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Estimating the Spatially Varying Responses of
Corn Yields to Weather Variations using

Geographically Weighted Panel Regression

Ruohong Cai, Danlin Yu, and Michael Oppenheimer

Researchers have extensively studied crop yield response to weather variations, while only a
limited number of studies have attempted to identify spatial heterogeneity in this relationship.
We explore spatial heterogeneity in corn yield response to weather by combining geographically
weighted regression and panel regression. We find that temperature tends to have negative
effects on U.S. corn yields in warmer regions and positive effects in cooler regions, with spatial
heterogeneity at a fine scale. The spatial pattern of precipitation effects is more complicated. A
further analysis shows that precipitation effects are sensitive to the existence of irrigation systems.

Key words: climate change, corn yields, geographically weighted panel regression, spatial
heterogeneity

Introduction

Weather variations have significant impacts on crop yields, but only a limited number of studies
have explored the possible contributions to this relationship of geographical variation arising from
different regional characteristics such as soil type, irrigation systems, and so on. Failure to recognize
heterogeneous responses of crop yield to weather across the regions could lead to misguided
policies aimed at local climate adaptation. Furthermore, while temperature is projected to increase
in most U.S. regions, the expected magnitude of warming varies considerably across the regions.
For instance, Midwest and Corn Belt states are projected to have a larger temperature increase (one
to three degrees Fahrenheit more) by the end of this century than other parts of the country (Coulson
et al., 2010; U.S. Global Change Research Program, 2009). Therefore, the issue of heterogeneous
climate impacts could grow in importance over time.

The relationship between weather and crop yields presented in most existing literature is
essentially a global estimate, as the relationship applies invariantly over space (Lobell and Burke,
2010). Such estimates may be informative for climate mitigation and adaptation planning at large
spatial scales but may be misleading for localized programs, particularly those aimed at farmer
adaptation. A study of regional differences in how crop yields respond to weather is expected to
provide policymakers with more useful information about local climate impacts.
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Some evidence of spatial varying relationship between weather and crop yields is found in
previous literature. Based on the results of crop response models, Tobey, Reilly, and Kane (1992)
demonstrated that climate change effects on crop yields may differ for different geographic zones.
Tao et al. (2006) found that temperature was negatively correlated with crop yields at all stations
except one in northeastern China. Schlenker and Roberts (2009) found that the relationship between
temperature and corn yields varies for different geographic regions in the United States. Using a crop
simulation model, Butterworth et al. (2010) found that climate change increases the productivity
of oilseed rape in the United Kingdom, with greater benefits in Scotland than in England. The
above studies often estimate separate models using data from predefined geographic regions.
Although these studies admit the existence of inherent spatial heterogeneity in the relationships,
their definitions of spatial heterogeneity are fairly arbitrary. This study uses a new method—
Geographically Weighted Panel Regression (GWPR, Yu, 2010)—to further explore the hypothesis
that weather variations have different impacts on crop yields in different regions.1 Using county-
level data from the continental United States, the GWPR approach attempts to address the inherent
spatial heterogeneity of these relationships. Instead of using data from various predefined regions,
the approach lets the data tell the story.

Process-based crop simulation models have been used to simulate how weather affects crop
growth (Jones et al., 2003). These models usually require large amounts of information, making it
difficult to apply them to the analysis of data on a large spatial scale. Alternatively, researchers use
statistical models (Dixon et al., 1994; Lobell and Burke, 2010; Elbakidze, Lu, and Eigenbrode,
2011)—mostly based on time-series data (Lobell et al., 2008) and panel data (Schlenker and
Roberts, 2009)—to quantify the relationship between climate and crop yields. Compared to time-
series or cross-sectional data, panel data provide more information and enable control for time-
invariant unobserved heterogeneity. Panel data analysis can also help improve estimation efficiency
(Wooldridge, 2002). Using a fixed effects model and U.S. county-level panel data, Deschênes and
Greenstone (2007) found that growing degree days have negative effects on corn and soybean yields.
McCarl, Villavicencio, and Wu (2008) detected positive effects of temperature on the U.S. state-level
soybean yields by estimating a fixed effects model with time trend. Using county-level data from
1950 to 2005, Schlenker and Roberts (2009) estimated a fixed effects model with state-specific
quadratic time trend and showed nonlinear temperature effects on corn, soybeans, and cotton yields.

