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Exploiting the Relationship between
Farm-Level Yields and County-Level Yields

for Applied Analysis

Scott Gerlt, Wyatt Thompson, and Douglas J. Miller

County-level yield data are used in applied research and crop insurance policy in place of farm-
level yield data, which are likely sparse, not broadly representative, and subject to selection bias.
We exploit the fact that county-level yields are the aggregate of farm-level yields to derive bounds
that can be reduced to direct relationships between county- and farm-level yields under certain
conditions. Simulation experiments indicate that crop insurance premium estimates derived from
this method have the potential for bias in certain conditions but are reasonably precise in other
conditions, suggesting that these relationships are a new tool for applied analysts.
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Introduction

Farm-level yield data have become a primary factor in agricultural policy and crop insurance
rating. However, researchers often have trouble analyzing these programs because existing farm-
level yield data are sparse, might not be broadly representative, and might suffer from selection
bias. Consequently, the basis for decision making is less firm, potentially leading to erroneous
conclusions. National Agricultural Statistics Service (NASS) data represent many county-crop
combinations and often have long time-series, particularly in key growing regions, providing
researchers a foundation for empirical assessment of primary yield distributions. These data and
the research literature based on them have been used as a basis for making decisions, including crop
insurance and farm program analysis.

United States support for agricultural commodity producers has shifted to crop insurance, and
this trend seems set to continue under the latest farm bill. Crop insurance subsidies amounted to
$0.2 billion (in 2009 dollars) on $14.3 billion in crop value in 1991 and $5.4 billion in subsidies
on $79.6 billion in crop value in 2009, whereas program payments to U.S. farms summed to about
$12.3 billion in 2009 (and were as high as $24 billion in 2005) (White and Hoppe, 2012). The
2012 drought decreased the national average corn yield to just over 120 bushels per acre from
predrought expectations of 166 bushels per acre (Office of the Chief Economist, 2012), highlighting
the risk that crop insurance policies are intended to mitigate. The 2014 Farm Bill will continue to
shift the focus of agricultural policy toward crop insurance and farm revenue protection programs,
terminating direct payments altogether. Some of the proposed crop insurance programs provide
options to farmers to choose coverage based on county- or farm-level yields.
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Analysts trying to estimate the impacts of proposed farm bills must undertake ex ante assessment
of crop insurance and similar policies. County-level yield data might be the starting point for such
assessments and are appropriate for policies or policy options that operate at that level. However,
analysts might also use county-level data for programs that operate at the individual level to make the
problem tractable. Insurance options with a county-level yield trigger, like the U.S. Group Risk Plan,
raise related questions about how county-level yield insurance relates to farmers’ individual risks
and, consequently, their participation rates. While RMA USDA Risk Management Agency (2010,
2011) collects and generally uses farm-level data, information supplied by farmers in the course of
an insurance program might suffer from selection bias, and historical data for any particular crop on
any particular farm might be too sparse, disallowing strong conclusions about the nature of farm-
level crop-yield distributions.

Research has identified and addressed several potential challenges relating to accurate estimation
of actuarially sound premiums based on county-level yield data. Miranda (1991) develops an
innovative model that disaggregates farm-level yield variability into systemic and idiosyncratic
components, elaborates propositions linking model parameters to crop insurance choices and
outcomes, and simulates the model for farm-level data representing 102 soybean farms in Kentucky
to calculate critical values of parameters and optimal premium rates. A key element of the Miranda
model is a farm-specific parameter, beta, that governs the extent to which the systemic component
apparent in the regional yield deviation from regional mean is reflected in any particular farm’s
deviation from its own mean.

The Miranda model has become a workhorse for crop insurance and farm-level policy studies.
Researchers typically start with an assumption about the beta that defines systemic risk in farm-
level yield variability—the key link from county-level data to farm-level data—and end with a
simulation model to highlight the impact on program operation. Coble and Dismukes (2008) develop
a representative farm using a beta equal to 1 and with yield variation calibrated to observations
from farms participating in federal programs. They then test the implications of various commodity
revenue programs. Cooper et al. (2012) use county data to augment crop insurance premium
determination. Coble and Barnett (2008) allow the farm-specific beta to vary over an assumed
normal distribution in their investigation of whether the addition of area revenue risk insurance
program might account for the systemic component of farm risk and leave private insurers to handle
idiosyncratic risk. Carriquiry, Babcock, and Hart (2008) estimate the beta parameter for nine crop
reporting districts, then use a simulation model to calculate impacts of the estimated parameter
on crop insurance programs. Coble, Heifner, and Zuniga (2000) start with a similar assumption
regarding the link from county- to farm-level yield distribution, then go on to prove that the average
farm yield variance in a county equals the county yield variance plus the average variance of farm-
to-county yield differences. This framework is exploited to calculate optimal futures and put ratios
under four alternative insurance programs. Barnett et al. (2005) compare regional and individual
insurance programs with empirical application to farm-level yield data for tens of thousands of
corn farms and thousands of sugar farms, but they are unable to estimate the farm-specific beta of
Miranda’s specification over data representing ten years.

While some researchers use county-level data to represent farm-level outcomes (e.g. Zulauf,
Dicks, and Vitale, 2008), others have used a variety of ways to account for potential differences.
Schnitkey, Sherrick, and Irwin (2003) rescale county data using farm records, and Goodwin (2009)
added a shock to state yields to account for the extra variability at the farm level. Bulut, Collins, and
Zacharias (2012) use a theoretical optimization framework to show that farmers prefer actuarially
fair individual insurance to actuarially fair area insurance, but their choices will change if one or
the other is provided free. Deng, Barnett, and Vedenov (2007) estimate a kernel function for farm-
level yield distributions over selected RMA data supplemented by NASS county data and find that
regional-level insurance might be preferred over individual insurance if the premium is substantially
lower. Cooper (2010) assesses the effects of the Average Crop Revenue Election program, under
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which payments are partly governed by regional triggers, on the distribution of farm revenue and
finds increases in values at the low-end of this distribution.

