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ABSTRACT

Livestock agriculture (e.g., dairy, beef, pork, poultry) in the USA is tending rapidly
toward operations where a large number of animals are concentrated in a relatively small area.
The economies of scale are counterbalanced by the dangers of pollution from inadequate
treatment of animal waste. Traditional methods of treatment involve lagoon retention and
subsequent spreading on fields but the sheer volume of production seems to be outstripping these
and other technologies. Surface-water runoff finds its way into streams and rivers, ultimately
polluting all downstream segments of the watershed. The topic of this paper is spatio-temporal
statistical modeling of (log) nitrate concentration in the upper North Bosque watershed, which is
a region of concentrated dairy operations. A model is fitted from daily data collected over a
period of 15 months, at 17 stream monitoring sites throughout the watershed. Optimal predic-
tions of unknown nitrate concentration, at all stream locations at any given time, are obtained,
along with a measure of their variability, The model allows for policy changes to be made, and

assessed, based on the consequent spatio-temporal predictions.



SPATIO-TEMPORAL STATISTICAL MODELING OF
LIVESTOCK WASTE IN STREAMS

Introduction

The possible harmful effects of livestock on the environment is beginning to be
appreciated. Livestock waste may account for up to 20% of surface water pollution in the US
(Long, 1992). An important source of pollution is livestock waste generated at concentrated
animal feeding operations (CAFOs), including beef, dairy, swine, and poultry operations. Since
1972, the US Environmental Protection Agency (EPA) has attempted to control pollution from
CAFOs by permitting all feedlots with more than 1,000 animal units as well as smaller operations
that meet special water-related criteria. Compliance has been slow; by 1992, only about 10% of
the eligible feedlots had been permitted (Long, 1992).

In surface waters (lakes, reservoirs, and streams), typical pollutants from CAFQs are
nitrates, phosphorous, ammonia, and coliform bacteria, caused by natural or artificial flushing/
drainage. Further, nitrates, coliform bacteria, and metals and salts in manure contaminate
groundwater; this is caused by natural seepage in regions of sensitive hydrogeology, leaking
storage lagoons, and misapplication of waste onto agricultural land.

Livestock waste causes fish kills (high ammonia; excess nutrients cause excess growth of
algae which reduce dissolved oxygen), eutrophication of lakes (excess nutrients), changes in water
habitat ecosystems (excess algae reduce sunlight to submerged aquatic vegetation), unhealthy
wildlife populations (coliform bacteria cause avian botulism and cholera that kill thousands of
migratory waterfowl annually; zinc, copper, etc. adversely affect bottom-feeding aquatic birds),
soil pollution (metals and salts), and acid deposition (ammonia). The cost of livestock-waste
pollution can be measured in the short term by the cost of closure of sources of drinking water,
nearby fisheries, agricultural industries, and recreational areas. In the long term, the loss of large
sources of potable water, caused by polluted groundwater seeping into aquifers, would have
disastrous consequences, particularly on the burgeoning population in the south and west of the
USA.

Since the middle of 1992, the United States Environmental Protection Agency has funded
a large project, Livestock and the Environment: A National Pilot Project, to study the effects on

the environment of dairy CAFOs in and around Erath County, Texas. Principal partners in the
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project are lowa State University’s Center for Agricultural and Rural Development (CARD) and
Tarleton State University’s Texas Institute for Applied Environmental Research (TIAER}. This
project is mainly concerned with surface waters and odor, although some consideration is also
being given to groundwater.

In this article, emphasis is on CAFOs in the dairy industry and their impact on surface
waters, We shall build a spatio-temporal statistical model of nitrate concentration in streams of
the upper North Bosque watershed (in and around Erath County, Texas). As such, it will be a
statistical description of exogenous, spatial, and temporal dependencies supported by data
sampled from upper North Bosque streams over a period of more than a year.

Dairy CAFOs are in direct contrast to the popular image of a small dairy farm. Indeed, it
would be more accurate to call them “milk production facilities” rather than “dairy farms.”
There are enormous economies of scale in milk production by CAFOs. In spite of punitive fines to
any CAFOQ that violates the Texas Water Commission’s (a Texas state agency) no-discharge
policy, it is clear that the current economic system pushes the long-term cost of a polluted
environment on to county, state, and federal tax payers. A more equitable system, whereby the
(potential) polluter pays, seems beyond the reaches of a private market institution (Libby and
Boggess, 1990), implying the need for executive and legislative action. Thus, economic and
statistical studies are meant to support policy recommendations that would both minimize the
impact of anima] waste on the environment and distribute its cost among those responsible.

A few basic facts about the study area are enlightening. Erath County, with a 1990
population of 28,300 and an area of 697,500 acres, is located 65 miles south of Fort Worth, Texas.
In 1980, the county had 181 dairies and 20,000 dairy cows. In 1990, the county had 197 dairies
and 70,000 dairy cows; and over one billion pounds of milk were produced (for Houston and
Dallas markets) bringing in $144 million in 1990. Erath County is currently the top milk-
producing county in Texas, However, in any one day, approximately six million pounds of manure
is produced in this region of only approximately 1,000 square miles.

Pollution of surface waters is the most common compiaint in and around Erath County,
originating either from downstream neighbors or a local association called the Cross Timbers
Concerned Citizens (TIAER, 1992, p. 8). In 1987, in part as a response to growing complaints,
the Texas Water Commission (TWC} revised its technical guidelines for CAFQs and embarked on
a permitting campaign. Permits are required for dairy farms with more than 250 head and
involve establishing stringent waste-management facilities for cumulative rainfall events and

regular monitoring controls. Enforcing the permit requirements on a regular basis is another
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matter; in 1991, the TWC conducted only about 10% of its required inspections (TIAER, 1992, p.
59). At the local level, there is considerable disagreement between permitted dairy operators,
unpermitted (small) dairy operators, and concerned citizens. In the middle is the TWC trying to
make and enforce scientifically sound and reasonable regulations. It is in front of this backdrop
where one finds this spatio-temporal statistical analysis of non-point-source pollution of streams.

