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The value of environmental health in agricultural production across 

nonparametric efficiency quantiles 

Daniel Gregg and John Rolfe 

Abstract 

The valuation of environmental assets is a key current issue in the analysis of environmental assets 

from an economic viewpoint. Economic assessment often involves the assessment of community 

values for environmental protection (public benefits) and any complementary or offsetting changes to 

production (net private benefits). Whilst the majority of studies focus on final demand aspects of 

environmental values (e.g. recreational use, existence and amenity values from better environmental 

protection) there is a need to consider any associated impacts on production of economic 

commodities. The shadow prices and elasticity of production with respect to environmental inputs is of 

interest in determining efficient public procurement mechanisms for environmental improvements. In 

particular, distributional aspects of the use of environmental assets by agricultural enterprises may 

have implications for the efficiency of different approaches to environmental benefit procurement. We 

use production data from rangelands beef enterprises in Australia and nonparametric conditional 

quantiles to show that the efficiency of enterprises may be associated with the efficiency of utilisation 

of environmental inputs and thus may indicate that environmental procurement mechanisms may be 

benefiting relatively inefficient producers.  

Introduction 

Social values for environmental assets arise from a range of considerations including their existence 

and amenity values, the ability to utilise environmental assets for recreational purposes and the 

indirect and direct contributions environmental assets provide to economic activities via so-called 

ecosystem services. The valuation of environmental assets is approached from two main 

perspectives. The most common approach in the literature is that of assessing values for the 

existence and direct usage of environmental assets in consumption via the use of revealed 

preference and stated preference survey methods. A less common approach, but one that was 

popular in the 1980’s and 1990’s are methods considering the value of environmental assets in terms 

of their capacity to increase the efficiency, with respect to human inputs, of production or in terms of 

their capacity to induce costs on enterprises when their level is diminished (Costanza et al. 1997). 

The recent increase in interest over ecosystem services indicates that the latter approach is 

undergoing something of a renaissance. 

The valuation of environmental assets is being increasingly considered from the perspective of its 

utility as a productive input in the generation of commodities and services valuable to humans 

(Bateman et al. 2013). In particular, environmental inputs have increasingly been viewed as 

‘environmental services’ which provide valuable contributions to a range of primary and intermediate 

production systems providing utility to humans (e.g. Power 2010; Gomez-Baggethun et al. 2010). 

Agricultural production in particular almost invariably relies, either directly or indirectly, on some input 



from environmental factors and interest has focused on agriculture as the primary land use across the 

globe to provide environmental services (e.g. Power 2010). The environmental input in extensive 

(broad-acre) systems is generally explicit being derived from rainfall, soil health, temperature, 

landscape function, etc. In extensive agricultural production the environment serves as the main 

medium and input into production with environmental conditions determining the economic viability of 

different commodity alternatives (Bastin et al. 2002).  

In agricultural systems reductions in environmental health can also have detrimental effects on social 

values as shown by the substantial interest in recent years over consideration of public values for 

environmental health using stated preference methods. Australian examples include the choice 

modelling technique used by van Bueren and Bennett (2004) to assess community values for 

additional areas of farmland repaired and bush protected across Australia, and the same approach 

used by Rolfe and Windle (2008) to assess public values for healthy soils, vegetation and waterways 

in different areas of Queensland. As a result of the substantial social concern over environmental 

health on agricultural lands there has been an increasing interest in procuring improvements in 

environmental health in these areas and in the economic literature in particular in finding the most 

efficient methods for such procurement (Latacz-Lohmann and van der Hamsvoort 1998; Windle and 

Rolfe 2007; Hanley et al. 2012; Schilizzi and Latacz-Lohmann 2013). One key limiting factor in 

efficient procurement of environmental health on agricultural lands is the information asymmetry 

implicit in such processes – farmers tend to have usually been thought to have a far better 

understanding of their opportunity costs than society does. As a result substantial effort has been 

made into developing procurement methods which alleviate these informational asymmetries (e.g. 

Rolfe et al. 2007, 2008; Hajkowicz 2009).  

The proliferation of alternative procurement methods has however been slow to be adopted by policy 

makers and key assumptions implicit in them have recently been challenged, including the 

assumption that agricultural producers have strong knowledge of the opportunity costs of improving 

environmental health on their properties. For example bidders in conservation auctions or resource 

by-back schemes may experience, or be concerned, over the potential for ‘winners curse’ indicating 

that they are unsure over the opportunity costs involved in participating in these schemes (Rolfe et al 

2006; Squires et al. 2009). Additionally, the use of ‘payments for ecosystem services’ methods of 

procurement are based on the presumption that purchased improvements in environmental health 

involve an opportunity cost in terms of foregone agricultural production. Whilst this is likely to be the 

case in many situations such as in programs which require land to be set aside from production for a 

certain time period, other programs involve purchases for which it is far less clear that a production 

trade-off exists. For example Pannell (2008) show that land use change can involve different 

combinations of public and private benefits and costs, while Coggan et al. (2010) show that 

transaction costs can be significant in limiting takeup even when private benefits exist. As Pannell 

(2008) argues, prior information over the costs of providing environmental health is an essential first 

step to selecting the appropriate policy instrument, and is typically needed for the implementation of 

mechanisms such as extension with land managers or conservation tenders. 