Both cross-sectional and panel data models assume that the relationship between variables
is spatially invariant, ignoring possible spatial heterogeneity. Even if we are only interested in
the global mean of the relationship, the conventional regression estimation of spatial data might
still produce misleading results since regression residuals from spatial data are usually spatially
autocorrelated, violating the statistical assumption of independently distributed errors. Spatial
regression models such as the spatial lag model and the spatial error model have been developed to
account for spatial covariance, but they still assume spatially constant coefficients (Anselin, 2001;
Mueller and Loomis, 2008; Elhorst, 2010).

Geographically weighted regression (GWR) is an exploratory local spatial approach that uses
each data point and its neighboring observations to construct a local model and then estimates
local regression coefficients, which are allowed to vary across the space for different local models
(Brunsdon, Fotheringham, and Charlton, 1996; Fotheringham, Brunsdon, and Charlton, 2002). Thus,
spatial heterogeneity could be explored explicitly. Cho, Bowker, and Park (2006) used GWR to
generate local estimates for the effects of proximity to water bodies and parks on housing price.
Also using the GWR model, Partridge and Rickman (2007) found that local job growth in particular
reduced poverty in persistent poverty counties. In areas relevant to our study, Olgun and Erdogan’s
(2009) GWR model demonstrated that the relationship between various climatic factors and wheat
potential exhibited considerable spatial variability. Sharma (2011) studied the relationship between
crop yields and precipitation for ninety-three counties in Nebraska and found that the GWR model

1 We use the term “weather” rather than “climate” because we use relatively short-term averages. See the Data section for
more details.
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provides a better understanding of the spatially varying effects than the ordinary least squares (OLS)
model.

For the conventional GWR model, local models are based on cross-sectional data. Studies that
use GWR to analyze local panel data remain rare. As the first attempt, Yu (2010) combined GWR and
a panel model to study the regional development of the Greater Beijing area. We follow Yu (2010)
in implementing a panel data version of GWR (GWPR) to explore the spatially varying relationship
between weather and crop yields for counties in the continental United States. We expect that GWPR
will be able to take advantage of panel data and generate more thorough results compared to the
cross-sectional GWR model.

Methodology

To introduce the GWPR model, we start with a fixed effects panel model with a time trend:

(1) Y(u,v)t = α(u,v) + βX(u,v)t + γt + ε(u,v)t ,

where subscript (u,v) denotes the latitude-longitude geographic coordinates and subscript t
indicates year; Y(u,v)t denotes corn yields for location (u,v) at year t; X(u,v)t denotes weather
conditions for location (u,v) at year t; β is a coefficient that stays constant across the space; α(u,v)
denotes time-invariant fixed effects such as local soil type; t is a linear time trend that removes the
effects of technological improvements over time; and ε(u,v)t is the error term.

The GWPR alternative would be:

(2) Y(u,v)t = α(u,v) + β(u,v)X(u,v) + γ(u,v)t + ε(u,v)t .

Equation (2) differs significantly from equation (1) in that coefficient β is not assumed to stay
constant across the space. Estimation of equation (2) follows a typical local kernel regression
approach as detailed in Fotheringham, Brunsdon, and Charlton (2002) and Yu (2010). In general,
certain local samples around a regression point will be weighted based on geographic proximity to
that point, and weighted least squares is used to produce the local coefficients. This study uses the
linear term growing season temperature and precipitation as independent variables. Schlenker and
Roberts (2009) described a nonlinear relationship between crop yield and weather; their nonlinear
curve ranges over 40◦C and we need a range of at least 10◦C in order to observe the nonlinearity.
However, our GWPR estimation consists of local regression models in which each local regression
only includes a small number of nearby counties that are unlikely to have temperature variations
over 10◦C.2 Therefore, a nonlinear relationship between crop yield and weather is hard to detect
using our GWPR local estimation. To keep the discussion simple, we investigate only linear aspects
of these relationships.