There is no claim that our statistical analysis shows causation. Water-chemistry sampling
sites were located with classification factors such as geography, stream permanence, and site
accessibility in mind. It is difficult, if not impossible, in such studies to produce a sampling design
that allows properly for “treatment” factors such as upstream locations of dairies, dairy size,
dairy-management practices, soil types, and topography. In other words, the statistical analysis
given in this paper is of an observational study rather than of a carefully controlled, well designed
experiment,

The goal of this statistical modeling effort is spatio-temporal prediction of surface-water
nitrate contamination with known confidence. Each of the sections that follows plays a role in
achieving that goal. The next section gives a brief description of the computing environment
{Geographic Information System and statistical software) in which the spatio-temporal analysis
was carried out, and of the data base used for the analysis. The third section discusses the
modeling and fitting of the large-scale variation, while the fourth section concentrates on the
small-scale {in space and time) variation. Spatio-temporal prediction results are given in the fifth

section and a discussion is given in the final section.

The Computing Environment and the Data Base

The Geographic Information System (GIS) Arc/Info and Arcview was used to derive
important geographic variables, to manage both the original and the derived data, to provide
spatial displays (maps) of the upper North Bosque watershed, and to display kriging predictors
{and kriging standard errors) at various locations on the stream network. The statistical software
Splus was used for all statistical analysis, such as weighted regression, variogram estimation,
variogram-model fitting, and kriging.

The data base is made up of two parts, the original data {e.g., contaminant concentra-
tions, locations of sampling sites on streams) and the derived data base (e.g., topography, stream

distance, landscape characteristics, area-of-influence management practices).

Original Data Base

The region for which the statistical analysis was conducted is the upper North Bosque
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river basin, which is contained mainly within Erath County, Texas. The study area contains 87
dairies and has 24 surface-water sampling sites, made up of 17 stream sites and 7 reservoir sites.
Figure 1 shows the study area with the stream network, locations of dairies, locations of

precipitation gauges, and locations of surface-water sampling sites.

%
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Figure 1. Upper North Bosque River watershed

The original data base consists of the following information:

¢ locations of 24 surface-water sampling sites along with the results of the analyses of 467
samples taken over the period from March 6, 1991 through May 27, 1992. The water-
quality information consisted of 18 variables including field measurements (e.g., depth,
air temperature, and so forth), and laboratory measurements (e.g., ammonia
concentrations, nitrate concentrations, ortho-phosphate concentrations, and so forth);
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e locations of 87 dairies along with information about the management characteristics
used at each dairy (e.g., number of head, number of waste lagoons, waste application
methods, and so forth);

o the DEM (digital elevation model) with a resolution of 30m, acquired from the US
Geological Survey; and

e locations of six precipitation gauges with daily values for the period of interest.

Based on stratification decisions, the 24 sites were reduced to 17 stream (not reservoir)
sites, with which there were 176 samples associated during the period March 6, 1991 through May
27, 1992, Of those, there were 157 values of nitrate concentration above the detection limit.
These log-nitrate concentrations were standardized by their sample mean and sample variance;

samples below the detection limit were not included in the analysis.

Derived Data Base

An underlying assumption in the modeling described in this article is that conditions near
a sampling site affect the occurrence of pollutants at that site more than they would if the
sampling site were further away. Furthermore, we assume that conditions that influence the
occurrence of pollutants at a site are those that occur within the drainage basin of a site.
Therefore, the variables used to explain large-scale variation in observed (log) nitrate
concentrations are calculated via a three-day area of influence for a site, which is defined as that
area within the site’s drainage basin that drains to the site within three days. Three days was
used because literature suggests that pollutant concentrations fluctuate considerably after a rain
event and return to baseline conditions within three days (Johengen and Beeton, 1992). Because
data on flow rate were unavailable, we cannot confirm a suspected flushing effect of initially high
concentrations, followed by lower concentrations (as discharge increases due to the rain event),
followed by increasing concentrations again, back to baseline, during the three-day period.

The three-day areas of influence are obtained as described below using hydrological
modeling tools available in the GRID subsystem of ARC/INFO. These tools allow the extraction
of hydrologic features from a digital representation of topography (i.e., a DEM). The features that
can be extracted include flow lines (streams) and drainage basins. For a complete description of
the algorithms used, see Jensen and Domingue {1988).

The distance from all pixels within a drainage basin to the drainage outlet results in a
flow-length grid, which is used to calculate the stream distance between stream sites. These

stream distances are the appropriate metric in Section 4 when carrying out a geostatistical
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analysis. Also, the flow length grid can be easily converted from distance to time using
assumptions about the speed of flow over the landscape. To create the three-day areas of
influence, flow-length grids were created for each of the sampling sites. The distances in the
flow-length grids were converted to times using two assumptions: 1) water flows at a uniform rate
of 0.5 m/s throughout the drainage basin, and 2} flow through reservoirs adds 24 hours to flow
time (Hauck, 1993). A modification to allow for variable flow rates would be easy to implement
(Maidment, 1993). The resulting time-of-flow grids were then truncated if flow time exceeded 72
hours.