The valuation of environmental factors from a production perspective is a well-established, if relatively 

neglected, field of research (e.g. Freeman 1993; Point 1994). Early studies of environmental values 

associated with production, damage functions, or dose-response analyses (e.g. Barbier 2000), were 

estimated using assumptions over the form of cost which environmental degradation imposed on 

firms (Freeman 1993). In more recent times focus has shifted to consideration of the direct effect on 

production itself where environmental assets are inputs to production, and removal or deterioration 

leads to production losses. Many of these studies have utilised a ‘household production function’ 

approach (e.g. Barbier 2000; Alberini et al. 1997) within a statistical framework considering the mean 

response. However, many public programs aiming to facilitate improved environmental practices on 

agricultural lands focus on retiring marginal land (e.g. the Conservation Reserve Program in the 

United States (Hanley et al. 2012)) or acquiring environmental benefits most ‘cheaply’ using market-

based instrument procurement mechanisms (e.g. the BushTender program in Australia (Stoneham et 

al. 2003)). Such programs obviously do not specifically target the average or frontier producers but, 

for example, agricultural areas which are relatively inefficient with respect to land inputs in the former 

case and least-cost providers of environmental inputs in the latter case.  

Clearly then, models of the average or most efficient value of environmental inputs to producers 

provide only a partial description and one which is potentially not highly relevant to evaluation of 

public investments in environmental protection on agricultural lands. The use of more discriminating 

measures of production tradeoffs, such as quantile regression analysis, provides a more complete 

view of aspects of input usage across the conditional distribution of output allowing insights into 

expected marginal productivity, elasticities and values of environmental inputs of the production 

process for different groups of producers or production inputs. Dimelis and Louri (2002) and Landajo 

et al. (2008) show that conditional quantiles may be interpreted as efficiency quantiles when used in a 

production framework whilst O’Donnell (2010) shows how productive efficiency is a key component of 

enterprise profitability, providing a linkage between the value of environment at each conditional 

quantile and opportunity costs for producers. In principle this allows consideration of ‘least cost’ 

providers of environmental inputs and some characterisation of the usage of environmental inputs by 

inefficient versus efficient enterprises.  

In this paper we present a case-study analysis of the value of environmental inputs to agricultural 

production utilising a nonparametric conditional quantile analysis so as to capture the range of 

production tradeoff costs. Our case-study is based on extensive beef production in the northern 

Australian rangelands. The quantile analysis employs regression splines with data-driven selection of 

polynomial degree, knot selection and bandwidths of Generalised Product Kernel functions for 

discrete data. Our approach is based on recent developments in the use of conditional quantile 

analysis, and in particular non-parametric conditional quantiles, for measurement of productivity and 

applied in the novel setting of consideration of the value of environmental inputs. In the following we 

outline briefly the theory of measurement of the value of environmental factors in production (next 

section) and then outline the non-parametric conditional quantile method (Section 3). A description of 

our data is provided in Section 4 with Section 5 presenting summaries of statistical results from our 



estimated B-spline models. A discussion on results of relevance and their interpretation is provided in 

Section 6 and is followed by conclusions in Section 7.  

The measurement of the value of the environment in production 

Evaluation of both the net benefits of environmental protection as well as the design of mechanisms 

to achieve this typically requires detailed information about the costs of production tradeoffs involve. 

The data available to the analyst is the primary determinant of the analytical approach able to be 

undertaken with respect to valuing the environment as an input to production (Vincent 2008). In the 

best case, data on input and output prices and input and output levels are available to the analyst 

allowing the estimation of either a system of production and input demand equations or a system of 

the profit function along with input cost share equations (Vincent 2008). However, in the case that, for 

example, individual input prices are unavailable an estimate of environmental values is still available 

utilising the production function directly and either considering only marginal changes or by integrating 

the production function from the initial environmental endowment to the final (hypothetical or predicted) 

environmental endowment (Freeman 1993) whilst assuming fixed input prices. Specifically, consider a 

production function: 

� = ���, �, �	 
�ℎ�: 
� = ������ 
� = ������� ������ 
� = ���� ��������� ������� 
� = ����������� ����� 

The first order conditions to choosing �� to maximise private returns (assuming profit maximisation) is: 

��
���

���	 −  � = 0 

�ℎ�: 
���	 = ���� ��� ������ 
 � = "��� ��� ����� � 

Denoting the output-maximising input choices at the starting point for environmental condition (�#) as 

�∗ and assuming that output prices are exogenous, the marginal value product of an increase in 

environmental condition (input) is calculated as: 

%&"' = ���	 ∙ )���∗, �#, �	
)�#  

The net gain is thus the value of the marginal product of environmental condition in the production 

function – i.e. the Marginal Value Product (MVP) of environmental condition (Freeman 1993).  

In addition to this measure requiring information on the prices of input and output it is possible to 

obtain a partial measure of the value of environmental condition by simply taking the derivative of 



output with respect to the environmental input at the sample input levels (Vincent 2008) – note that 

this statistic is assessed at sample input levels, not the optimal input levels: 

%&"',*+,-�+. = ���	 ∙ )���, �#, �	
)�#  

This partial measure will tend to underestimate the value of (exogenous) environmental improvements 

as it will not account for decreases in costly input usage due to substitution effects associated with 

environmental quality, however this will depend on the elasticity of input demands (Vincent 2008; 

Freeman 1993).  