Other researchers have investigated the distribution of crop yields. Goodwin (2001) shows that
the correlation structure may be state contingent and vary with climate conditions. Just and Weninger
(1999) stress certain problems, including the risk of understating yield variation if aggregated data
are used to represent farm-level yield variation. Some researchers find the normal distribution
adequately fit their data, some rule out the normal distribution, and some sidestep the problem
by applying a nonparametric density function (Atwood, Shaik, and Watts, 2003; Claassen and
Just, 2011; Goodwin and Ker, 1998; Harri et al., 2011; Just and Weninger, 1999; Ker and Coble,
2003; Ker and Goodwin, 2000; Koundouri and Kourogenis, 2011; Ramirez, Misra, and Field, 2003;
Sherrick et al., 2004; Tack, Harri, and Coble, 2012). Claassen and Just (2011) focus specifically on
the regional or systemic component of farm-level yields in RMA data, finding strong correlation
within county and significantly higher farm-level yield variability.

Two general conclusions can be drawn from the yield-distribution literature. First, uncertainty
remains about the best way to represent the farm-yield distribution, partly because county-level data
often must be used in place of farm-level data. This suggests that no particular distribution should
be considered definitively and universally applicable to crop yields. Second, some of these studies
create a useful method of measure by analyzing the implications of various representations of data
in terms of their implications for crop insurance programs.

A challenge that persists in the crop insurance, policy analysis, and crop yield literature is based
on the difficulty of applying county-level yield data with farm-level yield distributions. While some
studies estimate the link for specific commodity-county combinations, we are aware of no study that
has so wide a scope that the results can safely be extrapolated to analyze or support implementation
of federal programs that are available to the vast majority of crop farms. If researchers seek to
inform policy makers by relying on quick assessments of proposals during the course of a debate,
then narrowly focused studies or studies based on past programs rather than proposed programs
might be of limited use.

We offer a new approach to this problem that builds from the definition of county data as the
sum of its parts and some stylized facts about farms within the county in order to provide a tool for
using county-level data for farm-level crop insurance program assessment. Whereas some studies
have drawn on the fact that farm-level yields aggregate to county-level yields to supplement analysis
(Barnett et al., 2005; Coble, Heifner, and Zuniga, 2000; Just and Weninger, 1999), we begin from
this relationship to see what inferences about individual crop insurance can be drawn from county-
level yield data. Our approach requires no assumption about the distribution, and the method can
be applied regardless of the distribution of farm-level yield and even if distributions and interfarm
correlation are not constant or vary under different weather conditions (Goodwin, 2001; Hennessy,
2009). There is some scientific knowledge about the relationships between individual observations
and aggregate statistical measures of the distribution, but to the best of our knowledge no effort has
been made to develop general guidelines that are less dependent on the underlying distribution or to
apply these relationships to critically important questions relating to crop insurance.

A key conclusion to our work is that (to the extent that each individual farm represents
an insignificant share of county production and yield variances are unrelated to interfarm yield
correlations) the relationship between the county yield distribution and component farm distributions
reduces to a tractable problem that is amenable to ex ante policy analysis or risk premium
calculations.

Mathematical Representation (proofs available in appendices)

County yield is an aggregation of yields of farms located in the county, so county yield variance
contains useful information about underlying farm variances. Consider a county, c, with n farms
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with yields {x1,x2, . . . ,xn}, each with a wi fraction of acres in the crop for the county. By definition,

(1) σ
2
c =Var

(
n

∑
i=1

wixi

)
=

n

∑
i=1

n

∑
j=1

ρi, jwiw jσiσ j,

where Var(c) = σ2
c , Var(xi) = σ2

i , Var(x j) = σ2
j , ρi, j =Corr(xi,x j), and ∑

n
i=1 wi = 1. Because the

actual parameters are unobserved, let ρi, j, σi, and σ j be treated as random variables such that
E[ρi, j] = ρc and E[σi] = E[σ j] = σ f . The expected interfarm correlation, ρc, is calculated as1

(2) ρc =
∑

n
i=1 ∑

n
j 6=i ρi, jwiw j

∑
n
i=1 ∑

n
j 6=i wiw j

=
∑

n
i=1 ∑

n
j 6=i ρi, jwiw j

1− ∑
n
i=1 w2

i
.

The expected farm standard deviation in the county, σ f , can be expressed as

(3) σ f =
n

∑
i=1

wiσi.

These properties can be used to develop a relationship between county variance and farm yield
standard deviations, namely

σ
2
c = (σ f )

2
ρc − (σ f )

2
ρc

n

∑
j=1

w2
j + (σ f )

2
n

∑
j=1

w2
j +

(4) n

∑
j=1

w jσ jCov(ρi j| j,σσσ) + σ f

n

∑
j=1

w jCov(ρi j| j,σσσ),

where Cov(ρi j| j,σσσ) is the covariance between the jth row(column) of the correlation matrix and the
vector of farm standard deviations, σσσ . This relationship depends partly on shares of each farm’s area
in the county total and correlation among farms as well as the underlying standard deviations.2 To
our knowledge, this is the first time the relationship between aggregated random variables has been
written in this form. The following propositions and lemmas are also the first known representations
of the properties, unless otherwise noted.

(Proposition 1:) ρc ∈
[
− ∑

n
i=1 w2

i

1− ∑
n
i=1 w2

i
,1
]

This proposition establishes a range of feasible values for the average interfarm correlation within
a county. As an aggregate of its parts, the county average correlation cannot be too negative,
where shares of individual farms define exactly where that lower limit lies. On the other hand, it
is theoretically possible that a county could have an interfarm correlation of 1 if all farm yields
move alike. This result is independent of the distribution of farm yields.3

The lower limit of this proposition does not map directly to the Miranda method of yield
decomposition into systemic and idiosyncratic components. The Miranda approach suggests that
some fundamental factors drive all county yields alike, whereas our lower bound on average
interfarm correlation is derived from farm-to-county aggregation and is simply an unavoidable
lower bound irrespective of the fundamental factors. However, researchers might take from this
proposition support to assume at least some value, depending on farm shares, for the beta parameter
that otherwise represents systemic risk in applied work based on the Miranda model.

