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Analogy Making and the Structure of Implied Volatility Skew

The existence of the implied volatility skew is perhaps one of the most intriguing anomalies in
option markets. According to the Black-Scholes model (Black and Scholes (1973)), volatility inferred
from prices (implied volatility) should not vary across strikes. In practice, a sharp skew in which
implied volatilities fall monotonically as the ratio of strike to spot increases is observed in index

options. Furthermore, the skew tends to flatten as expiry increases.

The Black-Scholes model assumes that an option can be perfectly replicated by a portfolio
consisting of continuously adjusted proportions of the underlying stock and a risk-free asset. The
cost of setting up this portfolio should then equal the price of the option. Most attempts to explain
the skew have naturally relaxed this assumption of perfect replication. Such relaxations have taken
two broad directions: 1) Deterministic volatility models 2) Stochastic volatility models without jumps
and stochastic volatility models with jumps. In the first category are the constant elasticity of
variance model examined in Emanuel and Macbeth (1982), the implied binomial tree models of
Dupire (1994), Derman and Kani (1994), and Rubinstein (1994). Dumas, Fleming and Whaley
(1998) provide evidence that deterministic volatility models do not adequately explain the structure
of implied volatility as they lead to parameters which are highly unstable through time. The second
broad category is examined in papers by Chernov et al (2003), Anderson, Benzoni, and Lund (2002),
Bakshi, Cao, and Chen (1997), Heston (1993), Stein and Stein (1991), and Hull and White (1987)
among others. Bates (2000) presents empirical evidence regarding stochastic volatility models with
and without jumps and finds that inclusion of jumps in a stochastic volatility model does improve
the model, however, in order to adequately explain the skew, unreasonable parameter values are
required. Generally, stochastic volatility models require an unreasonably strong and fluctuating
correlation between the stock price and the volatility processes in order to fit the skew, whereas,
jump diffusion models need unreasonably frequent and large asymmetric jumps. Empirical findings
suggest that models with both stochastic volatility and jumps in returns fail to fully capture the
empirical features of index returns and option prices (see Bakshi, Cao, and Chen (1997), Bates

(2000), and Pan (2002)).

Highly relevant to the option pricing literature is the intriguing finding in Jackwerth (2000)

that risk aversion functions recovered from option prices are irreconcilable with a representative



investor. Perhaps, another line of inquiry is to acknowledge the importance of heterogeneous
expectations and the impact of resulting demand pressures on option prices. Bollen and Whaley
(2004) find that changes in implied volatility are directly related to net buying pressures from public
order flows. According to this view, different demands and supplies of different option series affect
the skew. Lakonishok, Lee, Pearson, and Poteshman (2007) examine option market activity of
several classes of investors in detail and highlight the salient features of option market activity. They
find that a large percentage of calls are written as a part of covered call strategy. Covered call writing
is a strategy in which a long position in the underlying stock is combined with a call writing position.
This strategy is typically employed when one is expecting slow growth in the price of the underlying
stock. It seems that call suppliers expect slow growth whereas call buyers are bullish regarding the
prospects of the underlying stock. In other words, call buyers expect higher returns from the
underlying stock than call writers, but call writers are not pessimistic either. They expect

slow/moderate growth and not a sharp downturn in the price of the undetlying stock.

Should expectations regarding the underlying stock matter for option pricing? Or
equivalently, should expectations regarding the underlying stock’s return influence the return one
expects from a call option? In the Black-Scholes world where perfect replication is assumed,
expectations do not matter as they do not affect the construction of the replicating portfolio or its
dynamics. However, empirical evidence suggests that they do matter. Duan and Wei (2009) find that
a variable related to the expected return on the underlying stock, its systematic risk proportion, is

priced in individual equity options.

There is also strong experimental and other field evidence showing that the expected return
on the underlying stock matters for option pricing. Rockenbach (2004), Siddiqi (2012), and Siddiqi
(2011) find that participants in laboratory experiments seem to value a call option by equating its
expected return to the expected return available from the underlying stock. From this point
onwards, we refer to this as the analogy model. In the field, many experienced option traders and
analysts consider a call option to be a surrogate for the undetlying stock because of the similarity in

their respective payoffs.? It seems natural to expect that such analogy making/similarity argument

% As illustrative examples, see the following:
http://ezinearticles.com/?Call-Options-As-an-Alternative-to-Buying-the-Underlying-Security&id=4274772,
http://www.investingblog.org/archives/194/deep-in-the-money-options/,
http://www.triplescreenmethod.com/TradersCorner/TC052705.asp,
http://daytrading.about.com/od/stocks/a/Optionsinvest.htm
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influences option valuation, especially when it comes from experienced market professionals.
Furthermore, as a call option is defined over some underlying stock, the return on the underlying
stock forms a natural benchmark for forming expectations about the option. This article puts
forward an analogy based option pricing model and shows that it provides a new explanation for the

implied volatility skew puzzle.

In a laboratory experiment, it is possible to objectively fix the expected return available on
the underlying stock and make it common knowledge, however, in the real world; people are likely
to have different subjective assessments of the expected return on the underlying stock. An analogy
maker expects a return from a call option which is equal to his subjective assessment of the expected
return available on the underlying stock. The marginal investor in a call option is perhaps more
optimistic than the marginal investor in the corresponding underlying stock. To see this, consider
the following: In the market for the underlying stock, both the optimistic and pessimistic beliefs
influence the belief of the marginal investor. Optimistic investors influence through demand
pressure, whereas the pessimistic investors constitute the suppliers who influence through selling
and short-selling. However, highly optimistic investors should favor a call option over its underlying
stock due to the leverage embedded in the option. Furthermore, in the market for a call option,
covered call writers are typical suppliers (see Lakonishok et al (2007)). Covered call writers are
neutral to moderately bullish (and not pessimistic) on the underlying stock. Hence, due to the
presence of relatively more optimistic buyers and sellers, the marginal investor in a call option is
likely to be more optimistic about the underlying stock than the marginal investor in the underlying
stock itself. It follows that, with analogy making, the expected return reflected in a call option is
bigger than the expected return on the underlying stock. Also, as more optimistic buyers are likely to

self-select into higher strike calls, the expected return should rise with strike.