If interest is focused on the shadow price or value of environmental health in production we may 

obtain such an estimate by using the result that profit maximising producers will utilise an input up to 

the point that it’s marginal value product (MVP) is equal to it’s marginal cost (MC). Because 

estimation of the production function provides us with an estimate of the marginal product and 

information on output prices is usually readily available we may formulate an estimate of the MVP and 

from this make some inference on the MC, or shadow price, of the environmental input.  

Conditional output quantiles and the measurement of environmental value with respect 

to technical efficiency 

Production theory typically assumes that the output observed for a given level of inputs will be the 

lower boundary of the input requirement set in order to ensure that producers are rational and not 

employing excess inputs. However, a large literature has developed on the measurement of technical 

inefficiency in production with evidence from empirical studies indicating that the conditions for 

efficient production are often not met by a substantial proportion of a given sample of producers 

(Coelli et al. 2005; Kumbhakar and Lovell 2000). The literature on technical efficiency allows analysis 

of matters of production with relaxation of the assumption involving production on the lower boundary 

of the input requirement set.  

Several approaches to the measurement of technical efficiency are available to the analyst interested 

in such matters. The two most common approaches involve the measurement of a technical relation 

between outputs and inputs which is located at the lower boundary of the input requirement set, or the 

upper boundary of the production possibilities set, one of which allows a stochastic measure of the 

technical relation and the other which employs a deterministic measure of the technical relation. 

Respectively these approaches are referred to as Stochastic Frontier Analysis (SFA) and Data 

Envelopment Analysis (DEA). Measurement of economic aspects of interest for the production 

function using these approaches is then generally based on this boundary measure of technically 

efficient production. Whilst the SFA and DEA approaches relax the assumption involving ubiquitously 

efficient production they model inefficiency as a latent factor and limit examination of economic 

measures of production to the frontier technical relation – even though many studies indicate that 

producers at different efficiency levels with respect to a global frontier may in fact be utilising different 

technologies which are not adequately represented by the frontier technology (e.g. O’Donnell et al. 

2007). In many cases it is of interest to consider the technical production relation which exists at non-



frontier locations – i.e. it may be considered that some producers are unaware, or are rationally aware, 

of their inefficiency and base production decisions on their own (inefficient) technical production 

relation rather than that of the efficient relation.  

One approach to developing an understanding of non-frontier technologies used in production is 

conditional quantile analysis. This approach can be thought of as an analogue to conditional mean 

analysis, encompassed within Ordinary Least Squares (OLS) and Maximum Likelihood analyses, but 

allowing for interest to be centred on arbitrary quantiles of the conditional distribution (Koenker 2006). 

Conditional output quantiles are related to the efficiency of production as they conceptually describe 

arbitrary levels of efficient productions from the frontier (efficient) output level for a given input level at 

the 100
th
 percentile to the least efficient output level for a given input level at the 1

st
 percentile. From a 

statistical perspective, conditional quantiles are differentiated from conditional means (e.g. as 

measured by Ordinary Least Squares and SFA) in that they allow measurement of an arbitrary 

conditional quantile. The most common quantile of interest is the median which has long been 

associated with the Least Absolute Deviations (LAD) regression model (Koenker 2006). However, as 

noted above, it is possible to specify a function which identifies a statistical relation between a 

dependent and independent variables for any quantile including the median.  

Measurement of economic quantities of interest arising from conditional quantiles allows examination 

of these quantities across the spectrum of efficiency from very low levels of efficiency (e.g. as 

characterised by a model for the 10
th
 percentile) to very high levels of efficiency (e.g. as characterised 

by a model for the 90
th
 percentile). Such measurements provide detailed information over how values 

for environmental, and other, inputs changes with respect to the relative efficiency of production and 

thus may indicate how the usage of environmental inputs is related to productive efficiency.  

Efficiency measure is relevant to cost effective provision of environmental assets because (technically) 

inefficient producers are able to contract their usage of or all inputs whilst maintaining output by 

adoption of improved technology or management. As such, identification of marginal productivities 

and output elasticities of human and environmental inputs at the range of inefficient and efficient 

production technologies may carry substantial potential information over the ability of enterprises to 

increase provision of environmental inputs at least cost. 

Nonparametric conditional quantiles using regression splines 

The statistical analysis of economic phenomena is increasingly making use of nonparametric methods 

in place of parametric methods because they are more robust than parametric methods in many 

common economic analysis problems (Landajo et al. 2008) and because they allow the analyst to 

focus on the economic measures of interest rather than on effectively arbitrary and potentially 

misleading parametric forms which are generally unknown a priori. Whilst parametric analyses using, 

for example, OLS on the correctly specified functional form provide for efficient and unbiased 

inference under mild conditions, it is only in exceptional cases that the correct functional form is 

actually known a priori (Landajo et al. 2008). This result also holds for the Quantile Regression 

(Koenker 2006) approach which, whilst allowing for arbitrary distributions of errors, requires the 



analyst to first specify a correct functional form for the conditional response. It is fortunate that in 

production economics, focus is centred on simple functions of the conditional response rather than on 

a particular parametric form for the conditional response – although this latter consideration has been 

a major component of research in production economics due to its centrality to analysis prior to the 

advent of empirically useful nonparametric methods. In particular, the main measures we were 

interested in this research – the MVP, output elasticities and Returns To Scale (RTS) – are simply 

functions of the conditional response of output to input: 
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The quantities outlined above are clearly conceptually independent of the functional form chosen for 

the conditional response. Thus, if parametric forms for the conditional response influence the 

measurement of the conditional response they may be considered as ‘nuisance’ factors in the 

measurement of our quantities of interest. In particular if the use of parametric forms for conditional 

response is associated with bias due to the infinite possible range of functions which may be specified 

then we should be concerned that they also influence the measurement of our quantities of interest. In 

such cases nonparametric methods provide a statistical framework in which to obtain measures of 

quantities of interest whilst allowing the analyst to bypass issues of the choice of functional form to 

represent the conditional response (Landajo et al. 2008).  