1 For discrete random variables, the population mean is equal to the expectation.
2 Due to Jensen’s inequality, the square of the average farm standard deviation does not necessarily equal the average farm

variance. The former will be larger if there is more than one farm; otherwise they are equal.
3 If the distributions are known, Frechet-Hoeffding bounds can be used to bound the individual farm correlations and

might imply an even tighter bound for the average (De Veaux, 1976).



Gerlt, Thompson, and Miller Farm- and County-Level Yields 257

Policy makers might make use of the fact that the lower bound on the average correlation among
farm yields within a county depends on farm shares, as well as the lack of upper bound short of
perfect correlation. While average effects might not be the sole goal of policies, placing bounds
on average interfarm correlation within the county might already be a step forward. Moreover, a
defined range of average interfarm correlation might be a useful tool for assessing regional insurance
program options.

(Lemma 1:) σ
2
c ∈
[
0,(σ f )

2]
County variance cannot exceed expected farm standard deviation squared. This finding is to our
knowledge the first formal statement of this property, although it has been previously conjectured
(Tack, Harri, and Coble, 2012). Furthermore, this lemma based on aggregation reinforces previous
research, including empirical findings that suggest farm-level yield variation is greater than in
county-level yield variation. Like any variance, county variance cannot be negative but can
theoretically be 0. In practice, given that farms within a county have close spatial proximity,
we would not expect all the conditions to be met such that the county has a variance of 0 (for
example, only two farms in the county with identical share-weighted variances and perfect negative
correlation). Therefore, it seems extremely unlikely that the theoretical lower bound would ever be
observed.

(Lemma 2:) σ
2
c → (σ f )

2
ρc + E[σ jCov(ρi j| j,σ)] + σ f E[Cov(ρi j| j,σ)] as wi→ 0 ∀ i

The county variance approaches the product of the average farm standard deviation squared and
the average interfarm correlation, plus a deviate based on the relationship and size of the standard
deviations of the farm variances and correlations as individual farm shares decline. If the farm
variances are homoskedastic or the interfarm correlations are constant, then the deviate approaches
0 if farm shares approach 0. Conversely, under very extreme assumptions about farm variances, the
deviate has a theoretical maximum value of (σ f )

2.
This proposition relates to the case that the weights approach 0, but there may be lessons for

applied research nonetheless. The proposition is relevant provided there are not a handful of farms
that account for the near entirety of production within the county, which is already a prerequisite of
NASS reporting data from a county. The proposition does not require homogeneous farm size, but if
the farms were homogeneous with regard to production, then ∑

n
j=1 w2

j would equal 1/n. In that case,
with just twenty farms growing a crop in a county, the ∑

n
j=1 w2

j term in the identity would equal just
0.05. Referring to the proof, the deviate would not drop out completely, as in the case that shares
approach 0, but the importance of this term would be diminished and might be ignored for certain
calculations.

(Lemma 3:) σ
2
c ∈
(
(σ f )

2
ρc,(σ f )

2] if Cov(ρi j| j,σ) = 0 ∀ i, j

This lemma starts from the case that the correlation among farm yields does not vary with the farm
standard deviation. (That is to say, the correlation between yields on any two farms does not tend to
be higher or lower as the yield standard deviations of those farms rises.) Absent such a relationship,
county-level yield variance cannot be less than or equal to the product of average interfarm
correlation and average farm standard deviation squared, and the county-level yield variance cannot
be greater than the average farm standard deviation squared. As the individual shares of production
decreases, the county-level variance decreases toward the lower bound, (σ f )

2ρc, provided farm-to-
farm yield correlation is not related to farm-level yield variance. In the case that there is one farm
producing the crop in the county, then the county variance will equal the farm variance, as expected.

This proposition depends on an assumption that might not be very limiting in practice
and has been used before in other fields. For example, Spearman (1910) and Brown (1910)
use homoskedasticity, which is an instance of the assumption, with equation (1) to derive the
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Figure 1. Empirical Studies of Farm to County Standard Deviation (X-Axis) and the Implied
Average Interfarm Correlation Based on Proposition 2 (Y-Axis).

Notes: ρc ≈ 1
(σ f /σc)2 according to proposition 2.

Spearman-Brown prediction formula. Moreover, constant interfarm correlation, in addition to
homoskedasticity, would be consistent with lemma 2 because it also corresponds to Cov(ρi j| j,σσσ) =
0. Given that farms in a county are defined by their spatial proximity, they might be expected to have
similar, if not identical, standard deviations and interfarm correlations.

(Proposition 2:) σ
2
c → (σ f )

2
ρc where ρc ∈ [0,1] if Cov(ρi j| j,σ) = 0 as wi→ 0 ∀ i

The county variance approaches the product of the average farm variance and the average interfarm
correlation if the conditions of lemmas 2 and 3 hold. Given that (a) farm shares approach 0 and
(b) the correlation of each farm’s yield with other farms’ yields does not relate to the level of the
farm’s yield variations, then the county-level yield variance relates simply to expected farm-level
yield variance and the correlation among those yields.

Going farther, proposition 1 defines the boundary for correlation among farm yields, ρc ∈ [0,1].
Combined with the two conditions above, this bounds county-level yield variance between 0 and the
average farm variance, or σ2

c ∈ [0,(σ f )
2], as shown based on different assumptions in lemma 1. As

correlation among farm yields in the county rises, the county-level variance converges to the average
farm variance squared, given the other conditions of this proposition.