We do not estimate a random effects model here, since county fixed effects α(u,v) may be
correlated with weather conditions X(u,v)t , violating the assumption of a random effects model that
fixed effects need to be orthogonal to the other covariates of the model. For instance, local irrigation
systems, captured byα(u,v), may be correlated with precipitation in X(u,v)t . Statistical tests based on
global data also prefer a two-way fixed effects model (a model with both county and time fixed
effects). Instead of using time fixed effects, we specify a local model with time trends for several
reasons. First, the above tests that suggest time fixed effects are based on the global panel data,
while a GWPR model uses a local panel model, which has many fewer observations. Second, we
suspect that time fixed effects may largely absorb weather-induced corn yield variations for local
models. However, while avoiding time fixed effects keeps some useful yield variations, it also keeps
variations unrelated to weather—such as policy changes or technological improvements—that could
have been removed by using time fixed effects. Therefore, we implement a linear time trend to help
remove these effects.

2 For a specific year, it is unusual for a small group (e.g., 20–30) of nearby counties to exhibit a 10◦C difference in average
growing season temperature. It is unusual for a specific county to show a difference of 10◦C in average growing season
temperature over a five-year period.
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One of the critical components in both the GWR and GWPR models is the spatial weighting
scheme, which determines how many neighboring observations are included in the local model and,
more importantly, how these observations are weighted. Generally, the spatial weighting scheme is
often modeled with a distance-decaying kernel function—observations nearer to the regression point
are assigned more weight to represent their larger impacts on the regression point (Fotheringham,
Brunsdon, and Charlton, 2002). In practice, two types of kernel functions are used: the fixed
bandwidth and adaptive bandwidth kernel functions. For every local model, the fixed kernel function
includes all of the observations that fall within a fixed distance from the regression point and then
weights them. The apparent advantage is that such an approach is fast to execute since there is only
one weighting function to be calculated; however, since most study regions do not have regular
shapes, the fixed kernel will include fewer observations where data points are sparse and more
observations where data points are dense. This could potentially mask subtle spatial heterogeneity
that we might want to explore further.

Alternatively, the adaptive kernel function, as its name suggests, will use a fixed “amount” of
observations instead of fixed “distance.” In so doing, every local model will have exactly the same
number of observations, though they will be weighted differently in different local models and hence
computationally more expensive. General practices often point out that the adaptive kernel function
is preferred because of its ability to detect subtle spatial heterogeneity (Yu, 2006). This study uses an
adaptive kernel. The kernel function’s single parameter, the bandwidth, can be optimized using the
corrected Akaike Information Criterion (AICc) or cross validation criterion (CV). In addition, we
assume that bandwidths are time-invariant (which is reasonable since we have a relatively short panel
and the spatial structure that presumably generates the bandwidth shall remain invariant for short
panels, though time-variant bandwidths are certainly possible). After the bandwidth optimization,
observations are spatially weighted based on a geographical weighting function with the bi-square
scheme (Fotheringham, Brunsdon, and Charlton, 2002). Spatial weights are also assumed to be time-
invariant.

We use the “spgwr” package in R for the GWPR estimation (Bivand and Yu, 2013). Since this
package is designed for cross-sectional data, we use the demeaned corn yield and weather data,
which is equivalent to estimating a fixed effects model.

For the purpose of comparison and completeness of our analyses, we apply the following six
models to our data: the global OLS model, the spatial regression model, the GWR model for cross-
sectional data, the global panel model, the spatial panel model, and the GWPR model for panel
data.3

Data

We use corn—a major crop in the United States—in our study so that we can conduct a large area
analysis. Corn yield data for 958 U.S. counties from 2002 to 2006 were collected from the U.S.
Department of Agriculture’s National Agricultural Statistics Service (2011). The main reason for
using a short panel of five-year data is that it allows us to include a wide range of counties across
the United States while simplifying the analysis by maintaining a balanced panel. Using a longer
balanced panel will largely reduce the number of counties included. For instance, a balanced panel
data for 2001–2010 would include only 453 counties as compared to 958 counties for 2002–2006, as
many counties have missing yield data during 2008–2010. Using the period 2002–2006 also helps
avoid the possible impacts from abrupt policy changes; for instance, many provisions of the 2002
farm bill expired in 2007 (Johnson, 2008). We also exclude all of the western coastal counties that
are far away from the rest of counties.