Two main approaches to nonparametric econometrics are in common usage: (1) the kernel density 

framework, and; (2) the regression spline framework. The former approach involves a local measure 

of conditional response based on smooth functions of the dependent variable in a region around its 

immediate location. The latter approach involves a global approximation involving the joining of a 

number of linear or polynomial segments together into a smooth global regression curve representing 

the conditional response for a given sample of data. We chose to use the regression spline framework 

as it is more closely linked to the standard regression framework and involves a conditional quantile 

formulation that is more developed than the analogous approach in the kernel framework. Recent 

research (Landajo et al. 2008) has emphasised the linkages and advantages of the regression spline 

framework for conditional quantiles in a range of different types of economic analysis.  

In this analysis we chose to use the common B-spline approach due to its flexibility and well-known 

characteristics. Three main factors characterise a B-spline regression analysis: (1) The number of 

segments to be joined; (2) The polynomial degree of each segment, and; (3) Whether the splines 

basis is additive or multiplicative. Historically, B-splines have been considered semi-parametric when 

an additive basis was utilised as they typically involved analytical choice over the number of segments 

or the degree of the polynomial to be considered – a more general restriction than fully parametric 

functional forms but one which was still potentially an important restriction affecting analytical results. 

In more recent times improved algorithms have led to the development of data-driven models which 



use cross-validation to jointly select the number of segments, the degree of each segment for each 

variable and the form of the basis for the B-splines (i.e. additive or multiplicative). This has allowed B-

splines utilised in the regression framework to become truly non-parametric in an a-priori sense with 

functional form restrictions driven by data information rather than the choices of the analyst (Racine 

and Li 2004).  

The methods we utilise are fully outlined in Racine and Zhenghua (2014) for the non-parametric 

regression functions and in Hsiao et al. (2007) for the consistent functional form test. The routines we 

used were implemented using the ‘crs’ package (Racine and Zhenghua 2014) and the ‘np’ package 

(Hayfield and Racine 2008) in the free R program (R Core Team 2013) in addition to the authors own 

code for generating data for regressions and data summaries/plotting. The latter is available as an R-

script (including data used) from the author on request.  

Data 

The data for our case study application were obtained from a private consulting service which 

provides comparative data to extensive beef producers in northern Australia on a range of measures 

including: Return On Assets, Labour Productivity, Overhead-Value ratio, etc. As a result this service 

has collected a range of data useful to examination using economic production analysis methods. In 

particular we obtained a range of data series which enabled estimation of the production technology 

using the primal (production function) formulation.  

We transformed data to a per-hectare basis due to the diversity of enterprise sizes in our dataset and 

in order to depict production in a form more relevant to the key limiting variable (land area) which itself 

is generally priced on a per-hectare basis in northern Australian beef property markets. On this basis 

the output variable was obtained as the production of beef per hectare per year whilst inputs were 

characterised as input usage per hectare of land.  

Four input variables were initially available for use in our model being: An inflation-adjusted Land 

quality value index, inflation-adjusted Animal Health expenditures, Inflation-adjusted Supplement and 

Fodder expenditures and Labour (full-time equivalent person-weeks per hectare multiplied by 100). 

The variables ‘Supplements and Fodder’ and ‘Animal Health’ were obtained as total annual 

expenditure. We applied a Producer Price Index transformation to these to transform the variables to 

indices of real expenditures per hectare. Labour was included as Full-Time-Equivalent Labour days 

per Hectare on the basis of reported labour usage by sample enterprises. A rainfall variable was 

included to account for exogenous variation in the productive potential of these enterprises across 

years. The rainfall variable was calculated using information on the average and actual rainfalls 

recorded for each enterprise as the percentage deviation of actual from average rainfalls.  

Four land-type classifications were provided in the dataset utilised in this research. Enterprises were 

classified into these on the basis of whether part of their property was located in the relevant land-

type region. As a result we classified enterprise land condition as a pseudo dummy variable taking the 

value 0.5 for two land-types respectively for those it was located in and 1 (for the respective land type) 

if it was located only in one of them.  



Finally, the variable defining environmental condition was derived as a 3 year moving average of 

satellite observations on end-of-dry season ground cover. Satellite observations of end-of-dry season 

ground cover have been utilised as measures of land condition in several research programmes 

(Bastin et al. 2002; Ward and Kutt 2009). The raw satellite data provides a measure of bare ground 

predicted for 25m x 25m pixels in the months between August-November for areas where the satellite 

is expected to provide substantial accuracy in actual versus expected ground cover. This time period 

represents a measure of the extent to which grasslands are intact immediately prior to the start of the 

growing season and are considered to represent a measure of environmental health (Bastin et al. 