This process creates two new data sets that are important in the calculation of
explanatory variables: the three-day area of influence for each site and the time-of-flow grid for
each site. The time-of-flow grid is used to create a ttme-weight grid defined as follows:

s = { (TOFy)™" , if TOF;; > 24 hours o

(1/24) , if TOF; <24 hours ,

where j ranges over all pixels in the three-day area of influence of site i, and TOF;; is the time of
flow, in hours, from pixel j to site i. This time-weight grid is used in the calculation of several
variables in order to give more weight to factors closer to the sampling site than to those further
away. The largest weight assigned was (1/24) in order to keep factors that occur very close to a
site from completely dominating all others; 24 hours is the finest temporal resolution available
from the original data base. The weighting in (1) amounts to a truncated inverse-distance
weighting and, although it is ad hoc, it serves us well in spatial modeling where we wish to
downweight data further away. Further, if the weighting does not reflect reality for the physical
processes, there is a self-correction mechanism in the statistical modeling that allows
heteroskedastic variation to be fit; see the subsection below on heteroskedasticity.

The formula for the calculation of many of the explanatory variables includes the area of
the three-day area of influence for a site. The area used is actually a weighted area with the
weights being determined from the time-weight grid defined by (1). The weighted area for site i is
defined as,

A= E i Wi5 (2)
7

where a;; is the area of the j-th pixel in the three-day area of influence of site ¢ (in this case a; is
900 m? for all ¢ and j) and w;; is given by (2.1). This quantity is calculated for each site and is
the area used in the calculation of those explanatory variables requiring a per-unit-area

standardization.
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Explanatory Variables

The first step in the analysis is to find variables that explain the large-scale variation in
nitrate concentrations in surface waters. Factors that are likely to affect the occurrence of nitrates
in surface waters include the locations of possible sources of nitrate in the landscape and physical
characteristics that aid or hinder the transport of nitrates from the source into the streams.
Possible sources include dairies and crop land. Factors that affect transport might include land
slope in the basin and precipitation conditions. The characterization of these factors consists of
determining the three-day area of influence for each sampling site and summarizing the
occurrence of a factor within that area. The use of a GIS to automate this task made the
quantification of these explanatory variables possible.

Seventeen explanatory variables are considered. The definition of each of these variables is
given below; more details on their calculation in the GIS can be found in Cressie and Majure
(1996). The variables considered include information about management practices on dairies and
the physical characteristics of a site’s three-day area of influence. Also considered are variables

describing seasonal variation and the distance from a site to the basin outlet.

Number of Dairies per Acre:

Z:Zw,‘jf_,'k
M

-k i
DPA; = ye , (3)

where k ranges over the dairies that fall within the three-day area of influence, w;; is the time-
weight grid defined by (1), A; is the weighted area of the three-day area of influence defined by
(2), and I is 1 if the j-th pixel contains the k-th dairy and 0 otherwise.

Number of Head per Acre:

> wils HEADy
k
HPA; =
A Ai t (4)

where HEA Dy, is the number of head maintained at the k-th dairy.

Waste Lagoons per Acre;

E Ew,;jfjkLA GOONS

k g
LPA; =
A;‘ ) (5)
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where LAGOONS)}, is the number of waste lagoons at the k-th dairy.

Waste-Application Methods: There are six variables that describe liquid-waste application

methods and three variables that describe solid-waste application methods.

ZZw;jIijEADkI(method ! is used on the k-th dairy)

ko
ST S wi I HEA Dy ’
k3

WAM; =

(6)

where [ ranges from 1,...,9 application methods (liquid and solid), and I(B) is 1 if the statement
B is true and 0 otherwise. Liquid-waste applications methods are: big gun (I = 1), irrigated

(I = 2), center pivot (I = 3}, sprinkler (! = 4), traveling big gun (I = 5), and wheel move (I = 6).
Solid-waste application methods are: spread {{ = 7), harrow spread (I = 8), and spread disc
(1=9).

Soil Hydrologic Code: The scil hydrologic code can take values of “A”, “B”, “C”, or “D”,
where “A” indicates a soil with a high infiltration rate and “D” indicates a soil with a low
infiltration rate. Because these codes are ordinal, they are converted to integers from one to four

and then used to define the variable,

> wy L HEAD HYDRO}

SHC; = yr , (7)

where HYDROy, is the soil hydrologic code of the soil on which wastes are applied on the k-th
dairy.

Average Slope:
E SLOPE;

.= J_,__, -
Asi= im0 —, )

where J; is the number of pixels in the three-day area of influence for the i-th site and SLOPE; is
the slope at pixel j (f =1,...,J;) derived from the DEM using the GIS.

Distance to Basin Qutlet: This variable, referred to as DBQ, is the stream distance from
the sampling site to the basin outlet (at site 24). It is included as a surrogate for a spatial trend

over the river basin.
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Precipitation: This variable represents the amount of rain that fell within the three-day

area of influence in the two days prior to and the day of collection of the sample.
PREC; =Ps+ Py 1+ Py, (9)

where P, t—m41 i8 the total precipitation (in inches} that fell (m — 1) days prior to the date ¢ that

the sample was taken, within the area that drains to the i-th site in m days; m = 1,2,3.

Seasonal Variation: This variable represents the seasonal variation observed in the data

and is defined as,

July 1 €t < September 30
April 1 €¢ < June 30
October 1 <t < December 31
January 1 <t < March 31 .

SV, = (10)

B Qo b =

Figure 2 shows (log) nitrate concentrations plotted against time with a Lowess filter

(Cleveland, 1979) superimposed. The four seasonal periods are delineated using vertical lines.