3 Due to the length of the paper, we omit the description of the spatial regression model and the spatial panel model. We
apply the spatial lag model, which has a spatially lagged dependent variable as independent variable, and the spatial error
model, which has a spatially autocorrelated error term.
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Table 1. Summary Statistics of Corn Yields, Growing Season Monthly Total Precipitation,
and Growing Season Monthly Mean Temperature

Mean Median SD Minimum Maximum
Corn yields (Kg Ha−1) 7,883 8,039 2,370 0 14,386
Growing season monthly total precipitation (mm) 91.44 93.98 30.48 12.70 231.14
Growing season monthly mean temperature (◦C) 18.56 18.44 −14.83 11.89 28.67

Figure 1. Spatial Distribution of 2002–2006 Average U.S. County Corn Yields (kg/hectare)

We use the growing season monthly mean temperature and total precipitation, collected from
National Climatic Data Center (NCDC), for weather stations. We assume that the growing season
for corn is from April to October for all counties. We collect monthly mean temperature for each of
these seven months and then calculate the growing season mean temperature by taking the average
of these seven observations. These station-level weather data are converted to county-level data by
taking the average of all the stations in a county.

Results and Discussion

Spatial variations in temperature, precipitation, and corn yields of the study area are presented in
figures 1–3. In general, as expected, temperatures are higher in the south than in the north, while
precipitation decreases from south to north and from east to west. Counties with high corn yields are
mostly in the Corn Belt states. Table 1 presents the summary statistics for corn yields, temperature,
and precipitation.

Models for Cross-Sectional Data

We start our analysis with the five-year average data of weather and crop yields over the period
of 2002–2006 and apply the models: the global OLS model, the spatial regression model, and



Cai, Yu, and Oppenheimer Spatially Heterogeneous Responses of Corn Yields to Weather Variations 235

Figure 2. Spatial Distribution of 2002–2006 Average U.S. County Monthly Mean Temperature
(◦C)

Figure 3. Spatial Distribution of 2002–2006 Average U.S. County Monthly Total Precipitation
(mm)
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the GWR model. The results from the global OLS regression model—which includes all of the
counties—show that corn yields are negatively associated with both temperature and precipitation
(table 2). Applying OLS to spatial data may induce inefficient estimation due to possible spatial
autocorrelation in the error term. To test the potential spatial autocorrelation, we apply Moran’s I
of the residuals of the global OLS regression model and find that Moran’s I is 0.791, indicating a
strong positive spatial autocorrelation between neighboring counties.4

Next, using the averaged data, we apply two spatial regression models: the spatial lag and error
models (Anselin, 2001). The spatial regression models addressed the residual spatial autocorrelation
well—Moran’s I for the lag model’s residuals reduced to −0.009 and the error model to −0.006
(table 2). However, the spatial regression models still do not explore spatial heterogeneity in
coefficient estimates. Using the GWR model, coefficients for temperature (precipitation) have an
interquartile range of 658.04 (62.35), which is larger than two times the standard errors of the global
OLS model—which is 42.65 (5.19)—indicating certain spatial variability in the GWR coefficients
(Fotheringham, Brunsdon, and Charlton, 2002).5 Still, this model also suggests that many GWR
coefficients are not pseudo-significant at the 5% significance level.6 This may be due to the fact that
weather-induced yield variations over time have been completely removed by using the five-year
average data. The AICc of the GWR model is 16,079, lower than 17,171 for the OLS model, 16,573
for the spatial lag model, and 16,582 for the spatial error model, indicating that GWR fits the data
best, even considering the added complexity.

Models for Panel Data

The aforementioned analyses were all based on cross-sectional data. We next estimate the global
panel model, the spatial panel model, and the GWPR model using panel data. For the global panel
model, statistical tests prefer a fixed effects model with both county and time fixed effects.7 In
addition, instead of using time fixed effects, we also estimate a global panel model with a linear
time trend, since it is common for researchers to include a time trend as an explanatory variable to
remove the effects of technological improvements on crop yields (McCarl, Villavicencio, and Wu,
2008). Table 3 shows that the global fixed effects models with time fixed effects or time trend have
similar results in that corn yields are negatively associated with growing season temperature while
positively associated with growing season precipitation. The global panel model does not account
for potential spatial autocorrelation in the residuals. In the spatial panel models, spatial coefficients
are significant (λ and ρ in table 3), indicating a strong spatial autocorrelation in the panel model’s
residuals.