2002). However, it is likely that annual variation in this measure also provides an indication of the 

available pasture for consumption by cattle herds at the start of the growing season. As we wished to 

capture a measure of environmental health rather than pasture availability (the year on year variation 

of which was hoped to be incorporated via the rainfall deviations variable) we generated the 

environmental input variable as a 3 year moving average of this series averaged across all measured 

pixels for each enterprise. The use of a moving average was expected to remove the effect of annual 

variation in pasture availability and provide a measure more reflective of medium-term environmental 

health on these properties.  

Table 1 below provides a summary of the data used for the production functions estimated in this 

research. 

Table 1: Summary of data for models 

 

* measured as a 3 year historical moving average of remotely sensed mean groundcover for each enterprise 

 

Beef produced 

(Kg/Ha)

Land Value 

index Health ($/Ha)

Supplements 

and Fodder 

($/Ha) Labour (FTEs)

Rainfall 

(Proportion of 

average)

Environmental 

health*

Min. 1.90 0.04 0.01 0.00 0.07 0.12 52.04

25th Perc. 12.17 0.35 0.35 0.81 0.51 0.75 70.40

Median 19.74 0.98 0.83 1.92 1.00 0.91 77.42

75th Perc. 31.62 4.61 1.63 3.92 1.92 1.11 82.84

Max. 69.10 10.08 7.17 21.08 6.57 2.34 92.32

Mean 23.51 2.52 1.23 3.12 1.39 0.95 76.20

Std. Dev. 14.92 2.86 1.24 3.60 1.15 0.32 8.40

Mean 22.39 0.40 1.58 3.92 1.58 0.91 82.46

Std. Dev. 10.02 0.32 1.46 3.63 1.22 0.28 5.17

Mean 12.03 0.44 0.42 2.08 0.49 1.08 75.02

Std. Dev. 6.01 0.24 0.52 1.72 0.23 0.37 9.69

Mean 12.53 0.33 0.47 1.81 0.71 0.99 67.79

Std. Dev. 6.64 0.19 0.38 2.23 0.60 0.40 7.54

Mean 31.54 4.78 1.63 3.54 1.87 0.91 76.16

Std. Dev. 15.65 2.64 1.24 4.22 1.16 0.27 6.99

Landtype = Ironbark (n=90)

Landtype = Desert Uplands (n=98)

Landtype = Mitchell (n=52)

Landtype = Brigalow (n=224)



Estimation and comparison against parametric models 

As outlined in the previous section the use of non-parametric regression methods allows the analyst 

to obtain information over quantities of interest (e.g. dy/dx) without making restrictive assumptions 

over the exact form of conditional response within the analytical model. In contrast, standard 

econometric methods employed in the economic analysis of matters of production typically assume 

that the conditional response is derived from a subset of families of production functions which are 

then subject to testing in order to obtain the most ‘correct’ form which is then subject to analyse. The 

use of conditional quantile analysis is also possible in the parametric framework using the quantile 

regression framework of Koenker (2006). Whilst our interest was not in whether the data used in this 

analysis was representable with a particular parametric form, this rather being a nuisance factor in our 

analysis, the preference for parametric forms in empirical work suggests we test whether 

nonparametric approaches offer a less restrictive analysis in our case. Statistical tests of correct 

specification are available in the nonparametric framework with rejection of parametric functional 

forms implying that the regression results from retaining such forms may be biased (Racine REF).  

In order to test whether a parametric representation of the data is suitable we considered second 

order flexible function forms for the natural logs of input variables (the Trans-Log functional form) and 

for the levels of the input variables (the Quadratic functional form) which allow representation of 

output elasticities and marginal products in the nonparametric framework respectively.  

The translog functional form is defined as: 
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Whilst the Quadratic function form is defined as: 
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We used the ‘npcmstest’ test for functional form which is available in the NP package (Hayfield and 

Racine 2008) in the free R statistical program (R Core Team 2013). Rejection of the null hypothesis of 

correct specification indicates that the functional form tested is incorrect and use of these functional 

forms may induce bias in results.  

Results 

Nonparametric functional form tests for the 2
nd

 order approximation forms outlined in the previous 

section, namely the common Trans-Log and Quadratic functional forms, indicated these forms were 



strongly rejected by the data with p-values for the Hsiao et al. (2007) consistent model specification 

test using the ‘Jn’ statistic. A summary of these results is shown in Table 2.  

Table 2: Results for functional form testing based on OLS estimation of restrictions of the 

Trans-Log form 

 

The strong rejection of the two tested flexible function forms for the conditional mean model indicates 

that there is substantial non-linearity in the conditional mean response of output for this data which is 

unlikely to be captured by 2
nd

 order flexible functional forms such as the Translog and Quadratic 

production functions. The strength of rejection of these flexible function forms indicates that it is 

unlikely that similar functional forms (e.g. Generalised Constant Elasticity of Substitution) will hold at a 

substantial number of quantiles and that standard additive models of the conditional mean and 

conditional quantiles are unsuitable for our analysis. On this basis we employed the B-spline 

regression framework, described in Section 4 earlier, to estimate conditional quantile models in a 

nonparametric framework.  Summary results for the estimated models at a subset of quantiles 

spanning the range of quantile models estimated are presented below.  