Modeling the Large-Scale Variation
Let Z(s,t) denote the log-nitrate concentration (standardized by its sample mean and
sample standard deviation) at stream location s and time ¢. The statistical modeling strategy
taken here is to decompose Z into deterministic large-scale variation (mean) plus stochastic

small-scale variation (error). The model can be written as:
Z(s,t) = pfs,t) + 6(s, 1) . (11)

The large-scale variation, represented by u(s,t), is expressed as a linear function of &
regressors x(s, t):

u(s,t) = x(s,t)'8, (12)

where x(s,t) = (z1(s,t),...,2¢(s,¢t)) is a k X 1 vector whose entries correspond to variables such
as time of year, precipitation, soil properties, management practices at upstream dairies, spatial
location, basin characteristics, distances to upstream dairies, and so forth. The coefficients 3 of
this equation are fitted using weighted least squares. The use of a linear model here is a means to
an end, the end being optimal spatio-temporal prediction of (log) nitrate concentration. More
mechanistic, deterministic models are possible (e.g., White et al., 1992) but they do not allow

quantification of the predictor’s variability,
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Figure 2. Plot of standardized log-nitrate concentrations versus time; the curve is the result of a
Lowess filter (Cleveland, 1979) and the vertical lines delineate seasonal periods

The small-scale variation term is estimated by the residuals from the fitted large-scale

variation:
§(s,t) = Z(s,t) — z(s,t)'3 . (13)

These residuals are treated as “data” and analyzed to characterize spatial and temporal

dependence. This dependence, once characterized, is used to make predictions in space and time

with known confidence.
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An exploratory analysis indicated that the data are quite noisy but, when marginalized on
either space or time, some dependencies are present. The exploratory analysis also indicated two
sites, 4 and 12, that might potentially cause problems in more confirmatory analyses and, thus,

should be watched carefully.

Variable Selection

The large-scale variation term for log nitrate concentrations was fitted using weighted
least squares. The following regression-model selection criterion was used, following Ericksen,
Kadane, and Tukey (1989). The 217 possible linear models composed of the 17 explanatory
variables given in the previous section were fitted in Splus. The selection of the final model was a
two-stage process.In the first stage, all models were selected for which the ratio of each coefficient
to its standard error was greater than two in absolute value, This step ensured that the
coefficients of all of the explanatory variables in the model chosen were likely to be different from
zero. Notice that, strictly speaking, it cannot be claimed that the coefficients were significantly
different from zero due to spatial dependence among the regression errors. This would require
knowledge of the errors’ variance-covariance matrix, something that is unavailable at this phase of
the analysis. Nevertheless, Ericksen, Kadane, and Tukey’s selection criterion can still be used as a
means of large-scale-variation model selection. The models identified in this first stage were
compared in the second stage based on the criteria: small residual squared error and large R?
value. The idea is to find a model! with small error and high explanatory power. As expected, the
model with the smallest residual squared error also had the largest R? value.

The models considered were initially fitted with weights equal to the weighted areas of the
three-day areas of influence (equation (2)), reflecting the intuition that the larger the area the
smaller the variability in (log} nitrate concentration. It is seen below that the final data weights
chosen are different from these original weights, although they do retain this appealing feature.

Initially, the model

Z=XB+4§ (14)

was fitted, where the components of Z are made up of Z(s;, tx), the 157 standardized log nitrate
concentration measurement at site s; on day fy; see the subsection on the original data base. The
157 x 17 matrix X is made up of 17 explanatory variables (described in the subsection on the
derived data base) each obtained at the 157 location/time combinations. The 17 x 1 vector of

regression coeflicients are to be fitted assuming

var(8) = Do? (15}
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where o2 is unknown (to be estimated) and D is a 157 x 157 diagonal matrix with positive,
possibly unequal, elements on the diagonal.

The weighted least squares fit of 3 is

~

Bus = (X'DIX)1X'D1Z (16)

wls =
the residuals are
§=7Z—XBu, (17)
and the standardized residuals are

p = D"Y?§ = p-1/*z - DY*x3,, . (18)

The model-selection procedure described above considers subsets of the full model

obtained by deleting explanatory variables. The initial weights used correspond to assuming
D =diag(ATL,.. ., ATL AT, . A

where A; is the weighted area for site 1 and the location of A]! on the diagonal corresponds to

the presence of a datum observed at site i.

Heteroskedasticity

Examination of residual plots indicated that the standardized residuals (given by equation
(18)) from the initial models had heterogeneous variances. This heteroskedasticity was
investigated as follows. From (14) and (15), write

D = diag(A7%, .. AT* AZE, . A5F) (19)

the initial weighted regression corresponds to the choice of k = 1. Thus, by fitting the weighting
parameter k in (19), the initial choice of £ = 1 can be confirmed or modified. Because of multiple
samples (over time) at each site, the sample variance of residuals (see equation (17)) S? can be

computed for the i-th site and the relation,
log(S?) = a + blog(4)) ,

can be fit by least squares, yielding estimates & and &. Then an estimate of k would be & = ~ba
value of b close to —1 would support our initial choice of & = 1.
This analysis was carried out and a value of & 2 0.16 was obtained, confirming the

decrease in variability with larger weighted three-day area of influence but indicating that the
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influence of those sites with larger areas should be considerably reduced. Therefore, the model
(14), (15) was refit with D given by (19) and k = 0.16. A repeat of the model-selection procedure

described in the previous subsection yielded the results listed below in the format given by Splus:

Residual Standard Error = 0.7228, Multiple R-Square = 0.5281
N = 187, F-statistic = 11.396 on 14 and 142 df, p-value = 0O

coef std.err t.stat p.value
Intercept -—3.3178 1.6834 -—-1.8708 0.0507
dbo/1000000 —20.6250 4.7281 -—4.3822 0.0000
lpa 80.1685 15.1205 3.9793 0.0001
as 1.3653 0.6651  2.0529 0.0419
hpa 0.0705 0.0170  4.1597 0.0001
she -—-0.0614 0.0159 -3.8709 0.0002
EV 0.2655 0.0563 4.7181 0.0000 (20)
wami{ ~—1.8712 0.2800 -5.89693 0.0000
wam2 —47.8895 11.5019 —4,1636 0.0001
wam3 -—16.8877 6.0289 -2.8011 0.0058
wamé  14.9645 7.4018  2.0217 0.0451
wamb —8.2808 4.0821 --2.0285 0.0444
wam§ —23.2975 6.0935 -—3.8233 0.0002
wam8 9.8388 2.3697  4.1696 0.0001
wam9 -—-26.6024 5.6473 -—-4.7106 0.0000

The standardized residuals & from this model (see equation (18)) were examined using
various diagnostic plots, a normal probability plot, and a stem-and-leaf plot; they were judged
symmetric with a tendency to be heavier tailed than the normal distribution. In the next section,
where spatio-temporal dependence in these residuals is modeled, a weighted-least-squares
criterion is used to fit the variogram estimator and consequently the influence of heavy tails is
down weighted.

It is tempting to use (20) for purposes beyond that for which it is intended, such as
concluding that certain management practices ceuse high/low nitrate concentrations at nearby,
downstream locations. The fitted regression given by (20) is merely a description of the
large-scale variation of the data and should not be “over interpreted.” It is a means to an end,
the end being optimal prediction (with known precision) of log nitrate concentration in streams of

the watershed; see the section on spatio-temporal prediction.
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Small-Scale Variation
The small-scale variation is modeled as a zero mean stochastic process; in what follows, we
shall refer to small-scale variation interchangeably as spatio-temporal dependence. The model
(11), (12) is equivalent to,
Z(s,t) = x(s,t)'B + 6(s,t) . (21)
The large-scale variation is determined once the coeflicient 3 are; the previous section is
concerned with estimating 3 efficiently using weighted least squares. Thus, with the large-scale
variation estimated by
x(8,8)Buis » (22)
one can define the residuals

(s, 1) = Z(5,1) — x(3,8) Bt (23)

or

“residual” = “data” —~ “fit” .

The residual is an estimate of the error (or small-scale variation} and should have zero
mean (under the form of the mode] that was fitted), However, it does not have constant variance
(i.e., it is heteroskedastic). Consider a location s (not necessarily a sampling site) on a stream in

the watershed. Define
A(s) = weighted area of the three-day area of influence upstream , (24)

where the weighted area is defined in an analogous fashion to (2). Indeed, in the notation of (2},

A; = A(s;), where g; is the location of the i-th sampling site. Then, according to (18),
D(s,t) = (A()*19)%(s,1) = A(s)°{Z(s, 1) — x(5,8) Bus} (25)

can be modeled as having mean zero and constant variance. It is to this standardized residual

process that a (intrinsically stationary) spatio-temporal dependence model will be fitted.

The Variogram and Its Estimator

Spatio-temporal dependence can be characterized through the variogram,
27k, 1) = var{(A(s)°%6(s', ) = A(5)°%%5(s, 1)}, (26)

which is assumed to be a function only of the “lags” k and u, and where the space-lag interval

h = ||s’ — s{| is the stream distance between sampling sites, one downstream from the other, and
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the time-lag interval u = |t/ — ¢| is the time between samples. The intrinsic stationarity

assumption in (26) allows 27y to be estimated (e.g., Cressie, 1993, Section 2.4). Define
N(hyu) = {(si; ts), (s5,85) ¢ Isi — sjll = h and [t~ t;] = u}, (27)

where {(s;, ;) : i=1,...,157} are the locations of the monitoring sites and the times that

samples were taken. The classical {method-of-moments) estimator is 2% with

29(hyu) = D {B(sits) - 2(s;,t;) Y2 /IN(h, )], (28)
N(bw)

where | N (h, u)} denotes the number of pairs in N (h, u). The spatial predictors discussed in the
next subsection require a valid variogram model that is obtained by fitting such a model to (28).

The spatial variogram is estimated by dividing the interval [0, max{||s; — s;| : for all ¢, 5}]
into mutually exclusive and exhaustive intervals, or lags. (Recall that here “space” is
one-dimensional, along streams of the upper North Bosque watershed.) A varicgram estimate is
then calculated for each of the lags from all pairs of points whose separation distance falls within
the interval for that lag. For spatio-temporal modeling, this must be done in the temporal
dimension, as well.

The choice of lag boundaries is quite important and is often difficult. Lag boundaries
should be chosen to allow sufficient averaging in the estimator (28); Journel and Huijbregts (1978,
p. 194) recommend that there be at least 30 distinct pairs of points in each lag. However, it is
also important to fit the variogram carefully near the origin. This often means that lag intervals
near the origin should be narrower, even if it results in fewer pairs than is desirable. In the
present case, the first lag in each of the time and space dimensions is a true zero lag. That is,
there are pairs of samples that are collected at the same sampling site (for space), or on the same
day (for time). Table 1 gives the lags that were used for variogram fitting. The numbers of pairs
[N (hi, 4 }| in each of the 6 x 6 lags (the Cartesian product of space lag X time lag) do not always
meet the 30-pair criterion. Of particular note is lag (hg,uq), which has only one pair, and
lag (ho,us), which has only two pairs. Special care is taken with these lags when fitting the
variogram model; see below.

