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Jointly determined livestock disease dynamics
and decentralised economic behaviour

Benjamin M. Gramig and Richard D. Horan'

A dynamic model of livestock disease and decentralised economic behaviour is
constructed as a jointly determined system. By accounting for feedbacks between
behavioural choices and disease outcomes, the model captures the endogenous nature
of infection risks. Government mandated testing of livestock herds and how private
biosecurity incentives are affected by the structure of disease eradication polices are
considered. How well disease control policies are targeted affects their effectiveness
and may result in farmers substituting government testing and disease surveillance for
private biosecurity. Numerical simulation results demonstrate that failing to account
for feedbacks between the disease ecology and economic systems may overestimate the
effectiveness of government disease control policies.
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1. Introduction

Livestock diseases impose significant costs on society (Bennett 2003; Bennett
and Ijpelaar 2005; National Research Council 2005), prompting a need to
understand management aspects of these problems. It is useful to understand
both optimal public (centralised) management in response to a disease out-
break (Mahul and Gohin 1999; Mahul and Durand 2000; Kobayashi et al.
2007a,b; Rich and Winter-Nelson 2007), and the decentralised behavioural
and disease responses to common policy initiatives (Hennessy 2005, 2007;
Hennessy et al. 2005).

Our focus in this paper is on decentralised outcomes, taking into account
dynamic feedbacks between private behavioural decisions and the underlying
epidemiology of the disease system. We consider the impact of these feed-
backs whilst focussing on individual livestock managers’ decisions of whether
or not to invest in biosecurity as a preventive measure. A farmer’s incentives
for biosecurity are diminished by smaller infection risks and by lower effec-
tiveness of biosecurity in reducing those risks. Indeed, infection risks to any
one herd are often small, and biosecurity investment may not eliminate these
risks. A farmer’s investment incentives are also influenced by government
responses to disease risks. In particular, one’s biosecurity incentives are

T Benjamin M. Gramig (email: bgramig@purdue.edu) is Assistant Professor, Department
of Agricultural Economics, Purdue University, West Lafayette, Indiana, USA. Richard D.
Horan, is Professor, Department of Agricultural, Food and Resource Economics, Michigan
State University, East Lansing, Michigan, USA.

© 2011 The Authors
AJARE © 2011 Australian Agricultural and Resource Economics Society Inc. and Blackwell Publishing Asia Pty Ltd
doi: 10.1111/7.1467-8489.2011.00543.x



394 B.M. Gramig and R.D. Horan

reduced if infection on a neighbour’s farm triggers the imposition of costly
regulations on all farms — even in the absence of infection in one’s own herd.
Animal health authorities commonly impose costly regulatory requirements
on all herds within infected regions to eradicate infection. For instance, all
farms in the bovine tuberculosis (bTB)-infected regions in Michigan’s Lower
Peninsula (Wolf 2006) and in New Zealand (Animal Health Board 2009a,b) —
regardless of infection status — incur private costs as a result of dealing with
government testing, movement restrictions and stringent testing rules for
trade in live animals. These sorts of regulatory requirements can alter the
incentives to make private biosecurity investments, but prior economic and
disease ecology work has not explored this issue.

The majority of prior economic research in this area focusses on behavioural
outcomes, when disease risks only depend on human choices and are not
reflective of the underlying epidemiological dynamics. Hennessy (2005) analy-
ses how disease externalities across farms in different spatial arrangements
influence biosecurity decisions. Hennessy (2007) specifies a relationship
between disease risk and biosecurity investment within a production region
such that disease risks are an endogenous function of biosecurity choices, and
he derives a number of general implications about the long-run equilibrium.
In both cases, the disease risks are not based on an epidemiological model
and therefore the relation between disease risks and biosecurity is fixed. Also,
group-level impacts of government regulations are not modelled explicitly.
This prior work focusses on long-run equilibrium outcomes and does not
address the effect of public management actions on the approach path or the
time required to disease eradication. In contrast, the majority of prior veteri-
nary and epidemiological research focusses on how disease dynamics are
affected by government intervention, such as herd depopulation, but without
considering behavioural responses of producers (e.g. Barlow et al. 1998). In
this paper, we consider the joint-determination of disease and behavioural
dynamics in a decentralised setting.

This article advances prior research in two principal ways. First, we show
the importance of accounting for the jointly determined nature of disease and
decentralised economic outcomes. Disease risks are endogenous functions of
human choices, whilst infection levels influence private incentives to invest in
biosecurity. These feedbacks can influence how well various disease control
policies perform. Second, we consider the economic and ecological impacts of
government policies chosen to reduce disease risks. Specifically, we consider
how the government’s ability (or inability) to target policies towards biosecu-
rity investments affects producer incentives for these investments. The specific
government policies, and the model in general, are based on the case of bTB
in New Zealand cattle. Specifically, we analyse the regulatory choice of how
frequently herds must be tested for bTB. Herd testing requirements are com-
mon for a variety of disease eradication programs (e.g. National Research
Council 1994).
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Jointly determined livestock disease dynamics 395

We proceed with an analytical model of disease dynamics and then inte-
grate economic behaviour into this model. We then develop an application of
our analytical model to examine the case of bTB eradication in New Zealand.
We present simulation results to illustrate the tradeoffs arising in a joint sys-
tem, and we contrast these results with those arising from a non-joint system.
We conclude by discussing some general implications of this research.