Tables 3 and 4 present the results from leave-one-out Cross Validation utilised on the B-spline 

conditional quantile models to select the number of segments, polynomial degree of segments, basis 

(additive or tensor-product) for continuous predictors and the bandwidth for the discrete predictor 

LAND. All regressions for both the log-log and levels formulations involved CV-selection of an additive 

basis rather than the fully locally flexible tensor-product basis. Historically additive bases for B-spline 

regression models have been considered semi-parametric however, given that the CV algorithm we 

use tests for performance of the tensor-product basis, we can consider the estimated models to be 

fully non-parametric with data-driven restrictions on functional form.  

H0: Parametric functional form is correct

# of parametric 

regressor 

variables

Bootstrap 

replications Jn Statistic P-value

Log-Log model 7.3099 0.0000

Levels model 1.5712 0.0000

28 399



Table 3: Model summary results for log-log regression spline model 

 

The log-log and levels formulations were in general agreement over complexity of conditional output 

representations from the respective input variables with Land Quality (LQ) and Labour (L) generally 

involving more complexity (number of segments and polynomial degree) than the other input variables. 

Complexity of the conditional response appeared to be higher for Land Quality at lower quantiles and 

at the lower and middle quantiles for Labour whilst Environmental Health appeared to involve a 

relatively stable and more simple functional form across the quantiles. The relatively higher 

complexity of conditional response at lower quantiles for human inputs may be reflective of the 

inefficiency of these observations and lack of consistency in selection of input quantities for managers 

of these enterprises. Alternatively it may be a result of poor recording of some input data for very low 

quantile data points (i.e. below the 30
th

 percentile). Overall, these results on the interpretation of 

complexity of the conditional response function indicate that there is substantial variation in the usage 

of human inputs for relatively inefficient producers suggesting that they are likely not adequately 

represented by a frontier production function alone (as employed in SFA and DEA type analyses).  

10th 20th 30th 40th 50th 60th 70th 80th 90th

Spline segments 10 1 6 9 1 9 1 8 4

Degree of spline segments 2 15 15 14 6 1 1 1 2

Spline segments 1 1 2 1 1 1 1 1 2

Degree of spline segments 4 2 1 2 1 1 1 1 1

Spline segments 1 2 1 1 1 1 1 1 1

Degree of spline segments 1 1 1 7 1 1 2 2 1

Spline segments 2 1 1 1 1 6 1 1 1

Degree of spline segments 1 2 1 1 9 5 9 1 1

Spline segments 3 1 1 1 1 1 1 1 1

Degree of spline segments 1 1 1 1 1 1 1 1 1

Spline segments 1 1 4 1 1 1 1 1 1

Degree of spline segments 1 1 1 2 1 1 1 2 1

Land Type Bandwidth 0.4237 0.9394 0.3783 0.1859 1.0000 0.8633 1.0000 0.2851 0.3670

Add. Add. Add. Add. Add. Add. Add. Add. Add.

R squared 0.33 0.43 0.60 0.67 0.60 0.58 0.48 0.40 0.26

Environmental 

Health ('E')

Basis type (chosen using Cross-Validation)

Quantile

Land Quality ('LQ')

Health Exp. ('H')

Supp. And Fodd. 

Exp ('S')

Labour FTEs/100 

('L')

Rainfall % of 

average ('R')



Table 4: Model summary results for levels regression spline model 

 

Discussion 

The matters of interest in this study pertained primarily to the output elasticities and marginal products 

for human inputs (x) and environmental inputs (rainfall – R and environmental health – E) as 

measures of the value of an environmental input to output obtained from an estimated production 

function. For non-parametric spline regression models these can be obtained as the first derivatives of 

the function at each data point for the log-log and levels models respectively. Thus, in estimating 81 

models for each percentile between the 10
th
 and 90

th
 quantiles we obtained a matrix of first derivatives 

for each data point and each human and environmental input. To summarise these we calculated the 

mean and lower 25
th
 and upper 75

th
 percentiles as error bounds for each vector of derivatives. 

Graphical plotting of these series (across estimated quantile models) and tables of summaries (for 

every 10
th
 percentile between the 10

th
 and 90

th
 conditional quantile models) provide detail over the 

pattern of usage of these inputs over the range of technical efficiency in our sample.  

Table 5 below provides a summary of the Returns to Scale (RTS) for all human inputs together, the 

elasticity of output with respect to Rainfall, with respect to Environmental Health and with respect to 

all human inputs, Rainfall, and Environmental Health together. Sums of output elasticities arising from 

inputs can be considered RTS for the included inputs and allow consideration of the relative efficiency 

of scale of production as they measure the percentage change in output for a percentage change in 

the input(s). Typically an RTS score below 1 indicates that the manager should decrease usage of 

included inputs and a score above 1 indicates that the manager should increase usage of the 

combined inputs included. Total RTS for all inputs is shown to be well above 1 for the lower quantiles 

and approximately equal to 1 for the highest estimated quantile. Human inputs contribute 

approximately 0.5 of the total RTS score whilst Rainfall and Environmental Health inputs contribute 

the remainder with the latter accounting for the vast majority of environmental contributions. The 

10th 20th 30th 40th 50th 60th 70th 80th 90th

Spline segments 10 1 6 9 1 9 1 8 4

Degree of spline segments 2 15 15 14 6 1 1 1 2

Spline segments 1 1 2 1 1 1 1 1 2

Degree of spline segments 4 2 1 2 1 1 1 1 1

Spline segments 1 2 1 1 1 1 1 1 1

Degree of spline segments 1 1 1 7 1 1 2 2 1

Spline segments 2 1 1 1 1 6 1 1 1

Degree of spline segments 1 2 1 1 9 5 9 1 1

Spline segments 3 1 1 1 1 1 1 1 1

Degree of spline segments 1 1 1 1 1 1 1 1 1

Spline segments 1 1 4 1 1 1 1 1 1

Degree of spline segments 1 1 1 2 1 1 1 2 1

Land Type Bandwidth 0.4237 0.9394 0.3783 0.1859 1.0000 0.8633 1.0000 0.2851 0.3670

Add. Add. Add. Add. Add. Add. Add. Add. Add.