If analogy makers influence call prices, shouldn’t a rational arbitrageur make money at their
expense by taking an appropriate position in the call option and the corresponding replicating
portfolio in accordance with the Black Scholes model? Such arbitraging is difficult if not impossible
in the presence of transaction costs. In continuous time, no matter how small the transaction costs
are, the total transaction cost of successful replication grows without bound rendering the Black-
Scholes “no-arbitrage” argument toothless. It is well known that there is no non-trivial portfolio that
replicates a call option in the presence of transaction costs in continuous time. See Soner, Shreve,

and Cvitanic (1995). In discrete time, transaction costs are bounded, however, a no-arbitrage interval
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is created. If analogy price lies within the interval, analogy makers cannot be arbitraged away. We
show the conditions under which this happens in a binomial setting. Of course, if the underlying
stock dynamics exhibit stochastic volatility or jump diffusion then the Black-Scholes “no-arbitrage”
argument does not hold irrespective of transaction costs and/or other limits to arbitrage. Hence,

analogy makers cannot be arbitraged away in that case.

It is important to realize that analogy making is complementary to the approaches developed
earlier such as stochastic volatility and jump diffusion models. Such models specify certain dynamics
for the underlying stock. The idea of analogy making is not wedded to a particular set of
assumptions regarding the price and volatility processes of the underlying stock. It can be applied to
a wide variety of settings. In this article, first we use the setting of a geometric Brownian motion.
Then, we integrate analogy making with jump diffusion and stochastic volatility approaches.
Combining analogy making and stochastic volatility leads to the skew even when there is zero
correlation between the stock price and volatility processes, and combining analogy making with

jump diffusion generates the skew without the need for asymmetric jumps.

How important is analogy making to human thinking process? It has been argued that when
faced with a new situation, people instinctively search their memories for something similar they
have seen before, and mentally co-categorize the new situation with the similar situations
encountered earlier. This way of thinking, termed analogy making, is considered the core of
cognition and the fuel and fire of thinking by prominent cognitive scientists and psychologists (see
Hofstadter and Sander (2013)). Hofstadter and Sander (2013) write, “/.../ at every moment of our lives,
onr concepts are selectively triggered by analogies that our brain makes without letup, in an effort to make sense of the
new and unknown in terms of the old and known.”

(Hofstadter and Sander (2013), Prologue pagel ).

The analogy making argument has been made in the economic literature previously.
Prominent examples that recognize the importance of analogy making in various contexts include
the coarse thinking model of Mullainathan et al (2008), the case based decision theory of Gilboa and
Schmeidler (2001), and the analogy based expectations equilibrium of Jehiel (2005). This article adds
another dimension to this literature by exploring the implications of analogy making for option
valuation. Clearly, a call option is similar to the stock over which it is defined, and, as pointed out
earlier, this similarity is perceived and highlighted by market professionals with decades of

experience who actively consider a call option to be a surrogate for the underlying stock. As



discussed earlier, subjects in laboratory experiments also seem to value call options in analogy with
their underlying stocks. Given the importance of analogy making to human thinking in general, it
seems natural to consider the possibility that a call option is valued in analogy with ‘something
similar’, that is: the underlying stock. This article carefully explores the implications of such analogy
making, and shows that analogy making provides a new explanation for the implied volatility skew
puzzle.

This article is organized as follows. Section 2 builds intuition by providing a numerical
illustration of option pricing with analogy making. Section 3 develops the idea in the context of a
one period binomial model. Section 4 puts forward the analogy based option pricing formulas in
continuous time. Section 5 shows that if analogy making determines option prices, and the Black-
Scholes model is used to back-out implied volatility, the skew arises, which flattens as time to expiry
increases. Section 6 puts forward an analogy based option pricing model when the underlying stock
returns exhibit stochastic volatility. It integrates analogy making with the stochastic volatility model
developed in Hull and White (1987). Section 7 integrates analogy making with the jump diffusion
approach of Merton (1976). Section 8 concludes.

2. Analogy Making: A Numerical Illustration

Consider an investor in a two state-two asset complete market world with one time period marked
by two points in time: 0 and 1. The two assets are a stock (S) and a risk-free zero coupon bond (B).
The stock has a price of $140 today (time 0). Tomorrow (time 1), the stock price could either go up
to $200 (the red state) or go down to $94 (the blue state). Each state has a 50% chance of occurring,.
There is a riskless bond (zero coupon) that has a price of $100 today. Its price stays at $100 at time 1
implying a risk free rate of zero. Suppose a new asset “A” is introduced to him. The asset “A” pays
$100 in cash in the red state and nothing in the blue state. How much should the investor be willing
to pay for this new asset?

Finance theory provides an answer by appealing to the principle of no-arbitrage: assets with
identical state-wise payoffs must have the same price or equivalently assets with identical state-wise payoffs must have
the same state-wise returns. Consider a portfolio consisting of a long position in 0.943396 of S and a
short position in 0.886792 of B. In the red state, 0.943396 of S pays $188.6792 and one has to pay
$88.6792 due to shorting of 0.886792 of B earlier resulting in a net payoff of $100. In the blue state,



0.943396 of S pays $88.6792 and one has to pay $88.6792 on account of shorting 0.886792 of B
previously resulting in a net payoff of 0. That is, payoffs from 0.943396S-0.886792B are identical to
payoffs from “A”. As the cost of 0.943396S-0.886792B is $43.39623, it follows that the no-arbitrage
price for “A” is $43.39623.

When simple tasks such as the one described above are presented to participants in a series
of experiments, instead of the no-arbitrage argument, they seem to rely on analogy-making to figure
out their willingness to pay. See Rockenbach (2004), Siddiqi (2011), and Siddigi (2012). Instead of
trying to construct a replicating portfolio which is identical to asset “A”, people find an actual asset
similar to “A” and price “A” in analogy with that asset. They rely on the principle of analogy: assezs
with similar state-wise payoffs should offer the same state-wise returns on average, or equivalently, assets with
similar state-wise payoffs should have the same expected return.