Figure 3 shows the classical variogram estimator (28) as a function of space lag h and time
lag « and it shows clearly that if one fixes the space lag at & = ho(= 0), there is a strong temporal
dependence. Similarly, if one fixes u = ug, spatial dependence is exhibited, although this is not

quite as clearly demonstrated. As one moves away from the origin in both space and time, the
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Table 1. Intervals used to divide space and time lags

Space Interval Midpoint Time Interval Midpoint
Lag of by Lag m of upm

0 0m 0 0 0 days 0

1 (0,6172.69)m  3086.347 1 (0, 20] days 10

2 (6172.69,12345.39]m  9259.041 2 (20, 40] days 30

3 (12345.39, 18518.08] m  15431.735 3 (40, 60] days 50

4 (18518.08, 24690.78] m  21604.429 4 (60, 80] days T0

5 (24690.78, 30863.47) m  27777.123 5 (80, 100] days 90

surface seems to fluctuate somewhat. However, the dip in the variogram estimates near the origin

indicates the presence of spatial and temporal dependence.

robust variogram estimator

0
|

25000

oo
200
45000
40000y

5000

Figure 3. Surface based on empirical variogram estimates
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The variogram (26) must be conditionally negative-definite {(e.g., Cressie, 1993, p. 60);
however, its estimators typically are not. Therefore, in order to carry out valid spatial prediction
(with positive mean-squared prediction errors), a valid variogram model must be fit to the
estimates shown in Figure 3. The proposed model is

0 , h=0andu=0
1+ 0y (1 — et , h#0andu=20

co + 82(1 — e~*2) h=0and u#0
c+0i(1—e ™) f(ca+6(1—-e2)) , h#0and u#0

2y(h,u; 8) = (29)

where the components of 8 = (cy, c2, 01, 2, b1, b2)’ are all non-negative parameters to be fitted.

This variogram model is constructed as the sum of a one-dimensional (along a stream
network) exponential variogram and a one-dimensional (time) exponential variogram. It is easy to
see that the covariance function associated with this variogram model is positive semi-definite.
However, because it is not strictly positive-definite, there are particular arrangements of sample
sites that can cause singularities in the kriging system (Myers and Journel, 1990; Rouhani and
Myers, 1990). This arrangement of sample sites did occur during prediction but it is not difficult
to handle it; see the end of the next subsection.

The parameters of the variogram model (29) were fitted to the empirical estimates (28)
using the following steps. First, we concentrated on estimating (cg, o, b2) by fixing k = 0 and
fitting a one-dimensional (time) exponential variogram model to the variogram estimates obtained
from (28). When A is fixed at 0, there are sufficient pairs of points for averaging (in the variogram
estimator) with narrower lag intervals (seven intervals from 0 to 84 days in steps of 12 days and
the eighth interval from 84 to 100 days) than in Table 1, so these narrower lags were used.

The variogram model was fitted using the weighted-least-squares criterion given by Cressie

(1993, p. 99). That is, minimize with respect to 8 = {¢3, 62, b;)’ the following criterion:

8

2 w(um; 0){F(0,um) = (¥(0, um; 6))}*, (30)

m=1

with weights w(um; 6) given by
|V (0, um)|
{7(0,um; 6)}%°

where N (0, 2,,) is given by (27). The criterion (30) was minimized using a grid-search algorithm

(31)

written in Splus. The resulting parameter estimates are (&, s, by) = (0,1.100,0.045).
Next, the parameter ¢; was estimated by fixing v = 0 and examining the resultant spatial

variogram estimates. The variogram estimate at h = 0 is 0.004, which is very close to 0 (see
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Figure 3), Even though only one pair of points was used in this estimate, evidence from the
estimated variogram values for A near 0 and the fitting of the temporal variogram at kA = 0,
corroborated the estimated value of é = 0.

Finally, the two parameters (f;,5;) was fitted to the empirical variogram estimates shown

in Figure 3 by first fixing ¢z, 02, b2, ¢1 at their estimates and then minimizing with respect to

(61 y bl):
5 5

E Ew(hh Upny (911 bl)){’?(h‘h u‘m) - 7(hh Um; (911 bl))}2 3 | (32)

m=0 [=1

with weights w(hi, um; (81, 81)) given by

|N (A1, )]
{7(hla Um; (Gla bl))}2 .

In (32) and (33), Y(hy, tm; (61, 51)) is given by (29) with the previously fitted parameters fixed at

(33)

their respective estimates.

The resulting parameter estimates are (4;,51) = (0.4920,0.0019), which, along with
(21, 8,62, 85) = (0,0, 1.100,0.045), are substituted into (29) to yield the fitted model. This model
is displayed in Figure 4 with fitted values (&, &, 81,83, b1,42) = (0,0, 0.4920,1.100, 0.0019, 0.045).

Optimal Prediction on the Stream Network

The data base shows 157 observations of (log) nitrate concentrations at 17 stream
sampling sites during a 15-month period. What log concentration could be expected anywhere
along the stream network and on any day, given rainfall amounts at the six precipitation gauges
shown in Figure 1 and management practices at the upstream dairies? The statistical model
fitted above allows this question to be answered with known confidence.

Recall that the model fitted was:

Z=X,@wfs+3 y

where the residual process § (s,t) serves as a proxy for the spatially-dependent error process d(s,t)
defined in (21}. The spatial and temporal dependence in the residual process has been
characterized by the variogram 2-y(h, 1), estimated in the previous subsection. Using the theory of
geostatistics (e.g., Cressie, 1993, Part 1), it is possible then to predict (krige} a value of Z at
stream location sg, which is not necessarily a sampling site, at time ¢g. It is also possible to
quantify the precision of the predictor through its root mean-squared prediction error (kriging

standard error).
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Figure 4. Surface of fitted variogram model.