2. Livestock disease dynamics

Our model of cross-farm livestock disease dynamics is based on Barlow et al.’s
(1998) model of bTB dynamics in New Zealand cattle. In their framework,
which is essentially a metapopulation disease model (Levins 1969), individual
farms (and not the individual animals on each farm) are the primary unit of
interest. This herd-level focus is consistent with existing programs, as the herd
is the most common unit for disease reporting and policy purposes.

Define N to be the fixed number of homogeneous farms within a disease
surveillance zone established by a government authority to control the spread
of infection. All farms within the zone are subject to inspections and possible
quarantine. Of the N farms, S are susceptible, 7 are infected but not yet identi-
fied as such (i.e. they are indistinguishable from susceptible farms in the
absence of an accurate test), and M are identified as infected and placed on
movement control. Following Barlow et al. (1998), farms on movement con-
trol do not engage in transactions involving the movement of animals across
farms, although some animals on the M farms may be sold for slaughter.

The number of susceptible farms changes over time according to:

S =eM — [By(1 — b) + B,b]SI. (1)

The number of susceptible farms grows when farms are taken off movement
controls, at the rate ¢ (the first right-hand-side (RHS) term in (Eqn 1)) and
allowed to freely resume trade. S'is reduced by transitions to the infected state,
as represented by the second term. Disease transmission occurs based on
movement of animals between farms. The rate of animal movement is cap-
tured by the disease transmission parameters f3; (i = 0, 1) (see Barlow er al.
1998 for details). New infections occur at different rates based on whether or
not farms invest in biosecurity: f3, is the transmission parameter when there is
no biosecurity, whilst f; < f is the transmission parameter when there is
biosecurity. Transmission parameters are the rate at which herds in state S
transition to state /, per / herd per unit time, so that f8;S7is a number of herds
(Barlow et al. 1998). Biosecurity in our model involves quarantining and test-
ing each animal brought onto the farm. The effect of this investment is to
reduce the transmission rate, although it will not be reduced to zero as testing
is imperfect (Barlow et al. 1998). The proportion of susceptible farms that
invest in biosecurity at time ¢ is denoted by b, so that the average transmission
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396 B.M. Gramig and R.D. Horan

rate is fo(l — b) + p1b and the expected number of new infections is
[Bo(1 = b) + p,b]SI. The specification in (Eqn 1) is identical to Barlow et al.
(1998), except that they model a constant average transmission rate. Our mod-
ification accounts for the fact that risk is endogenous (Shogren and Crocker
1999), as farmers can take actions to control their level of risk exposure.

The change in the number of infected farms over time is:

I=[By(1 = b) + ByBISI — gL. 2)

The first term denotes newly infected farms, from (Eqn 1). With ; < p,,
these new infections are declining in biosecurity. The last term represents the
transition of infected farms onto movement control, which occurs at the rate
q. Following Barlow et al. (1998), the rate ¢ is a function of slaughterhouse
and government disease surveillance activities. In our numerical simulations
mentioned elsewhere, we consider two alternate specifications for g¢.

The first specification for ¢ is ¢ = qo + (0/7), where ¢ is the fixed rate at
which infected animals are detected at slaughter and traced back to the
infected farm, and (o/7) is the rate at which government diagnostic testing
(applied at the interval T with test sensitivity ¢) identifies infected farms.
The rate ¢ is an endogenous function of the testing interval, with more frequent
testing resulting in a smaller interval and hence a greater detection rate. Barlow
et al. (1998) examine how changes in this interval affect disease dynamics.

The second specification for g is ¢ = g9 + (¢/t)M. Here, the government
testing interval is /M, so that testing becomes more frequent when more herds
have been identified as infected (i.e. dg/oM > 0). This is consistent with the
fact that regulatory authorities, like individual farmers, are generally respon-
sive to changing conditions. Because regulatory authorities are often focussed
on disease eradication, it makes sense that the government would respond to
an increase in the number of detected herds by devoting more resources to on-
farm testing. Indeed, Barlow et al. observe that testing is more frequent in
areas of New Zealand exhibiting greater disease prevalence, and this is the
continuing practice in New Zealand (Animal Health Board 2009a,b). Finally,
all transitions between disease states in Equations (1) and (2) are balanced by
changes in the number of farms on movement control, given by:

M =ql —eM. (3)