Only a few studies have empirically estimated the ratio between average farm standard
deviation and county standard deviation. Applying proposition 2 to these estimates implies interfarm
correlation coefficients (figure 1). For example, Cooper et al. (2009) use data from two data sets
of farm records for Illinois and Kansas and the NASS county data to calculate the average ratio
for the county. These points are identified by state and crop, with the x-axis from the estimated
value and the y-axis correlation based on proposition 2. Claassen and Just (2011) use RMA data
for a similar comparison. For this study, the Corn Belt (CB) and Northern Plains (NP) are plotted.
The corresponding correlations range from 0.8 to slightly less than 0.5, which conform to a priori
expectations about strong correlation among farms within a county.
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The conditions for proposition 2 do not appear to be problematic, as the range of correlations
implied from previous studies proves quite reasonable. However, this is an empirical question for
which the error can be measured for any particular case in which farm-level yield data are available.
In a study with available data, researchers can test to see whether farm sizes are quite small and
whether the correlation among farm yields is related to individual farm yield variances. To the extent
that this relationship is weak among many farms in a county, proposition 2 can be validated.

However, farm-level yield data are not always available or easily accessible, nor do they always
have a long enough time series for reliable statistical testing. The question we pose is whether using
the results of these propositions, both at the boundary conditions and under alternative assumptions,
can facilitate research or policy implementation that relies on county-level yield data in place of
unavailable or insufficient farm-level yield data. A key question is the risk of error. Simulation
experiments address this question in the next section.

Simulations

Simulations suggest that these relationships between county and farm yields have some value in the
context of crop insurance and policy analysis and suggest more broad applicability. The simulations
start with the farms in a hypothetical county that are characterized by their (1) number and share
of production, (2) individual farm yield distributions that are characterized by mean and standard
deviation that can be drawn randomly from distributions of their own, and (3) correlation between
yields of each pair of farms in the county. The mathematical limits proven above are used to generate
estimates of the farm-level yield based on observed county yields. When combined with a specific
coverage level, which is characterized as a loss threshold that induces payments, the simulations
generate the actuarially fair premium from the farm-level data and also the estimated premium based
on county data and the mathematical limits. The simulations also include premiums calculated from
unadjusted county data as point of comparison. These premiums give a measure of error that is
relevant if the formulas derived mathematically are used in applied analysis and for crop insurance
implementation. Another measure that is less relevant to applied work but goes more directly to the
underlying approximation is the comparison of the ratio of county-level yield variance to farm-level
yield variance, σ2

c /(σ f )
2, and correlation among farm variances, ρc. Under proposition 2, the ratio

of variances should converge to the average correlation.
The simulations start by generating yields for n farms 500 times. The weights, means, standard

deviations, and distributions of the farm yields are allowed to vary between scenarios. We impose
a correlation matrix of our specification on the farm yields using a method that essentially reorders
the results of independent marginal distributions to achieve a specified correlation matrix (Iman
and Conover, 1982). This approach is distribution free, which allows the evaluation of different
distributional assumptions. Although copulas have gained attention lately, imposing the correlation
matrix is the only concern of this step. Copulas could also achieve this end, but are not necessary as
long as the farms exhibit the imposed correlation structure.

The county-level yield for each iteration is simply the weighted sum of the farms, as is actual
NASS county-level yield data used in applied research and policy design. The average farm and the
county standard deviations are calculated from these synthetic data. Last of all, ρc is calculated from
the correlation matrix of the 500 correlated yield draws.

While most of the parameters for the characterization of the hypothetical county are
straightforward, the correlations are more complex. The correlation matrix must have unitary
diagonals and be positive semidefinite. We rely on a method by Higham (2002) to find the correlation
matrix nearest our specification. If the matrix of weights used in the algorithm is the identity matrix,
the process is simply to compute the spectral decomposition of the correlation matrix, set the
negative eigenvalues to 0, recompose the correlation matrix with the new eigenvalues, and set the
diagonals to 1. This process is repeated until the correlation matrix converges.
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Simulations with Full County Data

In this first set of simulations, we calculate crop insurance premiums for a corn yield protection plan
based on all 500 draws of the farm data and the county in order to evaluate the convergence of the
populations. The actuarially fair premium for farm i is calculated as

(5) Prem(i) =
1
m

m

∑
d=1

max(0,αE[yi]− yi:d)× 5.68,

where α is the coverage level, yi:d is the dth draw of farm i, and $5.68 is the yield protection price
offered for corn in 2012 for much of the Corn Belt. The average premium for a county is derived
by taking the weighted sum of the farms, Prem(i)∗ = ∑

n
i=1 wiPrem(i). The actuarially fair premium

derived from inflating the county data is

(6) Prem(c)∗ =
1
m

m

∑
d=1

max
(

0,αE[yc]−
(

yc:d − E[yc]√
ρc

+ E[yc]

))
× 5.68,

where ρc is calculated from correlated draws and yc:d is the weighted average of the farm yields
from draw d. This specification inflates the county deviates consistent with proposition 2 so that the
county-level yield standard deviation approximately equals the average farm-level yield standard
deviation. Last of all, we include the noninflated premium from the county data, which is calculated
as

(7) Prem(c) =
1
m

m

∑
d=1

max(0,αE[yc]− yc:d)× 5.68.

Table 1 represents the simulation outcomes of nine scenarios. The first scenario assumes twenty
identical farms with equal production shares and normally distributed farm yields with mean 175
and standard deviation 35 in every case. The distinguishing factor is cross-farm correlation: yields
are randomly correlated between 0.5 and 0.9. The small number of farms with unrelated standard
deviations and correlations corresponds to lemma 3. Consistent with the lemma, the ratio of the
county variance to the farm variance is at least the average interfarm correlation. However, even with
this small number of farms, σ2

c /(σ f )
2 and ρc are very close. The average farm premium for the first

scenario is $9.92 compared to $10.01 estimated from the county data, implying that using county-
level averages would result in an overestimate of the premium by just under 1%. Conversely, the
unadjusted county premium is $5.01, approximately half of the average farm premium. In this case,
adjusting the county data provides a good estimate while not doing so would result in considerable
error.