Asset “A” is similar to asset S. It pays more when asset S pays more and it pays less when

asset S pays less. In fact, asset “A” is equivalent to a call option on “S” with a strike price of $100.

0.5X200+0.5x94

T30 ) According to the principle of analogy, A’s price

Expected return from S is 1.05 (

should be such that it offers the same expected return as S. That is, analogy makers value “A” at
$47.61905.

In the above example, there is a gap of $4.22281 between the no-arbitrage price and the
analogy price. Rational investors should short “A” and buy “0.943396S-0.886792B”. However,
transaction costs are ignored in the example so far.

Let’s see what happens when a symmetric proportional transaction cost of only 1% of the
price is applied when assets are traded. That is, both a buyer and a seller pay a transaction cost of 1%
of the price of the asset traded. Unsurprisingly, the composition of the replicating portfolio changes.
To successfully replicate a long call option that pays $100 in cash in the red state and 0 in the blue
state with transaction cost of 1%, one needs to buy 0.952925 of S and short 0.878012 of B. In the
red state, 0.9529258 yields $188.6792 net of transaction cost (200 X 0.952925 X (1 — 0.01)), and
one has to pay $88.6792 to cover the short position in B created earlier (0.878012 X 100 x

a1+ 0.01)). Hence, the net cash generated by liquidating the replicating portfolio at time 1 is $100
in the red state. In the blue state, the net cash from liquidating the replicating portfolio is 0. Hence,
with a symmetric and proportional transaction cost of 1%, the replicating portfolio is “0.952925S-

0.878012B”. The cost of setting up this replicating portfolio inclusive of transaction costs at time 0

is $47.82044, which is larger than the price the analogy makers are willing to pay: $47.61905. Hence,
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arbitrage profits cannot be made at the expense of analogy makers by writing a call and buying the
replicating portfolio. The given scheme cannot generate arbitrage profits unless the call price is
greater than $47.82044

Suppose one in interested in doing the opposite. That is, buy a call and short the replicating
portfolio to fund the purchase. Continuing with the same example, the relevant replicating portfolio
(that generates an outflow of $100 in the red state and 0 in the blue state) is “-0.934056S
+0.89575B”. The replicating portfolio generates $41.1928 at time 0, which leaves $38.98937 after
time 0 transaction costs in setting up the portfolio are paid. Hence, in order for the scheme to make
money, one needs to buy a call option at a price less than $38.98937.

Effectively, transaction costs create a no-arbitrage interval (38.98937,47.82044). As the
analogy price lies within this interval, arbitrage profits cannot be made at the expense of analogy

makers in the example considered.

2.1 Analogy Making: A Two Petiod Binomial Example with Delta Hedging

Consider a two period binomial model. The parameters are: Up factor=2, Down factor=0.5, Current
stock price=$100, Risk free interest rate per binomial period=0, Strike price=$30, and the
probability of up movement=0.5. It follows that the expected gross return from the stock per

binomial period is 1.25 (0.5 X 2 + 0.5 x 0.5).

The call option can be priced both via analogy as well as via no-arbitrage argument. The no-

arbitrage price is denoted by Cr whereas the analogy price is denoted by C4. Define xp = AALSR and

AC . . .
X4 = A—; where the differences are taken between the possible next period values that can be

reached from a given node.

Figure 1 shows the binomial tree and the corresponding no-arbitrage and analogy prices.
Two things should be noted. Firstly, in the binomial case considered, before expiry, the analogy
price is always larger than the no-arbitrage price. Secondly, the delta hedging portfolios in the two
cases Sxp — Cr and Sx, — C4 grow at different rates. The portfolio Sx, — C4 grows at the rate
equal to the expected return on stock per binomial period (which is 1.25 in this case). In the analogy
case, the value of delta-hedging portfolio when the stock price is 100 is 17.06667 (100 X
0.98667 — 81.6). In the next period, if the stock price goes up to 200, the value becomes 21.33333

8



(200 x 0.98667 — 176). If the stock price goes down to 50, the value also ends up being equal to
21.33333 (50 X 0.98667 — 28). That is, either way, the rate of growth is the same and is equal to
1.252s17.06667 X 1.25 = 21.33333. Similatly, if the delta hedging portfolio is constructed at any
other node, the next period return remains equal to the expected return from stock. It is easy to
verify that the portfolio Sxg — Cg grows at a different rate which is equal to the risk free rate per
binomial period (which is 0 in this case).

The fact that the delta hedging portfolio under analogy making grows at a rate which is equal to the
perceived exipected return on the underlying stock is used to derive the analogy based option pricing formulas
in continuous time in section 4. In the next section, the corresponding discrete time results are
presented. Note, as discussed eatrlier, the marginal investor in a call option is likely to be more
optimistic than the marginal investor in the underlying stock. In the context of the example
presented, this would mean that they perceive different binomial trees. Specifically, they would
perceive different up and down factors as up and down factors are a function of distribution of

returns.
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3. Analogy Making: The Binomial Case

Consider a two state world. The equally likely states are Red, and Blue. There is a stock with prices
X1, and X, corresponding to states Red, and Blue respectively, where X7 > X;. The state realization

takes place at time T. The current time is time £. We denote the risk free discount rate by 7. That is,
. . . . . . B
there is a riskless zero coupon bond that has a price of B in both states with a price of o today.

For simplicity and without loss of generality, we assume that 7 = 0 and T — t = 1. The current

price of the stock is S such that X; > S > X, . We further assume that § < % That is, the stock

price reflects a positive risk premium. In other words, S = f - XlZXZ where f = 1+:+ 6.3 § is the risk

premium reflected in the price of the stock.” As we have assumed = 0, it follows that f = %.
Suppose a new asset which is a European call option on the stock is introduced. By

definition, the payoffs from the call option in the two states are:

C, = max{(X; — K),0},C, = max{(X, — K),0} 3.1

Where K is the striking price, and Cy, and C,, ate the payoffs from the call option cotresponding to

Red, and Blue states respectively.
How much is an analogy maker willing to pay for this call option?