The approach carried out here is to implement ordinary kriging on the residual process
(small-scale variation) and then to add back the residual predicted value to the estimated mean
process (large-scale variation) to give a final predicted value and its associated root mean-squared
prediction error. The first stage involves predicting 5(50, to), the residual log nitrate concentration
at a stream location sy and a time fg, from “data” {S(S;,t{) :t=1,...n} or, equivalently, to
predict &(sq,tp) from “data” {6(s;,¢;) :¢=1,...n}, where n is the number of samples taken
upstream or downstream from site sp and within the past sixty days of time g, and is often much

less than 157; see equations (23) and (25) for definitions. Write the residual and standardized
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residual observations as 6 and i, respectively.

Following the development in Cressie (1993, Section 3.2), define

7(ht’jauij) y =10, i=1,00n
I'o= 1 , t=n+1 5=1,...,n (34)
0 , t=n+l, j=n+1,
where the remaining entries of I'p are filled in by symmetry. Also define

Yo = (v(hot, 201}, - - -, Y{Bons 2on), 1)’ (35)

The subscripted lags in (34) and (35) are given by A;; = ||; — s;|| and w;; = [t — ¢5]; 0< 4,7 < n.
The ordinary kriging predictor is given by,

pu(se, tg) = Zz\;ﬂ(s;,t;) =Av, (36)
1=1
subject to the unbiasedness restriction,

AM=1, (37)

n
1=1

Using the method of Lagrange multipliers, the optimal coefficients in (36) are given by
(M- Anm) =T5lyg (38)

where m is the Lagrange multiplier that preserves the unbiasedness condition (37). The root
mean-squared prediction error (i.e., kriging standard error) of the optimal predictor (36), (38) is

given by
my (s0,0) = {¥6T5 70 }% - (39)
From (25), the ordinary kriging predictor of §(sq, to) is
ps(s0,0) = A(s0) " %Ppy (s0,t0) = A(s0) "% (N'D) (40)
where A = (Ay,...,A,) is obtained from (38) and the kriging standard error is
m (so, to) = A(s0)™"%%m, (s0, 20) . (41)

From (23), one may finally conclude that the optimal predictor of Z(so, ;) is

Pz {80, to) = (S0, t0)' B, + Ps(sosto) - (42)
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The kriging standard error is, ignoring the smaller order effect due to the estimation of 3,

mz(so, to} = ms{so, ta) , (43)

which is the same as (41). As a consequence, an approximate 95% prediction interval for Z(sg, tq)
is

pz(s0,to) £ 2mz (s, to) . (44)

As noted in the previous subsection, because of the form of the variogram model (equation
(29)), the matrix given by (34) can have singularities that make its inverse indeterminate. This
situation, which is caused by particular configurations of sample locations (in space and time),
did occur in this analysis. It was corrected for by jittering or perturbing the time coordinate u by
a small amount. This is scientifically meaningful, because temporal readings are only precise to
the nearest 24 hours and so the exact time the recording was taken is unknown. Matrices were

then invertible and prediction could proceed.

Spatio-Tempora! Prediction in the Upper North Bosque Watershed
Predictions were made at three sampling sites, sites 7, 11, and 12, on a date (June 10,
1992} that was beyond the period of record used to develop the model but for which samples were
available. This was done in order to validate the predictive capability of the model. For all sites
(7, 11, and 12), the observed values for the standardized log-nitrate concentration fall within their
approximate 95% prediction intervals given by (44). Table 2 shows the observed and predicted

values.

Table 2. Observed and predicted values for June 10, 1992
Site Observed ©Observed Predicted Predicted Predicted  Pred Interval Interval
NOs Stzd Log Regression Error Stzd Log  Std  (lowend) (high end)

{(mg/1) Error
7 2.78 0.3022 0.7678 0.3132 1.081 0.6483 -0.2155 2.3776
11 3.77 0.8016 1.0678 0.7345 1.8023 0.7011 0.4001 3.2044
12 4.44 1.1300 1.5969 0.7271 2.324 0.6161 1.0919 3.5562

In this table, observed NO3z(mg/l} is the observed nitrate concentration; Observed Stzd
Log is the standardized log of the observed nitrate concentration; Predicted Regression is the first
component of (42), due to the explanatory variables and estimated regression parameters;
Predicted Error is the second component of {42), due to the spatio-temporal prediction of residual

values; Predicted Stzd Log is the sum of the previous two values, namely the predicted value of
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the standardized log-nitrate concentration given by (42); Pred Std Error is given by (43); and
Interval (low end) and Interval (high end) are the ends of the approximate 95% prediction
interval given by (44).

Because the concentration observed at site 12 for June 10 fell very near the end of the
95% prediction interval and because of the site’s close proximity to the Stephenville, TX
waste-water-treatment plant, cross-validation was carried out for site 12 on each of the dates for
which data were available. Cross-validation was conducted by predicting the log-nitrate
concentration without using the sample collected at the site on the date for which prediction was
carried out. The results are shown in Table 3. The predictions for twelve of the thirteen dates fell
within the 95% prediction interval. Furthermore, on seven of the thirteen dates, the prediction
was lower than the observed value, while on the remaining six dates, the prediction was higher
than the observed value. The conclusion from this is that the model is neither consistently

underpredicting nor consistently overpredicting the actual value at site 12,

Table 3. Results of cross-validation for site 12
Date Observed  Predicted Predicted Predicted Pred Std  Interval Interval
Stzd Log Regression Error Stzd Log Error (low end) (high end)