The next two scenarios build directly from the first. The second scenario in table 1 is identical to
the first except for the increased number of farms within the county. This scenario corresponds
more closely to proposition 2. In this scenario, the ratio of the county variance to the farm
variance converges more closely to interfarm correlation relative to the previous scenario, supporting
proposition 2. Once again, the premiums calculated precisely from the farm data and the premium
estimated from the adjusted county data are only about 1% different, while the unadjusted county
data premium is only about 50% of the average farm premium. The third scenario is identical to the
second except the mean and standard deviation of each farm is drawn from uniform distributions.
This scenario also corresponds to proposition 2 and adds greater farm-level heterogeneity, but results
in the same values for the ratio of county variance to farm variance. However, the adjusted and actual
premiums are 8% apart in this case, while the unadjusted county premium is less than half the actual
premium.

Scenarios 4 through 6 are the analogues of the first three with farm yields drawn from beta
distributions. The marginal farm beta distributions are bounded between 0 and 120% of the
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Table 1. Simulation Parameters and Results, α = 0.75
Farm
Distribution wwwiii nnn µµµ iii σσσ iii ρρρ iii,,, jjj σσσ 222

ccc/(σσσ fff )
222 ρρρccc PPPrrreeemmm(((iii)))∗∗∗ PPPrrreeemmm(((ccc)))∗∗∗PPPrrreeemmm(((ccc)))

1 Normal 1/n 20 175 35 Uniform
[0.5,0.9]

0.725 0.710 9.92 10.01 5.01

2 Normal 1/n 500 175 35 Uniform
[0.5,0.9]

0.701 0.700 9.54 9.66 4.63

3 Normal 1/n 500 Uniform
[150,200]

Uniform
[25,45]

Uniform
[0.5,0.9]

0.701 0.700 10.31 9.49 4.54

4 Beta 1/n 20 175 35 Uniform
[0.5,0.9]

0.693 0.676 19.87 19.02 10.88

5 Beta 1/n 500 175 35 Uniform
[0.5,0.9]

0.668 0.667 19.87 18.54 10.36

6 Beta 1/n 500 Uniform
[150,200]

Uniform
[25,45]

Uniform
[0.5,0.9]

0.662 0.663 20.66 18.52 10.26

7 Normal McLean, IL 1,513 Uniform
[150,200]

Uniform
[25,45]

Uniform
[0.5,0.9]

0.699 0.699 10.47 9.62 4.58

8 Normal 1/n 100 Uniform
[150,200]

Uniform
[25,45]

If neighbors,
0.9; If 1

separation,
0.7; Else,

0.5

0.531 0.526 9.83 8.97 2.02

9 Normal 1/n 100

If i > 90,
uniform
[160,180];

Else
uniform
[120,140]

If i > 90,
uniform
[40,50];

Else,
uniform
[25,35]

If i& j > 90,
0.9; Else if
i& j≤ 90,
0.7; Else,

0.5

0.655 0.663 6.78 5.94 6.29

mean yield. The result is a left-tail skewness that some evidence suggests to be present in yield
distributions. The average interfarm correlation for this set of scenarios is lower than in the first
three as the simulations rely on Pearson’s correlation coefficient, which can be sensitive to outliers.
Even so, the ratio of county variance to farm standard deviation squared approximates the average
interfarm correlation in the third set of scenarios, similar to the case of the first three scenarios
that assumed normal distributions. As the propositions are independent of distribution, this result
is consistent with preceding mathematical proofs. However, the premiums estimated from adjusted
county data underestimate average farm premiums by 4–10%. Paralleling the first three scenarios,
premiums from the unadjusted county data are about half of the actual average farm premiums.

Scenario 7 analyzes the case of heterogeneous farm size. We do this by using 2007 Census of
Agriculture data for McLean County, Illinois. There are 1,513 farms within the county classified in
twelve acreage categories that range from 1 to 9 acres up to 2,000 plus acres. All other assumptions
are taken from scenario 3. Despite varying farm size, the results in this case are quite similar to
the scenario with homogeneous farms. The ratio of variances converges to the average interfarm
correlation. The premiums from the adjusted county data underestimate the average premium from
farm data by 8%, as in scenario 3.

Scenario 8 is also a permutation of the third scenario, with the correlations altered. It is quite
likely in reality that the correlation between yields for two farms is related to their proximity within
the county. Therefore, we construct a hypothetical county with 100 farms arranged in a 10× 10 grid.
If two farms are immediately adjacent, their correlation is 0.9. If there is one farm separating them,
their correlation is 0.7, otherwise it is 0.5. Each farm is homogenous with respect to size and shape.
The results of the scenario indicate that conditional spatial correlation does not alter the results. The
ratio of the variances is within 0.005 of the average interfarm correlation, and the difference between
the average farm premium and the adjusted county premium is about 9%, or slightly greater than
scenario 3. The unadjusted county premium is less than 25% of the actual average farm premium,
which is the largest relative difference of the scenarios.

The last scenario in table 1, scenario 9, recasts scenario 3 to represent a county with uplands
and bottomlands. Once again, a county with 100 farms is used. Ten farms are assumed to be the
bottomlands, where yields have higher means but also a higher variances relative to yields of the
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ninety upland farms. The bottomland farm yields have correlation coefficients of 0.9 with each
other while the upland yields have correlation coefficients of 0.7 with each other. The correlation
between yields in uplands and bottomlands is 0.5. This scenario corresponds to lemma 2 with
negative covariances between the interfarm correlations and standard deviations. Therefore, the
average interfarm correlation is larger than the ratio of the county variance to the farm variance.
Even so, the two are still quite close. The absolute difference in premiums is less than 3%.

Simulations with Limited County Data

In each of the nine scenarios in table 1, the ratio of the county to farm variance and the average
interfarm correlation are quite close, even under relaxed assumptions, indicating that the county
variance and the average interfarm correlation can be used to provide a reasonable approximation of
an unknown farm variance. However, the differences between the premium from the adjusted county
data and the average of the farms do not necessarily converge, as shown in the table. Furthermore,
the adjusted county premiums use all 500 observations from the farms. In reality, no time series
provides that many observations of crop yield history. Limited time series particularly complicate
premiums for low coverage levels as the calculations are based on only a few data points. In order
to measure the error from these issues, we repeat the simulations but use a smaller sample size for
the county and differing coverage levels.