There are two cases in which the call option has a non-trivial price: 1) X; > X, > K and 2) X; >

K> X,

The analogy maker infers the price of the call option, P, , by equating the expected return from the

call to the return he expects from holding the underlying stock:

{¢, -P}+{C;— P} {X;—-S}+{X,—-S}
2 X P. B 2%S

(3.2)

In general, a stock price can be expressed as a product of a discount factor and the expected payoff if it follows a
binomial process in discrete time (as assumed here), or if it follows a geometric Brownian motion in continuous
time.

*1f the marginal call investor is more optimistic than the marginal stock investor, they would perceive different
values of X;and X, so that their assessment of § is different accordingly.
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For case 1 (X1 > X, > K), one can write:

C; + G,
c = X
X+ X,
2K
=>P, =<1— )S 3.3

Substituting § = f - =2 in (3.3):

P.=S—Kf (3.4)

The above equation is the one period analogy option pricing formula for the binomial case when call

expires in-the-money in both states.

The corresponding no-arbitrage price B, is (from the principle of no-arbitrage):

P.=S—-K (3.5)

K
P=S—t___.f (3.6)

And, the corresponding no-arbitrage price is:

Xl_K
P = S—X 3.7
= x5 %) (37)

Proposition 1 The analogy price is latger than the corresponding no-arbitrage price if a
positive risk premium is reflected in the price of the undertlying stock and there are no

transaction costs.
Proof.

See Appendix A g
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Suppose there are transaction costs, denoted by “c”’, which are assumed to be symmetric and
proportional. That is, if the stock price is S, a buyer pays S(1 + ¢) and a seller receives S(1 — ¢).
Similar rule applies when the bond or the option is traded. That is, if the bond price is B, a buyer
pays B(1 4+ ¢) and a seller receives B(1 — ¢). We further assume that the call option is cash settled.

That is, there is no physical delivery.

Introduction of the transaction cost does not change the analogy price as the expected
returns on call and on the underlying stock are proportionally reduced. However, the cost of
replicating a call option changes. The total cost of successfully replicating a long position in the call
option by buying the appropriate replicating portfolio and then liquidating it in the next period to

get cash (as call is cash settled) is:

(Xl_K){ a X2 }+ { S L% } iFX,>K>X (3.8)
X, —x,)li=c 1+d  U=ctisag V% 2 '
{S K}+{S+K}'X>X>K (3.9)
1-¢c 1+4c¢ ‘U=¢ 1+c¢ if X z '

The corresponding inflow from shorting the appropriate replicating portfolio to fund the

purchase of a call option is:

(Xl_K){ a Xz} { S L% } iFX,>K>X (3.10)
X, —x,)i+c 1-d ‘lUxcti=g Y% 2 '
{S K} {S+K}'X>X>K (3.11)
1+4¢c 1-c¢ Cl+c 1-c¢ if X z '

Proposition 2 shows that if transaction costs exist and the risk premium on the underlying stock is
within a certain range, the analogy price lies within the no-arbitrage interval. Hence, riskless profit

cannot be earned at the expense of analogy makers.
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Proposition 2 In the presence of symmettic and proportional transaction costs, analogy
makers cannot be arbitraged out of the market if the tisk premium on the undetlying stock
satisfies:

1-0o1+c¢ .

(1-0)? —25c(1+0)

0<6<

K(X;-X3)(1-c?)
2

-1
X2 (X1 — K)(X1 + X2)(1 — €)2 = S{(1 + ©)2(X} — X3) — X1 (X1 — X5)(1 — ¢2)}
if X, >K>X, (3.13)
Proof.

See Appendix B

Intuitively, when transaction costs are introduced, there is no unique no-arbitrage price. Instead, a
whole interval of no-arbitrage prices comes into existence. Proposition 2 shows that for reasonable
parameter values, the analogy price lies within this no-arbitrage interval in a one period binomial
model. As more binomial periods are added, the transaction costs increase further due to the need
for additional re-balancing of the replicating portfolio. In the continuous limit, the total transaction
cost is unbounded. Reasonably, arbitrageurs cannot make money at the expense of analogy makers

in the presence of transaction costs ensuring that the analogy makers survive in the market.

It is interesting to consider the rate at which the delta-hedged portfolio grows under analogy

making. Proposition 3 shows that under analogy making, the delta-hedged portfolio grows at a rate

]lc — 1 =r + 6. This is in contrast with the Black Scholes Merton/Binomial Model in which the

growth rate is equal to the risk free rate, 7.
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Proposition 3 Ifanalogy making determines the price of the call option, then the
corresponding delta-hedged portfolio grows with time at the rate of % - 1.

Proof.

See Appendix C

Corollary 3.1 If there are multiple binomial petiods then the growth rate of the delta-hedged

portfolio per binomial period is % - 1.

In continuous time, the difference in the growth rates of the delta-hedged portfolio under analogy
making and under the Black Scholes/Binomial model leads to an option pricing formula under
analogy making which is different from the Black Scholes formula. The continuous time formula is

presented in the next section.

4. Analogy Making: The Continuous Case

We maintain all the assumptions of the Black-Scholes model except one. We allow for transaction
costs whereas the transaction costs are ignored in the Black-Scholes model. As is well known,
introduction of the transaction costs invalidates the replication argument underlying the Black
Scholes formula. See Soner, Shreve, and Cvitanic (1995). As seen in the last section, transaction
costs have no bearing on the analogy argument as they simply reduce the expected return on the call

and on the underlying stock proportionally.