Typical disease ecology models treat » in (Eqns 1-3) as an exogenous
parameter. In contrast, we take b to be an endogenous behavioural choice on
the part of farmers, so that economic behaviour affects infection dynamics. In
the next section, we develop the behavioural dynamics governing the selection
of the economic strategy b, which is made in response to current disease risks.
In this way, we account for dynamic feedbacks between the economic and
disease systems.
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Jointly determined livestock disease dynamics 397

3. A dynamic model of farmer behavioural choices

We assume the individual farms are identical except possibly for their cur-
rent disease status (indexed by j = S, I, M) and their biosecurity strategy,
which is chosen in response to their current and expected future disease
risks. Specifically, farmers make biosecurity choices taking into account
how these choices affect the possibility that their farm will transition to a
new disease state at some time in the future. Denote the biosecurity strategy
of an individual farmer by z. The strategy is a discrete choice: z = 1 implies
biosecurity investment, z = 0 implies no biosecurity investment. The pro-
portion of farms adopting biosecurity at any point in time is given by b, as
defined earlier. As there is no reason to invest in biosecurity when farms are
on movement controls, the investment choice will only be made when farms
believe they are non-infected. This means the farm could be in state j = S
or state j = [ as infection has not yet been detected in the infected state
j = I. However, farmers in this state will generally believe they are in state
j=S.

A farm in a given disease state receives an expected flow of income associ-
ated with its current disease state. Denote a farm’s baseline profit in each per-
iod by n(M) = nyg + m R[N — M], where ny represents profits when the farm
is placed on movement controls and ©; R[N — M] represents variable profits
attributable to animal movement. Here, R is the rate of animal movement
between farms, and R[N — M] represents the level of exchange activity per
farm (Barlow et al. 1998). When a farm is in the susceptible state (j = S) or
the (undetected) infected state (j = I), then profits are gross of any biosecu-
rity investment costs, w(M, z) = @wR[N — M]z, where @ is the cost of biosecu-
rity per unit trade. Regulatory costs, denoted G, may also be imposed when
farms are in the susceptible or infected states. We describe the specific regula-
tory interventions, including the nature of the regulatory costs and the incen-
tives generated, later after our description of the farmer decision model.
Farms in the infected state may also incur private losses from infection, J,
where ¢ is the rate at which infection reduces baseline profits. Finally, farms
in the movement control state will incur losses because of movement restric-
tions over and above infection losses, earning only no(1 — 6) < w(M).

Following Hennessy (2007), denote V7 to be the expected lifetime income
of a farmer who is currently in state j=.S, I/, M and has adopted the strategy
of choosing action z. A farm’s biosecurity strategy, government testing, and
current infection levels all influence the likelihood the farm transitions from
one state to another. Specifically, the individual’s probability of transitioning
from state S to state /, given the strategy z, is Pg,. This value can be obtained
from the epidemiological model as P! = B, Pi° = By, which changes
over time as infection risks change. The individual’s probability of transition-
ing from the infected state to the movement control state is P;;, = ¢. Finally,
the individual’s probability of transitioning from the movement control state
to the susceptible state is Pyg = &.
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398 B.M. Gramig and R.D. Horan

Farmers are forward looking because their choices have intertemporal con-
sequences. However, farmers do not have rational expectations with respect
to transition probabilities. Rather, farmers know the current disease risks
and assume these continue on into the future, thereby taking the transition
probabilities as fixed when decisions are made within a given period. As we
describe later, the probabilities are updated at each decision node, so that
farmers exhibit adaptive expectations consistent with Berck and Perloff
(1984).

Assuming a discount rate of p, the fundamental asset equations for suscep-
tible, infected, and movement controlled farms are (see Appendix for a deri-
vation):

pVs=n(M)—w(M,z) =G+ Pgy[V; - Vi (4)
pVi=n(M)(1—08) —w(M, z) — G+ P,,[Vi, — Vi]; and (5)
PV =mo(1 —0) + Pys[Vs — Vil (6)

Equation (4) is the ‘time value of the asset’ in the susceptible state, which
equals the sum of the ‘instantaneous income per unit time’ conditional on
being susceptible, 7 — w — G, and the ‘expected capital loss that would arise
was the state to change’ (Hennessy 2007, p. 702, adapted from Shapiro and
Stiglitz 1984) from susceptible to infected, Pg,[V; — VE|. Equations (5) and
(6) have analogous interpretations.