To explore spatial heterogeneity in panel data, we estimate a GWPR model. Although both
fixed effects models with time fixed effects and time trend have been estimated for the global
panel model, we only estimate a fixed effects model with time trend for the GWPR local model.
As the GWPR local models only include a small group of counties, time fixed effects for the local
model may absorb too much of the useful variations of corn yields induced by weather.8 When we
estimate a local fixed effects model with time fixed effects, we observe that only about 19% (16%) of
counties have pseudo-significant temperature (precipitation) coefficients, indicating that using time
fixed effects in GWPR local models may be problematic.

4 Moran’s I is a measure of spatial autocorrelation. It varies from −1 to +1, indicating perfect dispersion and perfect
correlation, respectively (Moran, 1950). A Moran’s I close to 0 indicates small spatial autocorrelation.

5 Interquartile range is the difference between the first and third quartile.
6 It should be noted that local t statistics (pseudo-t statistics) should be viewed with caution since nearby observations are

used repeatedly for its calculation.
7 These tests include a Hausman test to compare random effects model and fixed effects model, an LM test to compare

random effects model and OLS model, and an F test to determine whether a time fixed effect is needed. The results are not
shown here.

8 The global fixed effects model with time fixed effects or time trends generates similar results, since the average yield
variations over time for all the counties should be smaller than that of a small group of local counties and therefore time fixed
effects would not absorb too much useful variations at the global level.
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The bandwidth for the GWPR local model is optimized by a CV criterion with adaptive
bandwidths, which results in 160 observations for each local model over five years (that is thirty-two
counties for each year). Compared to a GWR model based on the average cross section or a GWPR
model with time fixed effects, there are now more pseudo-significant coefficients in the GWPR
model with time trend, with about 65% (53%) for temperature (precipitation) (figures 5 and 7). This
may be due to the fact that useful yield variations over time are now largely kept by avoiding time
fixed effects in the local model. The results that there are more significant temperature coefficients
than precipitation coefficients is consistent with Lobell and Burke’s 2010 finding that cross-sectional
and panel models are better at predicting yield responses to temperature change than precipitation
change.

The median of the GWPR coefficient estimates for both precipitation and temperature are
similar to the estimates from two global fixed effects models (table 3). We further find that the
GWPR coefficient estimates have large spatial variability, with an interquartile of 1,432 (23.72)
for temperature (precipitation) larger than two times the standard errors of the global fixed effects
model with time trend, which is 82.12 (2.28), indicating certain spatial variability in GWPR
coefficients. Corn yields are mostly positively associated with temperature in the north and northeast
United States, while the negative relationships are presented in other regions (figures 4, 5, and
). This may be due to the fact that the average temperature is near or higher than the optimal
corn growth temperature in the south Corn Belt and other southern states; therefore, temperature
variations tend to have negative effects. In contrast, the average temperature is generally lower
than the optimal corn growth temperature in the northern states; therefore, temperature variations
tend to have positive effects (Schlenker and Roberts, 2009). About 77% of counties have positive
precipitation coefficients compared to 28% of counties with positive temperature coefficients,
indicating that an increase in precipitation is more favorable than an increase in temperature for
corn production in most U.S. counties (figure 8). Positive precipitation effects also indicate that
the average precipitation is below the optimal precipitation for most U.S. corn production counties.
This observation is consistent with Good (2011), where the most favorable precipitation in July in
the heart of the Corn Belt should be about 25% above average. The spatial pattern of precipitation
coefficients is irregular compared to that of temperature coefficients (figures 6 and 7). This may
be explained by two reasons: first, there is more measurement error in spatial distribution of
precipitation (Lobell, 2013), reducing the power of using precipitation to explain yield variations;
second, the yield response to precipitation may be influenced by local irrigation systems. Comparing
figures 6, 7, and 9, we find that some heavily irrigated land tends to have insignificant or negatively
significant precipitation effects, such as the Nebraska and Mississippi river areas. Sharma (2011)
also indicated that crop yield could be less related to precipitation in regions with better irrigation
systems.