Proposition 4 shows the analogy based partial differential equation under the assumption
that the underlying follows geometric Brownian motion, which is the limiting case of the discrete
binomial model. We also explicitly allow for the possibility that different marginal investors
determine prices of calls with different strikes. This is reasonable as call buying is a bullish strategy

with more optimistic buyers self-selecting into higher strikes.
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Proposition 4 If analogy makers set the price of a European call option, the analogy option
pricing partial differential Equation (PDE) is
0%C 0*5?

+ac( + 6)S +
as | TOKP T2y

+4 C—ac

Whete 6 is the tisk premium that a matginal investor in the call option with sttike ‘K

expects from the underlying stock.
Proof.

See Appendix D

Just like the Black Scholes PDE, the analogy option pricing PDE can be solved by transforming it
into the heat equation. Proposition 5 shows the resulting call option pricing formula for European

options without dividends under analogy making.

Proposition 5 The formula for the price of a European call is obtained by solving the

analogy based PDE. The formula is C = SN(dy) — Ke "+%ON(d,) whered, =

0.2
ln(S/K)+(r+sK+"z—z)(T—t) ln(%)+(r+61(—7>(T—t)
Zﬂd dz =
oVT—-t oVT—t

Proof.

See Appendix E.

Corollary 5.1 The formula for the analogy based ptice of a European put option is
Ke™T-9{1 — e=«T-ON(d,)} — SN(—d,)

Proof. Follows from put-call parity. B
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As proposition 5 shows, the analogy formula is exactly identical to the Black Scholes formula except
for the appearance of 8k, which is the risk premium that a marginal investor in the call option with
strike K expects from the underlying stock. Note, that full allowance is made for the possibility that
such expectations vary with strike price as more optimistic investors are likely to self-select into

higher strike calls.

5. The Implied Volatility Skew

If analogy making determines option prices (formulas in proposition 5), and the Black Scholes
model is used to infer implied volatility, the skew is observed. Table 1 shows two examples of this.
In the illustration titled “IV-Homogeneous Expectation”, the perceived risk premium on the
underlying stock does not vary with the striking price. The other parameters are: 7 = 2%, 0 =
20%,T —t = 30 days,and S = 100. In the illustration titled “IV-Heterogeneous Expectations”,
the risk premium on the underlying stock is varied by 40 basis points for every 0.01 change in
moneyness. That is, for a change of $5 in strike, the risk premium increases by 200 basis points. This
captures the possibility that more optimistic investors self-select into higher strike calls. Other

parameters are kept the same.

Table 1
The Implied Volatility Skew

IV-Heterogeneous Expectations IV-Homogeneous Expectations
K/S Risk Black Analogy | Implied Implied Risk Implied Implied Vol. —
Premium | Scholes Price Vol. Vol. — Premium | Vol. Historical Vol.

Historical
Vol.

0.9 10% 10.21 10.93 36.34% 16.34% 10% 36.34% 16.34%

0.95 12% 5.69 6.47 29.33% 9.33% 10% 27.87% 7.87%

1.0 14% 2.37 2.985 25.4% 5.4% 10% 23.78% 3.78%

1.1 18% 0.129 0.231 22.74% 2.74% 10% 21.46% 1.46%
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As Table 1 shows, the implied volatility skew can be observed with both homogeneous and
heterogeneous expectations. It also shows that the difference between implied volatility and realized
volatility is higher with heterogeneous expectations. It is easy to see that higher the dispersion in
beliefs, greater is the difference between implied and realized volatilities (as long as more optimistic
investors self-select into higher strike calls). This is consistent with empirical evidence that shows
that higher the dispersion in beliefs, greater is the difference between implied and realized volatilities

(see Beber A., Breedan F., and Buraschi A. (2010)). Figure 2 is a graphical illustration of Table 1.

Implied Volatility
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0.8 0.85 0.9 0.95 1 1.05 1.1 1.15

Figure 2

It is easy to illustrate that, with analogy making, the implied volatility skew gets flatter as time to
expiry increases. As an example, with underlying stock price=$100, volatility=20%, risk premium on
the underlying stock=5%, and the risk free rate of 0, the flattening with expiry can be seen in Figure
3. Hence, the implications of analogy making are consistent with key observed features of the

structure of implied volatility skew.
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As an illustration of the fact that implied volatility curve flattens with expiry, Figure 4 is a
reproduction of a chart from Fouque, Papanicolaou, Sircar, and Solna (2004) (Figure 2 from their
paper). It plots implied volatilities from options with at least two days and at most three months to

expiry. The flattening is clearly seen.
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Figure 4 Implied volatility as a function of moneyness on January 12, 2000, for options with at least two days and

at most three months to expiry.
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So far, we have only considered analogy making as the sole mechanism generating the skew.
Stochastic volatility and jump diffusion are other popular methods that give rise to the skew. Next,
we show that analogy making is complementary to stochastic volatility and jump diffusion models
by integrating analogy making with the models of Hull and White (1987) and Merton (1976)

respectively.

6. Analogy based Option Pricing with Stochastic Volatility

In this section, I put forward an analogy based option pricing model for the case when the
underlying stock price and its instantaneous variance are assumed to obey the uncorrelated

stochastic processes described in Hull and White (1987):

dS = uSdt +VVSdw
dV = @Vdt + eVdz

E[dwdz] =0

Where V = 02 (Instantaneous variance of stock’s returns), and ¢ and € are non-negative constants.
dw and dz are standard Guass-Weiner processes that are uncorrelated. Time subscripts in S and V
are suppressed for notational simplicity. If € = 0, then the instantaneous variance is a constant, and
we are back in the Black-Scholes world. Bigger the value of €, which can be interpreted as the

volatility of volatility parameter, larger is the departure from the constant volatility assumption of the

Black-Scholes model.

Hull and White (1987) is among the first option pricing models that allowed for stochastic
volatility. A variety of stochastic volatility models have been proposed including Stein and Stein
(1991), and Heston (1993) among others. Here, I use Hull and White (1987) assumptions to show
that the idea of analogy making is easily combined with stochastic volatility. Clearly, with stochastic
volatility it does not seem possible to form a hedge portfolio that eliminates risk completely. This is

because there is no asset which is perfectly correlated with V = 2.