R squared 0.09 0.27 0.46 0.51 0.55 0.55 0.48 0.42 0.37

Environmental 

Health ('E')

Basis type (chosen using Cross-Validation)

Quantile

Land Quality ('LQ')

Health Exp. ('H')

Supp. And Fodd. 

Exp ('S')

Labour FTEs/100 

('L')

Rainfall % of 

average ('R')



relatively high contribution of Environmental Health in particular is interesting as this variable may be 

considered as coming under management influence in the medium to long run as a result of stocking 

rate decisions in addition to exogenous (e.g. rainfall) realisations. Indeed, our construction of the 

Environmental Health input involved simply the use of a 3 year moving average of remotely sensed 

average ground cover values for each property with annual ground cover being substantially an 

indicator of pasture availability within the early summer months of that year.  

Table 5: Returns To Scale for human and environmental inputs 

 

Table 5 and Figure 1 together show that the RTS for the Environmental Health input alone is above 1 

for the lower quantiles and below one for the higher quantiles. Additionally, it is interesting to note that 

the total RTS for all inputs is approximately equal to 1 for the most efficient production quantiles (see 

Figure 1) indicating that efficient productions involve selection of human inputs which, combined with 

environmental inputs, achieve an approximately optimal scale of production. In contrast, inefficient 

productions involve the usage of Environmental Health at such a level that for every percentage 

increase in provision of this input alone output would increase by more than 1%. Thus, inefficient 

producers may have a strong incentive to increase the provision of Environmental Health on their 

properties if the marginal cost of such provision is low enough. Fortunately, if we assume producers 

are rational and knowledgeable over their (inefficient) production function we can approximate the 

marginal cost (MC) of an input by its MVP. We consider this in the following. 

 

Returns to Scale for: 10th 20th 30th 40th 50th 60th 70th 80th 90th

Variable inputs only 0.84 0.93 0.76 0.63 0.56 0.83 0.52 0.62 0.42

Envm Health 1.43 1.13 1.45 0.84 0.66 0.76 0.67 0.56 0.37

Rainfall 0.22 0.17 0.11 0.13 0.21 0.22 0.14 0.18 0.03

TOTAL 2.48 2.23 2.32 1.61 1.43 1.81 1.33 1.36 0.82

Quantile regression estimates



Figure 1: Output Elasticity of Environmental health for quantile (grey lines) and OLS models 

 

The MVP of an input is calculated as the partial derivative of the regression function with respect to 

that input and multiplied by the price of a unit of output. In the non-parametric approach we are not 

required to define a functional form beforehand and so can represent this as simply a function of the 

conditional distribution:  

%&" = " × %" = " ��
�� = " ���|�	

��  

Assuming that our sample were price takers (we do), the price of output can be considered fixed 

across the sample meaning the MVP is simply proportional to MP as shown above. As a result we 

can consider the MP as being reflective of the MVP across efficiency quantile. To save making further 

assumptions on the price level being received by these growers and because we were more 

interested in the trend in MVP across quantiles then its level we focus in the remainder on the MP.  

In an earlier section we indicated that the MVP of Environmental Health was reflective of its shadow 

price if we assumed that producers were rational profit maximisers and, under the presence of 

inefficiency, also rationally aware of their own level of inefficiency. This essentially implies that, in 

order to consider the calculated MVP of Environmental Health as a shadow price, we must assume 

that inefficient enterprises know their technology (e.g. the respective quantile model they are located 

within). Under these, restrictive, assumptions we have the result that: 

%I = %&" = " × %" = " ���|�	
��  

These assumptions allow us to approximate the implied cost of supplying marginal additions to 

Environmental Health for producers located in different efficiency quantiles as some constant (a fixed 

and exogenous output price) multiplied by the derivative of output with respect to Environmental 

Health across estimated conditional quantile regressions. Given the high RTS for Environmental 

Health shown from the analysis of the log-log formulation for inefficient producers, in order for 
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inefficient producers to not be least cost suppliers of Environmental Health we would need to observe 

a relatively higher MP for this variable amongst the lower quantile models relative to the higher 

quantile models. In contrast, no such pattern (i.e. either a similar MP or a decreasing MP across 

quantiles) would provide evidence that low efficiency producers should not require incentives to 

increase provision of Environmental Health but rather can obtain increases in profits in the long run 

via an increase in the level of the Environmental Health variable – i.e. an extension rather than direct 

incentive approach would likely be most socially efficient and is based on a presumption of bounded 

rationality in these producers optimisation of their production systems if we assume that they are profit 

maximisers. Table 6 and Figure 2 together provide a numerical and graphical summary, respectively, 

of the patterns of the MP for the Environmental Health input across estimated conditional quantile 

models.  

