985 53835 0,087 4709 41140 0,244 10037 11558 1,276 14746

1986 53519 0,088 4728 40546 0,250 10123 11423 1,300 14851

1987 53038 0,088 4693 39868 0,251 10012 11260 1,306 14705

1988 52494 0,087 4558 39106 0,250 9787 11076 1,295 14345

1989 51922 0,088 4563 38674 0,253 9800 10954 1,311 14363

1990 51357 0,092 4702 38872 0,260 10113 10954 1,352 14815

1991 50954 0,101 5160 39360 0,271 10664 11019 1,436 15824

1992 50363 0,111 5571 40148 0,284 11416 11125 1,527 16987  

The results may be followed in detail also in the following figures 10 and 11 where the results 

of alternative runs are included as well.  
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Sensitivity of building stocks (Mio 1980 DM) to assumptions
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Sensitivity of building user costs (DM / 1980 DM) to assumptions
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Sensitivity of total building costs (Mio DM) to assumptions
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Figure 10: Stocks, user costs and total costs for buildings in the base run 4 and alternative runs  
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Sensitivity of machinery stocks (Mio 1980 DM) to assumptions
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Sensitivity of machinery user costs (DM / 1980 DM) to assumptions
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Sensitivity of total machinery costs (Mio DM) to assumptions

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

65 67 69 71 73 75 77 79 81 83 85 87 89 91

base run

higher service life

mid year stock

slower decay

lower discard variance

lognormal

investment at 31.12

 

Figure 11: Stocks, user costs and total costs for machinery in the base run 4 and alternative runs  
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Both the buildings and the machinery stock show a peak around 1980 with the 1992 levels 

approximately equal to those at the end of the 60s, i.e. the levels are stagnating to a large extent. The 

machinery stocks are fluctuating more because of their considerably shorter service lifes.  

The user costs are rising quickly, both for buildings and for machinery, mainly due to the rising 

asset prices which follow general inflation more or less. With increasing prices and limited fluctuations 

in quantities their product, i.e. capital costs are also increasing considerably in the period observed. 

These comments apply to the results of the base run as well as for the alternative runs. Only 

the levels are fairly sensitive to some changes in the underlying assumptions. The differences are 

frequently too small to be traced in the graphical displays which illustrate more of the similarities than 

of the differences. Therefore the following table 3 presents the numerical results for selected years 

together with summary indicators of the deviations of the alternative runs from the benchmark run 4. 
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Table 2: Stocks, user costs and total capital costs for buildings, machinery and aggregate capital in the 
base run 4 and alternative runs 

buildings machinery

 stocks user costs total costs  stocks user costs total costs

Run 4: base run 

1965 42871 0,023 974 38919 0,090 3522

mean % growth per year 0,62% 6,28% 6,94% 0,12% 4,50% 4,63%

1992 50363 0,111 5571 40148 0,284 11416

RMS(% per year) 2,04% 9,83% 10,49% 2,09% 5,54% 5,97%

Run 3: higher service live 

1965 51779 0,019 1009 44398 0,077 3422

mean % growth per year 0,76% 6,47% 7,28% 0,32% 4,57% 4,90%

1992 63048 0,099 6272 48250 0,246 11870

RMSD(%changes) 0,45% 0,66% 0,84% 0,50% 0,24% 0,58%
%RMSD(levels) 20,09% 11,84% 6,82% 19,70% 14,24% 3,36%