Equations (4)—(6) can be solved simultaneously for Vg, Vj, and Vj, as
functions of the behavioural strategy, the states of the world, and model
parameters. We focus on the susceptible state because the biosecurity choice
is made whilst the farm believes itself to be in the susceptible state. The solu-
tion for V5 is:

(M) —w(M,z) — GI[A+T.] = n(M)dT'. + (1 — 6)mof.Iq
p[A+T:+ B.1q] ’

(I)‘N

z=0,1,

(7)

where A = p[p + ¢ + ¢] + eg > 0and I'. = B.I[p + € > 0. The term A/
(p[A + T. + p.Iq]) is the risk-adjusted discount factor associated with the
susceptible state, assuming the farmer is initially susceptible. With no risk of
becoming infected, the discount factor would simply be 1/p. This factor is
adjusted by A/[A + I'. + p.Ig] to account for the proportion of time the
farmer will actually spend in the susceptible state. Similarly, the term I,/
(p[A + I'. + p.1g]) is a risk-adjusted discount factor associated with the
infected state, assuming the farmer is initially susceptible. If the risk of becom-
ing infected and then staying infected was one, the discount factor would be 1/
[p(1 + p)]; the farmer would earn the annuity value [a(M)(1 - 9J) —
w(M, z) — G]/p after becoming infected, but this value must be discounted by
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Jointly determined livestock disease dynamics 399

1/[1 + p] because infection occurs after the first period. Finally, and analo-
gously, the term B.Ig/(p[A + TI'. + f.Iq)]) is a risk-adjusted discount factor
associated with the movement control state, assuming the farmer is initially
susceptible. In Equation (7), the risk-adjusted discount factors weight the
expected net benefits accruing in each state to determine the expected present
value of net benefits when the farmer is initially susceptible, V.

The expected net benefits of biosecurity depend on the current state of the
world (via the transition probabilities). As the state of the world changes, the
farmer updates the transition probabilities to reflect the current state of the
world (hence exhibiting adaptive expectations) to re-evaluate the incentives
to invest in biosecurity. We use replicator dynamics to model adjustment of
the biosecurity strategy. The basic idea behind replicator dynamics is that the
frequency of biosecurity adoption within the overall farm population will
increase when the net benefits from that choice, V5!, outweigh average net
benefits associated with the current frequency of adoption, Vs = bVi=l+
(1 = b))V (Rice 2004):

b_ A Vil — Vsl = b=ab(1 —b)[Vi' — Vi (8)
b S S S s b

where o > 0 is a speed of adjustment parameter. The use of replicator
dynamics to model biosecurity adoption in the population is consistent with
the finding that profitability is an important driver of diffusion of agricultural
innovations (Pannell et al. 2006). Equation of motion (8) indicates that fre-
quency of biosecurity adoption is increasing (decreasing) when the expected
profit from always investing in biosecurity exceeds (is less than) the expected
profit from never investing in biosecurity. Hence the incentives for biosecurity
adoption are given by Vi=' — V0. Farmers are indifferent about altering
their biosecurity strategy, i.e. V' = V=", in an interior steady state; biose-
curity investment occurs until the biosecurity cost equals the opportunity
costs of infection. Although Expression (7) indicates that VZ=! — 1z is not
a function of b, it is a function of the state variables. An interior steady state
for b (i.e. Vi=! = VZ7%) will arise if the values of the state variables S, 7, and
M attain an equilibrium in which there are no incentives to further adjust b.
Such outcomes arise in each of our simulations.

3.1. The effect of the level of infection on biosecurity incentives

The probability of becoming infected depends on the current values of b,
I, S, and M in the joint dynamic system. Accordingly, misleading policy
recommendations may result from assuming, as does some prior economic
work that does not model the epidemiological dynamics, that S, 7, and M
are fixed — and hence that infection risks are fixed functions of h. The
importance of considering the interconnectedness of disease and behavio-
ural dynamics can be seen by focussing on changes in I, as this directly
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400 B.M. Gramig and R.D. Horan

affects the likelihood of infection and, in turn, the incentives to invest in
biosecurity.

Consider how a susceptible herd’s asset value under investment strategy z,
V¢, responds to a marginal increase in /. This effect is given by:

ars
or

[t(M) —w(M,z) — G — no(1 = 5)]qg+ n(M)d[p + ¢
pIA+ T+ p.1g”

—Ap. - 09

Equation (9) is negative provided n(M) — w(M, z) — G — mo(1 — ) > 0 —
which must be the case or else farms would all want to go on to movement
controls. Expression (9) can be used to derive the marginal impact of 7 on the
incentives to invest in biosecurity, 9(Vy — V%)/0I. Although the resulting
expression is too complex to sign, we can determine the sign heuristically
(which is also verified numerically). The marginal value dV/91I approaches
zero as ff; becomes very small (i.e. biosecurity becomes extremely effective at
reducing risks so that increases in / do not really matter). This is the case in
our numerical simulations where f5; is 80 per cent smaller than f,. Hence, the
sign of O(VL — V%) /81 is of the same sign as —9V%/0I>0; increases in infec-
tion increase the incentives for biosecurity investments. This result is intuitive,
and along with the impact of b on 7, it suggests that biosecurity and infection
are joint dynamic substitutes; greater biosecurity reduces the number of new
infections, whilst a reduction in the number of new infections reduces the
incentives to invest in biosecurity in subsequent periods. This joint dynamic
system is characterised by intertemporal behavioural effects that are some-
what analogous to the assumption of biosecurity investments being strategic
substitutes across farms in Hennessy (2007). Such relations often result in
interior equilibria (e.g. Rice 2004).