If analogy making determines call prices and the underlying stock and its instantaneous

volatility follow the stochastic processes described above, then the European call option price (no
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dividends on the underlying stock for simplicity) must satisfy the partial differentiation equation

given below (see Appendix F for the derivation):

aC+( +5)SaC+ VaC+1 252626+1 szazc—( + 8)C 6.1
ot TV as P ar 297 92T e TV (6.1)

Whete § is the risk premium that a marginal investor in the call option expects to get from the

underlying stock.

By definition, under analogy making, the price of the call option is the expected terminal
value of the option discounted at the rate which the marginal investor in the option expects to get

from investing in the underlying stock. The price of the option is then:
C(Se02,0) = e [ C(Sy, 0, TIP(S1 ISt 0)dSy (6.2)

Where the conditional distribution of St as perceived by the marginal investor is such that

E[S;|S;, 02] = S,eT+DT=D 404 C(Sy, 02, T) is max(Sy — K, 0).

. = 1 (T . . .
By defining V = — ) . o2dt as the means variance over the life of the option, the

distribution of S can be expressed as:

p(SrlSe, 0f) = jf(STlstl V)g(VISt, Utz)dV (6.3)

Substituting (6.3) in (6.2) and re-arranging leads to:

C(Se,02,1) = f [e-“ﬂw-t) j C(SPf (SrISe, V)dSr| g(VIS,, 02)dV (6.4)

By using an argument that runs in parallel with the corresponding argument in Hull and White
(1987), it is straightforward to show that the term inside the square brackets is the analogy making
price of the call option with a constant variance V. Denoting this price by Callyy (V), the price of
the call option under analogy making when volatility is stochastic (as in Hull and White (1987)) is

given by (proof available from author):

C(S,, 02,t) = f Cally, (V) g(V|S,, 02) dV (6.5)
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Whete Callyy, (V) = SN(dM) — Ke~+OT-O N (gh)

ln(%)+(r+6+%2)(T—t) oM ln(%)+(r+6—%2)(T—t)

o\T—-t >z T o\T-t

M =

Equation (6.5) shows that the analogy based call option price with stochastic volatility is the analogy

based price with constant variance integrated with respect to the distribution of mean volatility.

6.1 Option Pricing Implications

Stochastic volatility models require a strong correlation between the volatility process and the stock
price process in order to generate the implied volatility skew. They can only generate a more
symmetric U-shaped smile with zero correlation as assumed here. In contrast, the analogy making
stochastic volatility model (equation 6.5) can generate a variety of skews and smiles even with zero
correlation. What type of implied volatility structure is ultimately seen depends on the parameters §
and €. It is easy to see thatif € = 0 and § > 0, only the implied volatility skew is generated, and if
6 = 0 and € > 0, only 2 more symmetric smile arises. For positive 8, there is a threshold value of &
below which skew arises and above which smile takes shape. Typically, for options on individual
stocks, the smile is seen, and for index options, the skew arises. The approach developed here
provides a potential explanation for this as € is likely to be lower for indices due to inbuilt

diversification (giving rise to skew) when compared with individual stocks.

7. Analogy based Option Pricing with Jump Diffusion

In this section, I integrate the idea of analogy making with the jump diffusion model of Merton
(1976). As before, the point is that the idea of analogy making is independent of the distributional
assumptions that are made regarding the behavior of the underlying stock. In the previous section,
analogy making is combined with the Hull and White stochastic volatility model to illustrate the

same point.
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Merton (1976) assumes that the stock price returns are a mixture of geometric Brownian motion and

Poisson-driven jumps:
dS = (u—yp)Sdt + aSdz + dq

Whete dz is a standard Guass-Weiner process, and q(t) is a Poisson process. dz and dq are
assumed to be independent. ¥ is the mean number of jump arrivals per unit time, § = E[Y — 1]
where Y — 1 is the random percentage change in the stock price if the Poisson event occurs, and E
is the expectations operator over the random vatiable Y. If y = 0 (hence, dq = 0) then the stock

price dynamics are identical to those assumed in the Black Scholes model. For simplicity, assume

that E[Y] = 1.
The stock price dynamics then become:

dS = uSdt + 0Sdz + dq

Clearly, with jump diffusion, the Black-Scholes no-arbitrage technique cannot be employed
as there is no portfolio of stock and options which is risk-free. However, with analogy making, the
price of the option can be determined as the return on the call option demanded by the marginal

investor is equal to the return he expects from the underlying stock.

If analogy making determines the price of the call option when the underlying stock price
dynamics are a mixture of a geometric Brownian motion and a Poisson process as described eatlier,
then the following partial differential equation must be satisfied (see Appendix G for the derivation):

1 9%C

ac ac
- -_— _ 2 2— _ =
5t + (r+6)S 7S + o S 352 + yE[C(SY,t) — C(S,t)] = (r+ 6)C (7.1)

If the distribution of Y is assumed to log-normal with a mean of 1 (assumed for simplicity)
and a variance of v? then by using an argument analogous to Merton (1976), the following analogy

based option pricing formula for the case of jump diffusion is easily derived (proof available from

author):
2 eV T-O(y(T — )’

Call = Z (]]-/;( ) Callyy (S, (T = ©),K,7,8,0) (7.2)
j=0 '
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Callyy (S, (T —t),K,71,68,0;) = SN(d}) — Ke~+OT=ON (g

ln(%)+<r+5+%j2>(T—t) ln(%)+<r+6—%j2>(T—t)

M = v =
ajT—t ajT—t

; 2
g = /0‘2 + v? (L) and v? = 1<
T-t Y

Wherte f is the fraction of volatility explained by jumps.

The formula in (7.2) is identical to the Merton jump diffusion formula except for one parametet, &,
which is the risk premium that a marginal investor in the call option expects from the underlying

stock.
7.1 Option Pricing Implications

Merton’s jump diffusion model with symmetric jumps (jump mean equal to zero) can only produce a
symmetric smile. Generating the implied volatility skew requires asymmetric jumps (jump mean
becomes negative) in the model. However, with analogy making, both the skew and the smile can be
generated even when jumps are symmetric. In particulat, for low values of §, a more symmetric

smile is generated, and for larger values of &, skew atises.