Run 5: mid year stocks

1965 44013 0,023 1026 40077 0,092 3676

mean % growth per year 0,50% 6,42% 6,95% 0,01% 4,52% 4,53%

1992 50083 0,117 5880 40218 0,289 11638

RMSD(%changes) 0,25% 7,66% 7,73% 0,98% 4,01% 3,87%

%RMSD(levels) 1,01% 8,32% 8,58% 1,10% 3,70% 3,96%

Run 6: slower decay

1965 47247 0,020 963 44635 0,078 3490

mean % growth per year 0,83% 6,36% 7,24% 0,18% 4,53% 4,73%

1992 58549 0,101 5933 46818 0,248 11595

RMSD(%changes) 0,26% 0,31% 0,48% 0,33% 0,12% 0,37%

%RMSD(levels) 12,72% 9,26% 3,47% 17,09% 13,40% 1,69%

Run 7: lower discard variance

1965 42937 0,022 956 39608 0,090 3559

mean % growth per year 0,66% 6,25% 6,95% 0,04% 4,48% 4,53%

1992 50978 0,108 5491 40038 0,281 11255

RMSD(%changes) 0,20% 0,09% 0,20% 0,18% 0,07% 0,20%

%RMSD(levels) 2,27% 2,45% 0,74% 0,67% 1,01% 1,06%

Run 8: lognormal

1965 43614 0,023 985 38946 0,091 3526

mean % growth per year 0,47% 6,25% 6,75% 0,11% 4,49% 4,61%

1992 49283 0,109 5379 40067 0,284 11377

RMSD(%changes) 0,25% 0,11% 0,30% 0,17% 0,03% 0,17%

%RMSD(levels) 2,00% 1,11% 1,84% 0,57% 0,10% 0,62%

Run 9: investment at 31.12

1965 43542 0,022 973 41845 0,084 3508

mean % growth per year 0,64% 6,29% 6,97% 0,15% 4,51% 4,67%

1992 51392 0,109 5605 43477 0,264 11485

RMSD(%changes) 0,02% 0,03% 0,04% 0,10% 0,04% 0,11%

%RMSD(levels) 1,75% 1,50% 0,32% 8,41% 7,33% 0,57%  

Some comments may be helpful in the interpretation of the results presented above.  

Run 3 with 20-30% longer service lives shows the highest differences to the benchmark run. 

The levels of the building stocks are on average 20% higher than in run 4 (there are no negative 

deviations, see figure 10). Even the yearly changes deviate on average (in root mean square) by 0,5 
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percentage points which appears to be serious compared with the mean yearly growth rate of 0,6% 

in the base run. However, figure 10 showed that run 3 and the base run develop more or less parallel 

which is more intuitive when the 0,5 percentage point deviation is measured against the root mean 

square growth rate of 2,0%. The user costs for buildings are 12% lower than in the benchmark run. 

Here, the yearly changes deviate by 0,7 percentage points which is absolutely higher but relative to 

the average yearly growth rate much lower than for the stocks. In the total cost for buildings the 

differences in the levels cancel to a large extent with an average difference of 7% remaining. The 

yearly changes of the total building costs, however, deviate on average slightly more than the user 

costs, i.e. by 0,8 percentage points. On the other hand, total buildings cost is the variable with the 

highest root mean square changes (above 10% per year) such that a series deviating from the 

benchmark by 0,8 percentage points still follows it closely. Looking at the consequences of longer 

service lives for machinery, we see a similar pattern with the differences in the stock and user cost 

levels cancelling to a large extent and the deviations in the stocks being higher than for the user costs 

but still appearing moderate when measured against the root mean square growth rate of 2,1%. 

Overall, the results show that capital stock calculations are only moderately sensitive to the choice of 

the service lives when the focus is on the yearly changes but that the levels depend strongly on these 

choices. 

In run 6 an increased parameter b reflects a slower decay, i.e. a slower loss of efficiency for 

each item in the first years of it’s service live. Consequently the capital stocks rise and the user costs 

decline markedly such that the effects in run 6 are very similar to those of longer service lifes in run 3 

(see already Kirner 1968, p. 21). With the simulated changes in the parameter b, the effects are 

smaller than for the changes of the service lives, but this depends of course also on the magnitude of 

the changes that have been simulated. 

Run 9 shows the consequences of assumptions as to the timing of investment during the year. 

To impute an age of 0 instead of 0,5 to this year's investments for end year stocks is a convenient 

simplification. It amounts to a half year shift of the cohort efficiency function of the base run to the 

right10, because decay and discards are postponed correspondingly. The result is, as in runs 3 and 6, 

                                                 
10  The cohort efficiency for machinery shown in figure 1 corresponds already to this run 9 with investments at 

31.12. The function for the base run would be located slightly to the left, therefore. 
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a higher stock and a lower user cost compared to the base run. Because a half year shift does not 

matter much for buildings with a service live of 35 years, the effects are sizable only for machinery 

and here only in the levels. When the percentage changes matter, even machinery is hardly affected 

from the simplifying assumption that investments take place on December 31. 