3.2. The effect of government policies on biosecurity incentives

The government implements disease control policies to promote disease eradi-
cation. These policies may reduce disease risks directly, but they will also gen-
erate costs (or benefits, in the case of a subsidy) to the farm, G, as described
earlier. Both the level of risk reduction and the regulatory costs G will influ-
ence private incentives to invest in biosecurity. The specific risk reductions
and the form of G will depend on the specific policy choices. In this section,
we describe several alternative specifications and the incentive impacts.

Farms control infection risks via their biosecurity choices, but individual
farmers will generally underinvest in biosecurity choices because they will not
have incentives to consider how their choices affect risks to others. Ideally,
government policy would target these choices directly so as to encourage
investment. Suppose G is introduced as an incentive policy to promote biose-
curity, so that the government is not directly mandating a risk reduction. All
incentive effects in this case arise via the specification of G, which would be
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Jointly determined livestock disease dynamics 401

decreasing in z. A linear relation would be of the form G = —sz, where sis a
subsidy rate and in which case expression (4) becomes:

pVi=mn—[w(M,z) —sz| + P, [V — Vg]. (10)

Clearly, a sufficiently large value of s will offset private biosecurity costs
enough to ensure the private benefits of adoption (i.e. the reduction in private
risks) offset the post-subsidy adoption costs. The problem with basing a sub-
sidy on private biosecurity effort is that biosecurity effort levels are generally
difficult to observe (Gramig er al. 2009). Whilst private testing could be per-
formed and certified for all newly acquired animals, it would be very difficult
to monitor whether a farm adequately quarantined its newly purchased
animals.

The alternative policy that we consider, and which is often used in infected
areas, is regular testing of each herd. This policy is clearly less desirable from
a pure disease control standpoint because whenever the testing interval is suf-
ficiently long, the spread of infection may be well underway before infected
herds are identified. Such a policy is also less desirable because of the incen-
tive effects it may have on the biosecurity investment decision. Testing
requirements are a mandate that will directly affect risks, and which will also
impose direct costs of G (which is no longer viewed as an incentive policy but
rather the costs of the regulation imposed on the farm). The impact of a
decrease in 7 (i.e. a more frequent testing interval) on the incentives to invest
in biosecurity is:

dVs V) _oVs- 1) g a0h-1Y) oG

(=) g a0 ac ooy UV

There are two effects. The first term on the right-hand-side of (Eqn 11) repre-
sents the risk effect, whilst the second term represents the regulatory cost
effect.

Consider the risk effect. This term does not reflect a reduction in disease
risks. Rather, it reflects an increase in the risk that a farm will eventually
be placed on movement controls, as dg/d(—t) > 0. To analyse the term
O(VL — 1%)/dq, we begin by focussing on the marginal impact of ¢ on the
asset value arising under a particular biosecurity choice z:

Vi B.I

g p|A+T.+ B.Ig)
~[r(M)(1 = 6) —w(M,z) = G —mo(1 = 9)][p(p + &) + T
+n(M)de(p + &) + ]

. (12)
The sign of Equation (12) is ambiguous. The first term in brackets is
negative if farms prefer staying in the infected state to being detected and put
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on movement controls, and positive otherwise. Assuming the term is negative,
increased detection is costly for farms in the short run as they are placed on
movement controls. We refer to this as the movement control risk effect. The
second term in brackets is positive and reflects the gain from eventually transi-
tioning from the infected state back to the susceptible state, as increased detec-
tion speeds up this transition. We refer to this as the disease control effect.

The complexity of Equation (12) prevents us from analytically signing
O(VL — V%) /9q. However, as mentioned earlier, we note that the marginal
value OVL/dq will be small if biosecurity is highly effective, in which case
the sign of (VL —1%)/0q is the same as the sign of —dV%/dq. If
—0V%/0q>0, then the risk effect dominates the disease control effect.
A reduction in 7 therefore provides incentives for farms to invest in biosecuri-
ty that reduces the risk of eventually transitioning to the movement control
state. If —9V%/0g <0, then the disease control effect dominates the risk effect.
A reduction in 7 therefore reduces incentives for farms to invest in biosecurity
because they will spend less time earning infection-related losses if they ever
do become infected.