To further investigate the precipitation effects, a subset of data with counties reporting both
irrigated and nonirrigated corn yields is also analyzed using the GWPR model (figures 10–12).
The data for non-irrigated yields have larger variations in both temperature and precipitation
coefficients, indicating that nonirrigated corn yields are more sensitive to weather variations. We
further find that, most of the temperature coefficients are negative for non-irrigated corn yields,
while precipitation coefficients have both negative and positive values, confirming previous results
finding that precipitation coefficients have an irregular spatial pattern. Another observation is that
non-irrigated corn has a similar number of significant temperature coefficients as that of irrigated
corn but far more significant precipitation coefficients irrigated corn. Compared to the temperature
effects, the precipitation effects may be more sensitive to the existence of local irrigation systems.
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Figure 4. Spatial Distribution of GWPR Coefficients of Growing Season Temperature

Notes: This is from a GWPR analysis based a panel data of 958 U.S. counties during 2002–2006. The coefficients represent
the changes of corn yield (kg/hectare) per unit of temperature change (◦C).

Figure 5. Spatial Distribution of GWPR Coefficients of Growing Season Temperature

Notes: Only counties that are pseudo-significant at the 5% significance level are shown. This is from a GWPR analysis
based a panel data of 958 counties during 2002–2006. The coefficients represent the changes of corn yield (kg/hectare) per
unit of temperature change (◦C).
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Figure 6. Spatial Distribution of GWPR Coefficients of Growing Season Precipitation

Notes: This is from a GWPR analysis based a panel data of 958 counties during 2002–2006. The coefficients represent the
changes of corn yield (kg/hectare) per unit of precipitation change (mm).

Figure 7. Spatial Distribution of GWPR Coefficients of Growing Season Precipitation

Notes: Only counties that are pseudo-significant at the 5% significance level are shown. This is from a GWPR analysis
based a panel data of 958 counties during 2002–2006. The coefficients represent the changes of corn yield (kg/hectare) per
unit of precipitation change (mm).
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Model Validation

To further investigate the performance of the GWPR model, we first compare its out-of-sample
prediction to that of a fixed effects model, which provides a global constant coefficient estimate.
Specifically, we randomly draw 90% of the entire sample without replacement as the training data
set and use the remaining 10% of the sample as the testing data. We estimate the GWPR model and
a fixed effects model based on the training data set and then calculate the out-of-sample root mean
squared error (RMSE) based on the testing data set. After repeating the simulation for 1,000 times,
we find that the GWPR model is able to reduce the out-of-sample RMSE on average 10.7% from
that of the fixed effects model, indicating that GWPR helps improve the out-of-sample prediction
accuracy (figure 13a). We further compare the RMSE of the GWPR model with that of an alternative
model in which the coefficients vary by region.9 Then we estimate a fixed effects model for each
region to obtain different coefficients for different regions. We find that the RMSE of GWPR is
on average 9.6% lower than that of the region-specific fixed effects model (figure 13b), showing
that GWPR still has the best performance, even though the region-specific fixed effects model helps
improve the RMSE as compared to the global fixed effects model.10

We also investigate whether the overall spatial pattern of the weather-crop yield linkage changes
when using an alternative model design: each state estimated separately with a fixed effects model
that generates a state-specific coefficient estimate. Comparing figure 14 to figures 4 and 6, we
find that both temperature and precipitation coefficients follow the same spatial pattern whether
generating state-specific coefficients with a fixed effects model or generating county-specific
coefficients with the GWPR model.

Lastly, we test the robustness of the GWPR coefficients for alternative adaptive bandwidths. In
our main result, each local model includes 160 observations (from thirty-two counties each year for
five years); now we alter each local model to include 10, 20, 50, 100, 150, and 200 nearby counties.
Figure 15 shows that the overall spatial pattern of temperature coefficients does not change with
alternative bandwidths, while larger bandwidth (a local model with more counties included) tends
to produce less heterogeneous patterns.11

Conclusions

Based on a series of spatial and traditional nonspatial analyses, this study combined GWR and panel
models to explore the spatial variability of the relationship between weather and corn yields for
the continental U.S. counties during the period of 2002–2006. The GWPR approach confirms that
temperature tends to have negative effects on corn yields in warmer regions and positive effects
in cooler regions, as expected, but we are able to explore these spatially varying relationships at
a finer spatial scale and in much more detail. Compared to temperature effects, the spatial pattern
of precipitation effects is relatively irregular in terms of geographic distribution. Further analysis,
which distinguished between irrigated and non-irrigated corn yields, indicates that irrigation may
reduce the effects of precipitation variation, as expected. Large measurement error in precipitation
may also contribute to this irregular spatial pattern.