Table 6: MP of Environmental Health for sample observations across estimated quantile 

regression models 

 

The patterns shown in Table 6 and Figure 7
1
 are strongly supportive of a stable MP, and thus MVP 

and MC, for the Environmental Health input indicating that there is no pattern of increase or decrease 

in the MP for this variable across efficiency quantiles. Thus, whilst the elasticity of output for 

Environmental Health is very high (above 1) for low efficiency producers, their MC of supply appears 

to be the same as that for high efficiency producers. These results indicate that low efficiency 

producers are indeed least-cost suppliers of Environmental Health but that they are likely least cost to 

the extent that they actually have a pure private incentive to increase provision of Environmental 

Health on their properties. Such an outcome would appear to be irrational. However it is widely 

thought that the management of rangelands beef enterprises involves a complex integration of a 

range of marginal effects of different human inputs and management approaches in addition to a 

great deal of uncertainty over the contributions of environmental factors to production. In addition, the 

marginal contributions of stock to declines in environmental health on the rangelands is a highly 

uncertain depending on a range of other factors such as rainfall and temperature. Thus, this outcome 

                                                      
1
 The series was calculated as the median of the vector of observation-specific partial derivatives for output (levels model) with 

respect to Environmental Health for each quantile model estimated. Spaces are for models which failed to achieve 

convergence. Lower and Upper bounds are the medians of 95% confidence bounds for the observation-specific derivative 

value obtained from the crs algorithm (Racine and Zhenghua 2014). 

Minimum 0.14 0.12 0.03 0.18 0.12 0.11 -0.08 -1.22 0.13

25th Percentile 0.14 0.12 0.10 0.18 0.12 0.11 0.00 -0.20 0.14

Median 0.14 0.13 0.20 0.18 0.13 0.14 0.19 0.28 0.14

Mean 0.14 0.14 0.29 0.18 0.13 0.13 0.30 0.25 0.16

75th Percentile 0.14 0.15 0.49 0.18 0.14 0.15 0.52 0.71 0.17

Maximum 0.14 0.21 0.62 0.19 0.16 0.15 1.68 1.06 0.21

80th 90th

Quantile regression estimates

10th 20th 30th 40th

50th 

(Med.) 60th 70th



could be explained as a result of relatively higher bounds on the rationality and ability of producers to 

optimise their systems for lower efficiency observations relative to higher efficiency observations. In 

this case an optimal social response may be to increase access to education on better management 

and the medium term implications of alternative stocking rates with respect to the profitability of 

grazing enterprises.  

Figure 7: Marginal product of Environmental health for estimated conditional quantile models 

 

Conclusions 

Economic evaluation and mechanism design for improved environmental protection requires some 

assessment of the impacts of changed environmental conditions on production outputs. Although the 

importance of environmental factors to ecosystem services and other inputs to agriculture are widely 

recognised, most value estimates of the benefits provided tend to be too coarse to be useful. In this 

paper we have presented a well-known method of the valuation of environmental assets from the 

production perspective (i.e. an input demand perspective) but using the relatively new statistical 

method of non-parametric conditional quantile regression. Our approach allowed a detailed 

examination of the patterns of value across the distribution of the efficiency of production for our case 

study – beef production in the north eastern rangelands of Australia.  

Our results indicated that the environmental input we considered was treated as a management input 

by the most efficient enterprises with returns to scale inclusive of this input being close to 1 for 

efficient observations. In contrast, less efficient enterprises had strongly increasing returns to scale 

when these were considered inclusive of the environmental input. This indicated that lower efficiency 

enterprises were possibly lacking knowledge over the contributions of environmental inputs and, in 

combination with results indicating no difference in the marginal product of environmental 
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contributions, indicated that they probably have a pure private incentive to increase provision of 

environmental health on their properties.  

It was shown that environmental inputs generally, composed of our environmental health variable and 

a rainfall variable, comprised the vast majority of productivity in our sample (between 76% to 66% of 

total returns to scale) showing that this form of production is heavily reliant on contributions of healthy 

environmental factors to maintain productivity. These results suggest that substantial increases in 

rangelands productivity in northern Australia, and other regions, may be achieved by a focus on the 

efficient spatial and temporal use of environmental assets rather than a focus on improving the 

efficiency of human input.  

It was shown that, considering environmental health as an input alone, the most inefficient producers 

could achieve increases in output of greater than 1% in output by increasing the provision of 

environmental health by only 1% - i.e. the least efficient producers were expected to have increasing 

returns to scale for environmental health alone. Given the high returns to improvements in this 

variable for inefficient producers and efficient producers alike then, we may say that producers are in 

general better off from improvements in environmental health on their enterprises and may be limited 

in obtaining these improvements from a range of factors including, but not limited to: equity 

constraints, bounded rationality (the joint effects of complexity in optimisation and cognitive limitations) 

and a lack of information. The possibility that producers have high discount rates which may manifest 

as low equilibrium levels for renewable assets such as environmental health and pastures is generally 

ruled out as returns on asset in the industry are extremely low – in the order of 1-4% for the best 

(most efficient) producers.  

The results presented in this paper indicate that the use of the quantile regression methodology 

potentially extends the utility of economic analysis into distributional aspects – a matter of significant 

concern in policy formulation that is relatively poorly considered using the standard tools of 

econometric analysis which focus on the analysis of the conditional mean (average) response. The 

results also indicate that valuation of environmental assets can usefully be undertaken from a 

production perspective and indeed should be considered from this viewpoint in order to obtain 

information over the costs of supply of environmental improvements.  
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