4/4/1991 1.3909 1.5241 -0.4343 1.0898 0.4666 0.1565 2.0231
5/8/1991  0.8590 1.5241 -0.4325 1.0916 0.463 0.1655 2.0177
6/5/1991  2.0147 1.524]1 .1468 1.6709 0.4641 0.7426 2.5092
7/2/1991  1.9413 1.2622 -0.4258 0.8364 0.466 -0.0955 1.7683
8/14/1991 1.1051 1.2622 0.2427 1.6049 0.4522 (.6005 2.4092
9/4/1991 1.6890 1.2622 -0.4622 0.8 0.4472 -0.0945 1.6944
10/2/1991  2.0114 1.786 -0.5624 1.2236 0.4472 0.3293 2.1179
11/18/1991  2.0640 1.786 -0.2764 1.5096 0.4534 0.6028 2.4163
12/6/1991  2.1861 1.786 -0.1572 1.6288 0.454 0.7209 2.5368
1/15/1992  2.1670 2.0479 0.3557 2.4036 0.448 1.5075 3.2996
3/11/1992  1.9894 2.0479 0.0447 2.0925 0.4489 1.1948 2.9903
4/8/1992  2.0333 1.5241 0.6357 2.1598 0.4489 1.2621 3.0575
5/7/1992  2.1375 1.5241 0.6846 2.2087 (0.4488 1.3111 3.1064

Predictions were also made at nineteen non-sampling sites, located from just upstream of
site 11 to just downstream of site 12, which represents a stream distance of approximately 10 km.
This was done in order to illustrate the predictive capabilities of the model at locations for which
samples were not taken. All data either upstream or downstream from the prediction site and
recorded within 60 days of the prediction date were used in the kriging equations (42), (43), and
(44). Consequently, the number of data n used for prediction varied according to prediction site

and prediction date. Figure 5 illustrates the locations of the three sampling sites and the nineteen
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additional sites, numbered 50 through 69, at which predictions were made.

0.5 | MILE

0 0.3 | KILOMETER

Figure 5. Locations of three sampling sites (numbered 7, 11, and 12) and nineteen prediction
sites (numbered 51 through 69)

All significant explanatory variables (e.g., distance to basin outlet, number of dairies per
acre) were calculated for each site and prediction was conducted for June 8, 1991; the results are
presented graphically in Figure 6. Figure 6a shows the predicted values of standardized
log-nitrate concentrations and Figure 6b shows the prediction standard error of the predictions,

given by (43). The graduated symbols in these figures are calibrated as follows: The diameter of
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the circle representing the smallest predicted value (-0.8837) is put equal to 0.1 inches and the
diameter of the circle representing the largest value (2.6735) is put equal to 0.4 inches. Diameters

in between are interpolated exponentially with an exponent of 0.75 chosen in accordance with

Stevens’ law of visual perception (Stevens, 1975).

Other dates were chosen for prediction, June 7 and 9, 1991, and June 10, 1992, as well as
June 8, 1991. The full table of results, analogous to Tables 2 and 3, can be found in Majure

(1995).

Predicted Jog nitrate
concentrations

0.6968
2.1833

0 0.5 1 MILE
: g

0 05 | KILOMETER

Preciclion standard crrots
8 0.3579
8 05928

Figure 6. a) Predicted standardized log-nitrate concentrations

b) Prediction standard errors
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Discussion

The spatio-temporal model presented allows the prediction of contaminant concentrations
in space and time with known confidence. This model presents a novel approach to the use of GIS
and statistical modeling to solve the spatio-temporal prediction problem.

One aspect of the results of the model that might be somewhat discouraging to some is
the large variation of the predicted values. If, for example, one converts the prediction interval
calculated for site 12 on June 10, 1992 (see Table 2) back into mg/l, the interval becomes
1.0094-48.8436, which is quite large. This variation can be largely explained by the low sampling
density in space and time. An examination of the fitted variogram model indicates that, as the
distance increases in either space or time from a prediction point to a sample point, the variogram
values increase quickly to twice the overall variance of the data. Thus, when predicting, if there
are no samples in close proximity (in space and time) to the prediction site, the prediction
standard error will be large. In the current study, the sampling design of monitoring locations (in
both space and time) was largely ad hoc, and certainly was not implemented with this kind of
prediction exercise in mind. Having said this, the prediction intervals do provide important
information, namely, away from the sample locations and times prediction is very difficult to
accomplish with a high degree of precision.

An important assumption of the model is that the residual process defined in (4.5) has
zero mean and is intrinsically stationary. That is, it represents only zero-mean, spatio-temporal
statistical variation and not deterministic variation., However, there is one source of deterministic
variation that is not explicitly accounted for, due to lack of appropriate data. Land-use
distribution in the watershed is important for several reasons. First of all, it might have provided
information on additional potential sources of contamiration in the form of agricultural fields
upon which chemical fertilizers are applied. Second, it has an important effect on the transport of
materials (specifically nutrients) from the land surface to the surface-water system. Land use also
has a dramatic affect on the rate of movement of water over and through a landscape; Maidment
(1993) uses it to control flow velocity in the development of a spatially explicit hydrograph, which
is essentially what we are emulating with the precipitation variable.

The spatio-temporal statistical model has appealing characteristics in spite of the problems
described above. First, the model is statistical and, therefore, provides estimates of the precision
of predictions. Large prediction intervals simply indicate that the quantity is difficult to predict
accurately in time and space. Another appealing feature is the model’s ability to take physical

conditions into account through easy quantification of physical landscape characteristics in a GIS.
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Finally, the model makes use of nearby samples {in space and time) to obtain the best predictor.
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