Now consider the regulatory cost effect in Equation (11). Again, this will
depend on the form of G. Previously, we indicated two types of herd-level
testing policies: (1) testing at a constant interval of 7, and (ii) testing at a non-
constant interval /M, which depends on the current identified infection level.
In each case, the policies are implemented regardless of a farm’s biosecurity
choice, and they are applied uniformly across farms. The testing-based policy
implies a regulatory cost function of the form G(t, M), with G, < 0 (because
a larger t implies less-frequent testing) and G,, > 0. For instance, if v is the
per unit cost of testing the herd, then G = x = v/t in the case of a constant
testing interval, and G = xM in the case of a non-constant testing interval.

Because G does not depend on z, the incentive effects are now more complex
to untangle as G enters into the expressions for le and V?, for j=S, I. It is
possible using Mathematica (2008) to derive the following analytic expression:

8(V§ - V%) _ —1q(By — B1)A
oG pIA +To + Bolg][A + T + B 1q]

<0. (13)

A larger G reduces the private incentives to invest in biosecurity. The reason
is that G is not at all targeted towards the biosecurity investment decision.
Instead, within a particular time period, farm operators view G as a fixed,
lump-sum tax. The result of this tax is to reduce the value of the farmer’s
assets, and so the farmer has fewer incentives to invest in biosecurity to pro-
tect those assets from a loss of value because of disease risks. Because invest-
ments in biosecurity are represented by both fixed costs (e.g. facilities
investments to facilitate quarantine of introduced stock) and variable costs
associated with management effort, the lump-sum tax G might be expected to
reduce both fixed and variable expenditures on private biosecurity. This result
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is not unique to policies based on diagnostic testing intervals. The same
results would arise for any policy not based on the activity of concern (biose-
curity in this case). For instance, Barlow et al. (1998) also consider partial
trade restrictions for farms not placed under movement controls, as this
would reduce disease transmission rates (and also profits). Our results here
indicate that such approaches would also reduce the incentives for biosecurity
investments.

The net effect of the risk effect, the disease control effect, and the regulatory
cost effect in Equation (11) are ambiguous. If the risk effect dominates the
other two effects, we might expect to see a decrease in 7 result in greater bio-
security investments relative to a disease-only model that does not consider
behavioural effects. If the disease control and regulatory cost effects domi-
nate, we might expect to see a decrease in t result in fewer investments. Of
course, these results are for a given 1. As [ is reduced in response to the regu-
lations, incentives to invest will be further diminished relative to the disease-
only model, as indicated above on account of b and 7 being joint substitutes.
Therefore, in order for the joint model to predict more biosecurity investment
than the disease-only model, the risk effects in Equation (11) would have to
be of sufficient magnitude to dominate the joint substitute effect, the disease
control effect and the regulatory cost effect.

4. Numerical simulations and model comparisons

We now apply our model to the case of bTB transmission between herds in
the Waikato region of New Zealand’s North Island. Dairy and beef cattle are
an important part of the rural economy of New Zealand, with dairy goods
and services comprising one-sixth of total exports; 80 per cent of all New
Zealand dairy cows are located on the North Island, principally in Waikato
and Taranaki (Easton 2009). Because wildlife disease reservoirs are not a
major concern in this region, the focus on cattle herd disease dynamics that
are closely linked to private herd management (biosecurity investment) and
government actions (more frequent mandatory testing) is appropriate.

The original (Barlow et al. 1998) and continuing (Animal Health Board
2009a) policy objective for the Waikato region is to achieve ‘disease-free sta-
tus’, which is defined by the World Animal Health Organisation (OIE) as
having <0.2 per cent of herds on movement control. Recent observed herd
prevalence is lower than that projected in 2001 by the National Pest Manage-
ment Strategy, but the number of infected herds must still be cut in half and
maintained for 3 years to attain disease-free status (Animal Health Board
2009b). The question is what combinations of public policies can help to
achieve this goal, and at what cost? Barlow er al. (1998) address this question
using a disease-only model in which farmer behaviours are fixed. Here, we
use the joint model that incorporates feedbacks between behavioural choices
and disease outcomes (Eqns 1-3 and 8) to simulate disease and biosecurity
dynamics under different reductions in the testing interval, . We compare the
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results with the predictions arising from a disease-only model, which is a
special case of the joint model such that db/ds = 0.

Variable descriptions, parameter values and initial values for state vari-
ables used in the simulations are listed in the Appendix. Economic parame-
ters in Equation (8) of our behavioural model are drawn from Bicknell
et al.’s (1999) single-farm economic analysis of bTB control in New Zealand.
Bicknell et al.’s (1999) parameter values were scaled to be consistent with the
units used by Barlow et al. (1998). Initial values for the state variables and
parameters in Eqns (1-3) of our disease model are drawn from the no wildlife
reservoir area (‘Area 1°) data in Barlow ef al. (1998). The exception is the
parameter ¢y, which is drawn from area 2 because slaughterhouse detection is
thought to be higher now given how long the disease has been a problem and
given advances in surveillance methods. Following Barlow et al. (1998), the
‘calibrated’ parameter values are derived under the assumption that the dis-
ease system begins in a steady state at the initial values, given the initial value
of b and the baseline value of the policy variable t = 1. A similar calibration
is performed for the economic variables and policy response function (in the
case when the testing interval depends on detected infections) to ensure we
begin at a steady state. Implicitly, Barlow et al. (1998) also assume economic
and policy variables are in a steady state so as to start their disease model in a
steady state. This initial steady state represents our baseline scenario from
which all other outcomes are evaluated.