This set of simulations begins by taking the 500 farm and county draws from the previous
simulations and randomly selecting thirty county draws with replacement to represent a thirty-year
time series of trend adjusted yields as might be used by an analyst. These county yield deviates
from the observed mean are inflated by 1/

√
ρc to obtain a proxy dataset of the farm yields. From

these adjusted yields, we use the nonparametric Kernel Density Estimator (KDE) to generate random
yields. The KDE is formally defined as

(8) f (x) =
1

nh

n

∑
i=1

K
(

x− xi

h

)
,

where K(x)∈ [0,1],
∫

∞

−∞
K(x)dx = 1, and h is a smoothing parameter. This nonparametric estimator

allows us to fit the data without consideration to the proper parameterized distribution of the
aggregation of the farm data. We use Silverman’s rule of thumb (1986) to determine h:

A = min(standard deviation, interquartile range/1.34);(9)

h = 0.9An1/5.(10)

Thirty deviates are generated from a Gaussian kernel around each of the thirty random adjusted
county yields and the deviates are inflated to account for the variance bias in the second order kernel
to obtain 900 nonparametrically distributed draws with the same mean and standard deviation as the
small proxy dataset. The actuarially fair premium is calculated from equation (5). This process is
repeated 500 times to generate a distribution of premiums.

Tables 2 and 3 contain the results of these simulations. The parameters of table 2 correspond to
scenarios 2 and 5 in table 1, except the coverage level is allowed to vary. The results are expressed
in terms of percentage deviation from the average of farm premiums. At the 50% coverage level,
the simulated premium from the normal farm yield distributions was more than 10% below the
actual farm premium. However, increasing the coverage level to 75% reduces the bias by almost
half. The error nearly disappears at the 90% coverage level. Likewise, the difference between the
two premiums was greatest at the 50% level for the beta distributions. This relative difference also
decreases as the coverage level increased, but is always negative and greater in relative terms than
when farm yields are normally distributed.

The relative errors in table 2 also decrease with an increase in coverage level. At the 50% level,
the relative standard error is almost twice the actual farm premium. At this low coverage level, the
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Table 2. Percent Deviation of Average County Based Premiums from Average Farm
Premium, with Homoskedasticity and Constant Mean of Yields and Thirty Random County
Observations

Distribution
Coverage Level Normal Beta

50% 11.2% −22.1%

[1.877] [1.013]

75% 5.3% −16.0%

[0.561] [0.451]

90% 0.7% −7.4%

[0.236] [0.267]

Notes: Relative standard errors are in brackets. The average farm-based premium is used as the mean in the RSE calculation.

Table 3. Percent Deviation of Average County Based Premiums from Average Farm
Premium, with Random Means and Standard Deviation of Yields and Thirty Random
County Observations

Distribution
Coverage Level Normal Beta

50% −52.8% −40.8%

[0.892] [0.731]

75% −7.1% −16.3%

[0.504] [0.433]

90% −1.3% −5.1%

[0.239] [0.262]

Notes: Relative standard errors are in brackets. The average farm based premium is used as the mean in the RSE calculation. The random
means are uniformly distributed between 150 and 200 and the standard deviations are randomly distributed between 25 and 45.

premiums are usually cheap and are determined by a small number of observations in the sample
of thirty, making them subject to wide swings between iterations. At the 90% coverage level, the
relative standard error decreases to approximately 24% of the actual farm premium.

Table 3 is similar to table 2 but allows farm means to be random between 150 and 200 and
standard deviations to vary between 25 and 45. The accuracy of the second set of simulations
is generally worse than the first set. However, the relative standard error generally decreases
from the first set of simulations for the low coverage levels. Although these simulations are less
accurate overall, they are more precise for low coverage levels. The limited sample, adjusted county
premiums with the normal distribution are less than the “actual” farm distributions for all coverage
levels with the additional randomness of parameters.

Several conclusions can be drawn from the second set of simulations. First, farm premium
estimates based on county-level yields do not result in unbiased estimates. Second, the bias is
inversely related to the coverage level. At high coverage levels, the issue largely disappears. Third,
the standard error of the estimator decreases with the increase in coverage levels. Not only does the
accuracy increase at higher coverage levels, but the precision also increases. Last of all, the bias
and standard error of basing premiums on limited county-level yield as a proxy for unknown farm
data appears to be sensitive to the distribution of farm yields. In general, we found that a normal
distribution of farm yields gives rise to more accurate estimates than the beta distribution but with a
lower degree of precision.

Conclusions

To the best of our knowledge, the fact that county-level yields are the aggregate of farm-level yields
has not been completely exploited as a source of information. We use mathematical derivations and
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simulation experiments to draw conclusions from this relationship between county- and farm-level
yields.

Our approach provides applied researchers with a new tool to analyze policy design and
implementation within realistic time and resource constraints. Our findings are relevant for applied
researchers who assess the farm impacts, crop supply effects, and costs of crop insurance and other
subsidy programs, both existing and proposed. County-level yield data are already used in crop
insurance policy implementation in the form of transition yields, so better methods of linking these
data to the underlying farm data can improve accuracy of premiums, potentially benefitting farmers
or taxpayers.

Our approach has broader relevance as well. Other experiments that link county-level data
to farm-level data—including yield-distribution assessments—can take advantage of our findings.
Under certain assumptions that might be reasonable in some key producing regions, additional
information about the relationship between county-level yield data and component farm-level yield
data can be exploited for any attempt to use aggregated data in studies of farm-level yields. Second,
we work with unconditional moments in this paper, but the method may be applied to state-
contingent correlations and other conditional moments of the yield distributions such as lower partial
moments (for a discussion of partial moments, see Antle, 2010). Finally, we use kernel density
estimators in our application, but the method could be extended to other probability modeling tools
linked to the underlying moments of the random variables. For example, some researchers have used
copula-based methods to derive more flexible probability models, and the Cornish-Fisher expansion
has a long history in the empirical literature on insurance and actuarial methods (see Bowers, 1967,
for an early contribution).