Run 5, on the other hand, shows the consequences as to the point in time when the capital 

stock is observed. Switching to mid year stocks does not only change the weights for a given set of 

investments and prices that enter the calculation, but it causes this year's investments and prices to 

enter whereas they did not in the base run. Any change in the series will be felt about a year earlier 

with mid year stocks, what may be seen most clearly in the display of the user costs, as they depend 

only on the most recent data (investment good prices, see in particular figure 10). The difference of 

the base run and mid year stocks is thus essentially a lag in the series and this results in considerable 

differences in levels and root mean square growth rates, even when measured against the root mean 

square growth rates of the base run. For the stocks the effects of the lag are strongly dampened due 

to the inclusion of past investment cohorts. Overall the differences suggest that the choice between 

end year and mid year stocks might be crucial for econometric analysis relying on this type of data. 

Reducing the variance of the service live distribution in run 7 from 0,5 L- to 0,39 L- has only 

little consequences. This might be due to the change in the assumption being only small. On the other 

hand, as noted above, big changes would be surprising because a reduction in the variance raises the 

efficiency for young cohorts but lowers it for older cohorts. This is quite reassuring, because the 

dispersion parameter is one of the least well known. 

The same argument applies to switching to the log-normal distribution in run 8. The largest 

difference to the base run is in the building stock levels which is still small with a root mean square 

average of 2%. The yearly changes of the building stocks deviate on average by only 0,25 

percentage points from the benchmark run. Nevertheless, in figure 10 we recognize that the decline 

in the building stock from the peak in 1980 is noticeably stronger according to the lognormal 

assumption, i.e. even small deviations may make a difference when they do not cancel over several 

years. 

Summing up the sensitivity analysis, we may note that moderate changes in the assumptions 

have only little effects on the results. Exceptions from this rule are the service lifes and decay 
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parameters, when the levels of stocks and user costs are important and the choice between mid year 

and end year stocks, when the yearly changes of the costs matter. 

The latter is certainly the case in any attempt to explain the development of the capital stock. 

However, this is beyond the scope of the present paper. 

 

Summary 

A step by step exposition of the perpetual inventory method for capital stock calculations and 

associated user costs is given. Assumptions are made for mean service lives and their 

distributions, the form of decay and the exact timing of variables. Using data on buildings 

and machinery for West German agriculture, the sensitivity of stocks, user costs and total 

capital costs with respect to these assumptions is checked. In this way, a technical 

documentation together with a full presentation of benchmark results for capital and its cost 

in West German agriculture is provided. At least medium term movements of the benchmark 

are shown to be fairly robust to assumptions. 

 

Zusammenfassung 

Die Methoden der Berechnung von Kapitalstöcken und zugehörigen Kapitalkosten werden 

Schritt für Schritt erläutert. Dazu gehören Annahmen über die durchschnittliche Lebensdauer, 

ihre Verteilung, den Verschleiß und die genauen Zeitpunkte für Investitionen und 

Kapitalstockmessungen. Am Beispiel der Gebäude und Maschinen in der westdeutschen 

Landwirtschaft werden Sensitivitätsanalysen durchgeführt. Hierdurch werden die detailliert 

wiedergegebenen Ergebnisse einer Referenzspezifikation zum Kapital und seinen Kosten in der 

westdeutschen Landwirtschaft technisch dokumentiert. Zumindest bezüglich seiner 

mittelfristigen Entwicklung ist der Referenzlauf weitgehend robust bezüglich der Anahmen. 
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Appendix  

The log-normal pdf, mean and variance are (e.g. Hawkins, Weber 1980, p. 141) 
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If we express the standard deviation in terms of the mean (st.dev. = k L-, usually k=0,5) the 

parameters result as follows: 

 k L Var L e e L e= = − = −+( ) ( ) ( )/ / /µ σ σ σ2 2 22 1 2 1 21 1  
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For the 95% cut off points we may use the fact that lnL is distributed normally, if L is distributed log-

normally, i.e. 
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where Φ(.) is the standard normal cdf, from which it follows that:  

 ln , , ln ,min min
,

max max
,L L e L L e= − ⇔ = = + ⇔ =− +µ σ µ σµ σ µ σ196 1 961 96 1 96  (6) 

These results where used in the computations of run 8. 
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