The initial percentage of herds on movement control in our simulation is
0.547 per cent, which is higher than the recent estimated prevalence cited ear-
lier and the policy objective of 0.2 per cent required to meet international ani-
mal health standards, but this level facilitates comparison with Barlow et al.’s
(1998) disease-only model. A change in the policy variable 7 is therefore
required to achieve the goal. We derive results for two cases: (i) ¢ = ¢¢ +
(o/7) (no endogenous government response) and (ii) ¢(M) = g9 + (a/7)M
(government feedback response). All solutions are derived using Mathematica
(2008).

4.1. Results with no endogenous government response

Suppose there is no endogenous government response, so that ¢ is fixed for a
given choice of 7. Simulation results for both increases and decreases in 7 rela-
tive to the baseline value, denoted 7y = 36 months, are reported in Table 1.
We report the percentage of herds on movement controls in the steady state,
the number of years required to attain the steady state, and the number of
years it takes to attain disease-free status, as this status may be achieved prior
to the steady state. We also present the percentage of biosecurity adopters in
the steady state for each scenario. Note that steady state biosecurity levels
adjust in the joint model but not in the disease-only model.

First consider the disease-only model. Here, reductions in 7 are the only
way to reduce M. A disease-free steady state (M < 0.2 per cent of farms) is
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achieved for each of the smaller values of 7 examined in Table 1, although
not within a reasonable time period for all values considered. Achieving dis-
ease-free status within 10 years requires that t be cut in half to 18 months,
and achieving disease-free status within 5 years requires cutting 7 to
12 months. These results are consistent with those of Barlow et al.’s (1998)
disease-only model.

The same general trend is observed in the joint model, although the
testing interval must be shortened considerably more — to 12 months —
before a disease-free outcome is possible, both in the short run (5 years)
and as a long-run steady state. Hence, attaining disease-free status is more
difficult when behaviour is considered. The reason, as described earlier in
our analytic model, is that risk effect incentives provided by increased test-
ing are insufficient to overcome the joint substitute effect, the disease con-
trol effect and the regulatory cost effect embedded in farms’ biosecurity
incentives. In particular, the disease control and regulatory cost effects are
evident in Table 1 as private biosecurity is scaled back in response to
more frequent government testing. The private costs of government testing
requirements reduce each farm’s asset value, thereby reducing the incen-
tives for biosecurity investments to protect this value from disease losses.
Moreover, more frequent testing reduces the losses that would be incurred
anyway. Essentially, government testing substitutes for private biosecurity
investments.

The disease-only model systematically estimates lower levels of infection
than the joint model because it does not account for the substitution away
from private biosecurity investments. As the testing interval becomes progres-
sively shorter, results for the two models begin to converge.

4.2. Results with a government feedback response

Now consider a government feedback response to changes in disease levels,
using the testing rule /M. As described earlier, this results in the endogenous
detection rate ¢(M) and associated private costs G = xM.

In the disease-only case, a much smaller value of 7 is required to compen-
sate for less-frequent testing as M falls. For instance, the normalised testing
interval must be reduced to 12 months before disease-free status is attainable,
with eradication taking 15 years as compared with only 4 years without the
government feedback response for the same testing interval.

In the case of the joint model, the results are analogous but even more dra-
matic as it becomes harder to eradicate the disease via reductions in . Specifi-
cally, the disease-free status is only attainable for the 6 month normalised
testing interval, and even then this takes 37 years. But we also see an interest-
ing opposite result in the joint model with a government feedback response;
the long-run steady state level of M falls when 7 is increased (i.e. when testing
occurs less frequently for a given value of M). This results because the reduc-
tion in government testing from the baseline stimulates private biosecurity
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investments, even as M becomes small. Table 1 indicates that biosecurity
adoption is also increasing in 7 for the joint model when there is no govern-
ment feedback response, but the impact is much more pronounced in the
presence of the feedback. Finally, in all cases, the magnitude of the substitu-
tion effect is diminished the larger is 7. Accordingly, eliminating government
testing altogether is not expected to lead to eradication.

5. Discussion and conclusion

Two results of our analysis are worth highlighting. First is the need for dis-
ease ecology models to account for human behaviour when evaluating poli-
cies to control livestock disease outbreaks. Not doing so may lead to
overestimates of policy effectiveness, as an individual farmer’s incentives for
biosecurity investment are contingent on policy choices — perhaps especially
those policies that do not target biosecurity directly.