Even if we one assumes an asymmetric jump distribution around the current stock price,
Merton formula, when calibrated with historical data, generates a skew which is a lot less
pronounced (steep) than what is empirically observed. See Andersen and Andreasen (2002). The
skew generated by the analogy formula (with asymmetric jumps) is typically more pronounced
(steep) when compared with the skew without analogy making. Hence, analogy making potentially

adds value to a jump diffusion model.

If prices are determined in accordance with the formula given in (7.2) and the Black Scholes
formula is used to back-out implied volatility, the skew is observed. As an example, Figure 5 shows
the skew generated by assuming the following parameter values:

(S=100,r = 5%,y = 1peryear,§ = 5%,0 = 25%,f = 10%, T — t = 0.5 year).

24



In Figure 5, the x-axis values ate vatious values of strike/spot, whete spot is fixed at 100. Note, that
the implied volatility is always higher than the actual volatility of 25%. Empirically, implied volatility
is typically higher than the realized or historical volatility. As one example, Rennison and Pederson
(2012) use data ranging from 1994 to 2012 from eight different option markets to calculated implied
volatility from at-the-money options. They report that implied volatilities are typically higher than

realized volatilities.

Implied Volatility Skew with Risk Premium=5%
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Figure 5

In general, the skew generated by (7.2) turns into a smile as the risk premium on the underlying falls
(approaches the risk-free rate). Figure 6 shows one instance when the risk premium is 1% and

fraction of volatility due to jumps is 40% (all other parameters are kept the same).
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8. Conclusions

The observation that people tend to think by analogies and comparisons has important implications
for option pricing that are thus far ignored in the literature. Prominent cognitive scientists argue that
analogy making is the way human brain works (Hofstadter and Sander (2013)). There is strong
experimental evidence that a call option is valued in analogy with the underlying stock (see
Rockenbach (2004), Siddiqi (2012), and Siddiqi (2011)). A call option is commonly considered to be
a surrogate for the underlying stock by experienced market professionals, which lends further
supportt to the idea of analogy based option valuation. In this article, the notion that a call option is
valued in analogy with the underlying stock is explored and the resulting option pricing model is put
forward. The analogy option pricing model provides a new explanation for the implied volatility
skew puzzle. The analogy based explanation complements the existing explanation as it is possible to
integrate analogy making with stochastic volatility and jump diffusion approaches. The paper does
that and puts forward analogy based option valuation models with stochastic volatility and jumps

respectively. In contrast with other stochastic volatility and jump diffusion models in the literature,
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analogy making stochastic volatility model generates the skew even when there is zero correlation
between the stock price and volatility processes, and analogy based jump diffusion can produce the

skew even with symmetric jumps.
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Appendix A
Proof of Proposition 1

For case 1, when X; > X, > K, the results follow from a direct comparison of (3.4) and (3.5).

For case 2, when X; > K > X, the spectrum of possibilities is further divided into three sub-classes

and the results are proved for each sub-class one by one. The three sub-classes are: (i) K = %,
(i) Xp < K < 2222 and (i) X, > K > 2222,
Case 2 sub-class (i): K = @
Xy K Xi—
If we assume that § - ————=- f < (S X,), we arrive at a contradiction as follows:
Xi+X; 2 X1-X
X1+Xz +X2 X1+X2
Substitute S = f - and K = above and simplify, it follows that f > 1, which is a

contradiction as f < 1 if the risk premium is positive.
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Case 2 sub-class (ii): X; < K < Btk o, equivalently K = g where <g<l1

x1 Xz

X
If we assume that § * —— — 5" f<== (S X,), we arrive at a contradiction as follows:
2

ket +X2 and K =g 4% above and simplify, it follows that X; < X,, whichis a

Substitute S = f -

contradiction.

Case 2 sub-class (iii): X; > K > Xtk o equivalently K = g X2 where 1 < g < Xzf;{
1+X2
Similar logic as used in the case above leads to a contradiction: X; < Xj.

Hence, the analogy price must be larger than the no-arbitrage price if the risk premium is positive

and there are no transaction costs.

Appendix B
Proof of Proposition 2

If X; > X, > K then there is no-arbitrage if the following holds:

{S K} {S+K}<SK<{S K}+{S+K}
1+4c 1-c¢ Cl+c 1—c) ™ f= 1—-¢c 1+4+c Cl—c 1+c¢

Realizing that S — Kf > S — K > {E - %} - {: + —} if § = 0 and simplifying
s K
S—Kf < {: - E} +c {: + —} leads to inequality (3.12).

If X; > K > X, then there is no-arbitrage if the following holds:

X —K S X S X X K
CETRE R, T
Xl_XZ 1+C 1_C 1+C 1_C X1+X2 2

Xl_K S Xz S XZ
<l i
X1—X,/)1l—-¢c 1+c 1-c 1+4c

Realizing that

Xl_K S Xz S XZ
o Al fe e R e b
X1 —X,/U0+c¢c 1-c 1+¢c 1-c¢
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And simplifying § - T2 =5 f < (EE) - 2+ {2+ 22 eads 10 (311).

Appendix C
Proof of Proposition 3

Casel: X1 > X, >K

X1+Xz

Delta-hedged pottfolio is Sx — C. In this case,x = 1,5 = f and C =S — Kf

If the red state is realized, S — C changes from Kf to K. If the blue state is realized S — C also

. 1 . .
changes from Kf to K. Hence, the growth rate is equal to i 1 in either state.