The key conclusions from the mathematical proofs are important boundaries on county-level
yields as they relate to farm-level yields. As an aggregate of its parts, the county average correlation
cannot be too negative (such that shares of individual farms define exactly where that lower limit
lies) but can theoretically be 1. Not only do farm-level yield variances exceed county-level variances
in the few cases where previous researchers have found data to be available and assessed it, our
calculations prove that average farm-level yield standard deviation must be at least to equal county-
level standard deviation and is very likely to exceed it in any actual case. Moreover, we derive
mathematical relationships between county-level and farm-level yields under plausible conditions
that lend themselves to applied work. In a county with many farms and certain conditions regarding
how the correlation among farm-level yield relates to farm variances, the county-level variance
converges to the product of average farm standard deviation and average interfarm correlation. This
relationship lends itself to using county-level yield data to estimate farm-level yield data with a
minimum of additional information or assumptions.

Simulation results test the propositions and estimate the error in premiums if the mathematically
derived formulas are applied using data representing a variety of hypothetical counties. Scenarios are
differentiated by numbers of farms, yield variance and mean, distribution type, and more elaborate
settings that account for the sorts of challenges that applied researchers expect when using real data.
While the key propositions work well under relaxed assumptions, one key conclusion is that using
county data may result in biased estimates of crop insurance premiums. However, another conclusion
is that the bias tends to decrease as coverage rises, to the point that bias almost disappears at high
coverage levels. The size of the error is also quite small in that case. The results are sensitive to
assumed distribution type, suggesting an avenue for further research in this direction and potentially
raising questions if county-level yield data are used in tests intended to shed light on farm-level yield
distribution type.

We cannot draw broad conclusions about whether these methods should or should not be used
for policy design and implementation. The advantage we see in an approach based on this method is
that it can be applied quickly for all county-commodity combinations for which NASS provides data.
This fact alone represents an advantage over methods that rely on data that are not widely available
and calculations that take more time and are consequently narrow in relevance and potentially too
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late to be useful for policy making. We also use simulations to demonstrate some risks of bias
and error that can be quite small under certain conditions but substantial in other cases. Evaluating
benefits and costs for this approach depends on the specific experiment.

[Received July 2013; final revision received April 2014].]
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Appendix A: Proof of Equation (4)

Consider a county, c, with n farms {x1,x2, . . . ,xn}, each with a wi fraction of acres in the crop for
the county. By definition,

(A1) σ
2
c =Var

(
n

∑
i=1

wixi

)
=

n

∑
i=1

n

∑
j=1

ρi, jwiw jσiσ j,

where Var(c) = σ2
c , Var(xi) = σ2

i , Var(x j) = σ2
i , ρi, j =Corr(xi,x j), and ∑

n
i=1 wi = 1. Since the

actual parameters are unobserved, let ρi, j, σi and σ j be treated as random variables with E[ρi, j] = ρc
and E[σi] = E[σ j] = σ f . Since ρc is the expected interfarm correlation, it is calculated as

(A2) ρc =
∑

n
i=1 ∑

n
j 6=i ρi, jwiw j

∑
n
i=1 ∑

n
j 6=i wiw j

=
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n
i=1 ∑

n
j 6=i ρi, jwiw j

1− ∑
n
i=1 w2

i
,

while the average farm standard deviation, σ f , is calculated as

(A3) σ f =
n

∑
i=1

wiσi.

Furthermore, let ρ j be the weighted average of row (column) j in the correlation matrix,
calculated as

(A4) ρ j =
n

∑
i=1

wiρi j.

Equation (A4) can be summed across the j’s and ∑
n
j=1 w2

j subtracted from both sides:
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Note that ∑
n
j=1 ∑

n
i=1 w jwiρi j − ∑

n
j=1 w2

j = ∑
n
i=1 ∑

n
j 6=i ρi, jwiw j, which reduces the right hand side to
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This can be rearranged to isolate ∑
n
j=1 w jρ j:
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∑
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w jρ j = ρc(1−
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n

∑
j=1

w2
j .(A5e)

Moreover, consider the covariance between the correlations for farm j and the corresponding
farm standard deviations where σσσ = {σ1,σ2, . . . ,σn}:

Cov(ρi j| j,σ) =
n

∑
i=1

wi(ρi j − ρ j)(σi − σ f );(A6a)

=
n

∑
i=1

wiρi jσi − σ f

n

∑
i=1

wiρi j − ρ

n

∑
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wiσi + σ f ρ j

n

∑
i=1

wi.(A6b)
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Since σ f ∑
n
i=1 wiρi j = ρ j ∑

n
i=1 wiσi = σ f ρ j ∑

n
i=1 wi = σ f ρ j,

(A6c) =
n

∑
i=1

wiρi jσi − σ f

n

∑
i=1

wiρi j.

Since Cov(ρi j| j,σ) = ∑
n
i=1 wiρi jσi − σ f ρ j, the terms can be rearranged to conclude

(A6d)
n

∑
i=1

wiρi jσi =Cov(ρi j| j,σ) + σ f ρ j.