The second result that we highlight relates to the issue of targeting policies.
The targeting of policies becomes an issue when hidden action problems pre-
vent implementing policies based on biosecurity. Disease control policies not
based on private biosecurity investments will operate like a lump sum cost
that reduces asset values and thereby reduce the private incentives to invest in
biosecurity to protect those assets from disease-related losses. Moreover, poli-
cies that eliminate the disease from the farm more quickly reduce any losses
that would be incurred, also reducing farms’ incentives to invest in biosecu-
rity. When private biosecurity levels fall, more stringent government
responses are required to compensate. Otherwise disease levels may remain at
higher-than-desired levels. On the one hand, this result provides a rationale
for the current approach of using stringent, area-wide policies like a quaran-
tine to confront livestock disease problems. On the other hand, this result
highlights the need to develop better-targeted policies, as they may ultimately
be less-stringent and therefore less-costly.

The final implication of this research is the critical need for data necessary
to parameterise models of this kind to analyse specific cases, as has been done
in social planner-oriented models, like those developed for foot-and-mouth
disease in the US (Kobayashi et al. 2007a,b) and France (Mahul and Gohin
1999; Mahul and Durand 2000). When data are available for a particular
disease and geographical area, it may even be possible to integrate disease
epidemiology with decentralised strategic interactions to better inform
models of optimal allocation of public resources to respond to an epidemic.
In developing our numerical simulations, we were made aware of the general
lack of empirical estimates of inter-herd disease transmission coefficients and
longitudinal data on livestock disease prevalence trends or farmer behaviour
necessary to parameterise such a model. Without such data available, it will
remain impossible to evaluate the performance of joint disease ecology-
economic models, which is necessary in order for such models to be of great-
est use for policy making or economic decision making purposes.
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Appendix

Derivation of asset value equations

The asset Equations (4)—(6) are derived following Shapiro and Stiglitz (1984),
who assume an infinite time horizon. Focussing on the case of j = S as an
example, we take Vg and V' as given and examine expected lifetime utility
over a small time interval [0, ¢]:

Vs = [m(M) — w(M.2) — Glt + (1 — pO)[P5Vi + (1 = P50 V3. (da)

Note that (1 — pr) ~ ¢*'. Equation (4) is obtained by solving (4a) for V3
and evaluating it as t — 0.
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Table A1 Baseline modelling parameters

B.M. Gramig and R.D. Horan

Description

Parameter

Value or
calibration method

Source

Slaughterhouse detection rate

Transition rate from movement
control to susceptible (month™)

Diagnostic test (based on Caudal

fold test) sensitivity

Government mandated testing
interval (month™"), initial value

Number of farms

Number of farms initially on

movement controls

Number of farms initially
infected (non-detected)
Number of farms initially susceptible

Weighted average of

biosecurity-dependent

transmission rates

Transmission coefficient: with

biosecurity

Transmission coefficient: no

biosecurity

Movement rate of animal groups

per month

Initial proportion of farms
investing in biosecurity

Average number of animals/herd

Discount rate (monthly)

Initial monthly profit per farm
Profit when no movement occurs

Variable profits per unit of

animal movement
Testing cost per head

Average number of animals/trade

Testing cost per trade
Herd-level testing cost

Proportional reduction in

profits when infected

Adjustment parameter for
biosecurity investments

Po

b(0)

BN

P
n(M(0))

o

= g e g

153

0.01663
1/9.6

0.8

36 with no
gov’t feedback

36 x M(0) with
gov’t feedback

7310

40

M(0) X &/qq

N = M(0) - 1(0)

40/ S(0)

(1 =09)po

B = b(0)) +
(1 = o)b(0)] (this

solves f = b(0)f3,
+ [1 = b(0)]1Bo

when f; = (1 = a)fo)

3.47 % 107°
0.5

164.08
0.004

$2843.35

n(M(0)) — m
X R X [N — M(0)]

Calibrated to solve
b,y =0

$1.50

7

w X {

®Xn

0.65

0.00007

Barlow et al. (1998)
Barlow et al. (1998)

Barlow et al. (1998)

Barlow et al. (1998)

Barlow et al. (1998)
Barlow et al. (1998)

Barlow et al. (1998)71

Calibration
Barlow et al. (1998)7

Calculation

Calculation

Barlow er al. (1998)
Assumption

Barlow et al. (1998)%

Based on annual
rate of 0.05

BWH (1999)§

Ensures 5(0) is

a steady state
BWH (1999)
Barlow et al. (1998)
Calculated
Calculated
BWH (1999)

Assumption

Notes: 1The formula is a calibration based on Barlow ez al. (1998). 1Based on values in Barlow
et al. (1998) for entire Waikato region. §BWH, Bicknell et al. (1999).

© 2011 The Authors

AJARE © 2011 Australian Agricultural and Resource Economics Society Inc. and Blackwell Publishing Asia Pty Ltd