Case2: X1 > K > X,

1 -K

X1+X;
— f - ——= and
X1—-X,’

Delta-hedged portfolio is Sx — C. In this case, x =

X1+X2 X1+Xz

Consider three sub-classes and prove the result for each: (i) K = , (1) X; < K <——, and

(i) X, > K > X1*%2 For the first sub-class the delta- hedged portfolio changes from the initial value

. . 1 o
of f 72 to 72 in both the red and the blue states. Hence, the growth rate is equal to i 1 in either

state. For the second and third sub-classes, the delta-hedged portfolio changes from

{2-9)X1X,—-gX2}  {(2-9)X1X,—gX3} .
2(X1-X3) 2(X1-X3)

in both red and blue states. Hence, the growth rate is equal to

1
;—1.

Appendix D
In the binomial analogy case, the delta-hedged portfolio S i—z — C grows at the rate 7 + Jg. Divide

[0,T — t] in n time petiods, and with n = oo, the binomial process converges to the geometric

Brownian motion. To deduce the analogy based PDE consider:
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V—SaC C
TS

:dV—dSaC dc
T aS

2c2 52
7’5 u)d1:+as‘;—gdw

Whete dS = uSdt + 0SdW and by Ito’s Lemma dC = (uSa—C + %4
as = ot 2 9s?

a?s? 9%¢c ac
> E) dt — O'Sgdw

>(r + 8)Vdt = (uSdt + oSdW) S — (usg—g +4

aC o?s? azc>
d

(T+5K)th=—<a+ > ﬁ

iy +6)(SBC C)— 6C+0252626
" T o%J\° 3 ~ " \at T2 as2

(4 80C = (r 4 5055 4 26, T570°C
TTOKE =TT ORI 56T 9 T T2 082

(P1)
The above is the analogy based PDE.

Appendix E

The analogy based PDE derived in Appendix D can be solved by converting to heat equation and

exploiting its solution.
Start by making the following transformation:

_Z o
=5

S
=In—==>5=Ke*
x=lnz e

S\ a?
CS. 0 =K- clx,1) = K-c(ln(E),7(T—t))

It follows,
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at ar ot at
OC_K dc ax_K dc 1
aS ox 0S ox
9%C _ 1 d%C 10C
082~ S?2 0Ox? S2 0x
. . . .. ~ 2(T+5K)
Plugging the above transformations into (A1) and writing ¥ = —7 »weget
dc _ 0d%c d

c

e L (F—1)——F

ot 0x? + @ )Ox re

With the boundary condition/initial condition:

C(S,T) = max{S — K,0} becomes c(x,0) = max{e* — 1,0}

To eliminate the last two terms in (B1), an additional transformation is made:

c(x,7) = e®™*Fry(x, 1)

It follows,
dc
— aeax+[3‘cu + eax+/3‘r

dx dx

0%c ou 0%u
— 2,ax+pT ax+pt ax+ft
=aqa‘e u+2ae +e

0x2 ox dx2

ac_

Ju
- lgeax+ﬁ‘cu + ea’x+B‘c -
ot

ot

Substituting the above transformations in (E1), we get:

ou 0%*u ou
- 2 5 s 5 e
=zt (@*+aF—1)—7F—Pu+ (2a+ (F-1) e

(F-1)
2

_ (7+1)?
.

Choose o = — and f = (E2) simplifies to the Heat equation:

(E1)

(E2)
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ou 0%u

= E3
ot 0x? (E3)
With the initial condition:
(H—l)x (f_—l)x
u(xg,0) = max{(et=®% — e=%0),0} = max {(e 270 —e\ 2 0),0}
The solution to the Heat equation in our case is:
) = —— [ e T ux, 00d
ulx,7) = e 4t u(xy, x
2\mt 0 0
Change variables: = % , which means: dz = %. Also, from the boundary condition, we know

. . . . —-X
thatu > 0 iff xg > 0. Hence, we can restrict the integration range to z > N

1 v z? r+1 v
u(x,7) = f e 2 - e (x”\/_)d f e 2 - e ) (e 2) dz
27‘[ . 27r

V2 V2t

=:H1 _Hz

Complete the squares for the exponent in Hy:

2
1 z? 1 V2t(F+1 F+1 74 1)?
(x+zv2r)—7=—§<z— (2 )> + x+r¥

=: Zy c

We can see that dy = dz and ¢ does not depend on z. Hence, we can write:

eC ° yZ
H, = f e 2d
1 o y

_X/m_ ‘1:/2(7:_'_1)
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A normally distributed random variable has the following cumulative distribution function:

Hence, H; = e“N(d;) where d; = x/\/% + /T/Z T+1)

(7-1)?

Similarly, H, = efN(dz) where d = x/m + T/Z (Ff—1)and f = 1

The analogy based European call pricing formula is obtained by recovering original variables:

Call = SN(d,) — Ke" T+ T-DN(d,)

2 s o2
In(S/K)+(r+6x+Z)(T-t In( = )+(r+8k—— )(T-t)
Where dq = n/H) i:Tft i and d, = (") (a TK_tZ)
Appendix F

Start by considering the value of a delta hedged portfolio:

T[t = StA - Ct'

Over a small time interval, dt:

dT[t S dStA - dCt

By Ito’s Lemma (time subscript is suppressed for simplicity):

dC——dt+ dS+ dV+ Vsz“dt+ szavcdt

Substituting (F2) in (F1) and re-arranging:

dn=[a-2]ds - [X+1vs? 2+ lv2e2 o ae - Lay

(F1)

(F2)

(F3)

Choosing A= Z—g, and realizing that, with analogy making, E [dr] = (r 4+ §)mdt, (F3) becomes:

__lec, 1 zazc 2,20°C ac
(r+ &)mde = — [+ 2vs2 ZE 4+ 1yze2 S ar — ov  ae

(F4)
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(F4) simplifies to:

ac ac 9C | 1 .2620%C 1. 20 _
at+(r+6)SaS+<pVaV+zaS o T3¢ 4 =(r+6)C (F5)
Appendix G

By following a very similar argument as in appendix F, and using Ito’s lemma for the continuous
part and an analogous Lemma for the discontinuous part, the following is obtained:

aC+( +5)sac+1 2622°C | E[C(SY,t) — C(S,8)] = (r + 8)C
ot TV as 292 a5z Y =\
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