The results of equation (A6c) can be used to derive an identity involving the covariance for the
average farm correlations and the farm standard deviations:

Cov(ρ j,σ) = Cov(
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Since Cov(ρ j,σ) = ∑
n
i=1 wiσiρ j − σ f ρc + σ f ρc ∑

n
j=1 w2

j − σ f ∑
n
j=1 w2

j , the terms can be rearranged
to conclude:
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The results of equation (A6d) can be substituted into equation (1):
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A similar substitution of equation (A7h) can be made into equation (A8c):

σ
2
c =

n

∑
j=1

w jσ jCov(ρi j| j,σ) + σ f (σ f ρc − σ f ρc

n

∑
j=1

w2
j +

(A9a)
σ f

n

∑
j=1

w2
j +

n

∑
j=1

w jCov(ρi j| j,σ))

σ
2
c =

n

∑
j=1

w jσ jCov(ρi j| j,σ) + (σ f )
2
ρc − (σ f )

2
ρc

n

∑
j=1

w2
j +

(A9b)
(σ f )

2
n

∑
j=1

w2
j + σ f

n

∑
j=1

w jCov(ρi j| j,σ).

Appendix B: Proof of Proposition 1

Every correlation matrix is a positive semidefinite matrix. By definition, for a positive semidefinite
matrix (MMM)

(B1) vvv′′′MMMvvv≥ 0,

where vvv is a column vector. The following is a direct result of the preceding property:

(B2) www′′′RRRwww =
n

∑
i=1

n

∑
j 6=i

ρi, jwiw j +
n

∑
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w2
i ≥ 0,

where www is the column vector of yield weights and RRR is the correlation matrix of farm yields.
Rearranging this equation,
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which provides the lower bound because the left side is equal to the average interfarm correlation. If
all the correlations equal 1, then the left side of the inequality is maximized. The average interfarm
correlation is 1 in this case.

Appendix C: Proof of Lemma 1

First, note that ∂σ2
c

∂ρi, j
= wiw jσiσ j ≥ 0 because wi ≥ 0, w j ≥ 0, σi ≥ 0, and σ j ≥ 0. Therefore, the

county variance defined in equation (1) is maximized when the cross-correlations, ρi, j, are
maximized. The maximum value of correlation between any farms i and j is 1. If true for all farms,
then equation (1) becomes

(C1) σ
2
c =

n

∑
i=1

n

∑
j=1

wiw jσiσ j = (σ f )
2.

Conversely, given equation (1) and its derivative, the county variance with respect to the
interfarm correlations is at its minimum when the interfarm correlations are at their minimum,
−1. Due to the positive semidefinite characteristic of any correlation matrix, not all farms can be
negatively correlated if there are more than two farms.

In the case in which there are only two farms with perfect negative correlation in the county, then

(C2) σ
2
c = w2

1σ
2
1 + w2

2σ
2
2 − 2w1w2σ1σ2 = (w1σ1 − w2σ2)

2.

In this two-farm case, the county variance must be at least 0 due to the squared term—as well as
by the definition of variance. However, the county variance takes a value of 0 if w1σ1 = w2σ2, thus
establishing that the theoretical lower bound of county variance is 0.
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Appendix D: Proof of Lemma 2

It is worth noting that as wi→ 0, n→∞. In other words, the lemma is for an increasing number of
farms with weights uniformly going to 0. While wi can equal 1

n , it does not have to as long as no
farms dominate production. If wi did equal 1

n , wi→ 0 could simply be thought of as 1
n as n→∞. In

this case, ∑
n
i=1

1
n would still have to sum to 1 while the individual weights of the farms would still

go to 0.
Starting with equation (4), as wi→ 0, ∑

n
i=1 w2

i → 0. Although σ f and ρc are functions of wi,
they remain finite as wi→ 0, just as ∑

n
i=1 wi = 1 as wi→ 0 ∀ i. Therefore, −(σ f )

2ρc ∑
n
j=1 w2

j +

(σ f )
2

∑
n
j=1 w2

j → 0 as wi→ 0. ∑
n
j=1 w jσ jCov(ρi j| j,σσσ) + σ f ∑

n
j=1 w jCov(ρi j| j,σσσ) does not disappear

as the number of farms must be increasing which offsets the effect of the decreasing weights.
However, given that the distribution is discrete, these terms can be rewritten as expectations.

The deviate is said to have a maximum value of (σ f )
2 in the text. Consider a correlation matrix

MMM with mi, j = (−1)i+ j and a farm standard deviation of σi = 2σ f if i is even, σi = 0 otherwise. MMM is
positive semidefinite, has all diagonals equal to 1 and contains values between or equal to −1 and 1
thereby satisfying the criteria of a correlation matrix. In this case, ρc = 0 while the left term of the
deviate will reduce to (σ f )

2 and the right term will reduce to 0. Even though it is unlikely to find
a county with such a correlation matrix, this example does show that even if σ2

f ρc = 0, the county
variance can equal the farm variance with asymptotics.

Appendix E: Proof of Lemma 3

This lemma follows from substituting the covariance into equation (4) and taking advantage of the
boundary on the squared sum of weights, namely ∑

n
j=1 w2

j ∈ (0,1]. In this case, equation (4) reduces
to

(E1) σ
2
c = (σ f )

2
ρc − (σ f )

2
ρc

n

∑
j=1

w2
j + (σ f )

2
n

∑
j=1

w2
j .

Lemma 3 is consistent with lemma 1. County variance cannot be negative from this proposition,
even though the average interfarm correlation can be negative. To see this, start with proposition 1

and take the minimum value possible for ρc, specifically − ∑
n
i=1 w2

i
1−∑

n
i=1 w2

i
. Substituting the lower bound

into equation (E1) yields

(E2) σ
2
c = (σ f )

2
(
− ∑

n
i=1 w2

i

1− ∑
n
i=1 w2

i

)
− (σ f )

2
(
− ∑

n
i=1 w2

i

1− ∑
n
i=1 w2

i

) n

∑
j=1

w2
j + (σ f )

2
n

∑
j=1

w2
j = 0.

Appendix F: Proof of Proposition 2

If Cov(ρi j| j,σ) = 0 and the individual farm shares approach 0, then equation (4) reduces to

(F1) σ
2
c = (σ f )

2
ρc − (σ f )

2
ρc

n

∑
j=1

w2
j + (σ f )

2
n

∑
j=1

w2
j → (σ f )

2
ρc, as wi→ 0 ∀ i