This work contributes to the literature in two aspects: first, it is one of the first attempts to
combine the GWR approach with panel data, which generates more thorough results compared to the
cross-sectional GWR model. Second, for U.S. counties, we find that climatic factors have (pseudo-
) significantly spatially variant impacts on corn yields. This result underscores the importance of

9 We roughly divide our sample of 958 counties into three regions (figure 13c).
10 We may also vary coefficients by state, which may further reduce RMSE from the model with three regions. However,

since several states have a small number of counties in our balanced panel dataset, it is hard to implement a cross-validation
with 90% of the counties as the training dataset and 10% of the counties as the testing dataset.

11 The results for precipitation coefficients show similar pattern. We do not report them here for conciseness, but are
available upon request.
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(a)

(b)

Figure 8. Distribution of GWPR Coefficients over Latitude

Notes: Each data point represents the GWPR coefficient estimate for a specific county. (a) temperature. (b) precipitation.

developing local models to guide adaptation efforts as discussed below. These results are very
promising in that they are consistent with previous findings yet produce a distinctive spatial pattern
of the effects of weather variations on corn yields, which could be used for guiding detailed
and precise agricultural planning and decision making. For instance, the possibility of exploring
localized crop responses to weather and generating a precise forecast of crop yields may help
policymakers determine the severity of climate change impacts in specific regions; thus, spatially
explicit adaptation programs could be developed and funding for adaptation to climate change more
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Figure 9. Harvested Acres for Irrigated Corn for Grain in 2007

Notes: Each dot represents 2,000 acres (U.S. Department of Agriculture, National Agricultural Statistics Service, 2011).

efficiently allocated among different regions. The results also provide agricultural producers with
spatially explicit guidance for planting practices. Furthermore, identifying spatial heterogeneity in
the effects of weather and climate may alert society about emergent social outcomes of climate
change, such as possible human migration between regions with different climate impacts. The
above policy implications would not be captured by relying on globally constant estimates, which
are likely to be distorted at the regional level when yield responses are spatially non-stationary.

In addition to policy implications, identifying localized weather effects may also contribute to
the development of agent-based modeling. An agent-based model attempts to simulate complex real-
world systems by generating macro-phenomena from micro-specifications. It is usually initialized
with heterogeneous agents and certain behavior rules that determine how the agents interact with one
other and their common environment. However, most agent-based models use the same rule for all
of the agents, which is unrealistic. For instance, assuming that we develop an agent-based model to
study the aggregated production responses of agricultural producers to weather in the United States,
it would be preferable to allow the responses of crop yields to weather to vary by state or county,
while most previous studies of crop yield and weather only provide global estimates. By providing
spatially varying crop responses to weather variations, a better (at least more realistic) agent-based
model may be developed. Depending on data availability, such an agent-based model could be
further improved by including more agent-specific parameters, such as risk attitude, which help
determine how agricultural producers respond to the same variations of weather-induced crop yield
change. Meanwhile, it should be noted that applying such results to help improve an agent-based
model is not imminent, since more reliable GWPR coefficients are required for such application—
an important goal for future research.

Although using GWPR advances data analysis, this method remains subject to the major
limitations of GWR. For instance, the estimated coefficients are likely to vary with different
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Figure 10. Spatial Distribution of GWPR Coefficients (and Pseudo-Significant Coefficients) of
Growing Season Precipitation for Irrigated and Nonirrigated Corn Yields
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Figure 11. Spatial Distribution of GWPR Coefficients (and Pseudo-Significant Coefficients) of
Growing Season Temperature for Irrigated and Nonirrigated Corn Yields
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(a)

(b)

Figure 12. Distribution of GWPR Coefficients over Latitude, Separately Estimated based on
Irrigated or Nonirrigated Corn Yields
Notes: Each data point represents the GWPR coefficient estimate for a specific county. (a) temperature. (b) precipitation.

bandwidths, while the optimized bandwidth is obtained by exploring the data, not with a solid
underlying theory. A second concern is the statistical power of GWR, as the same samples are
repeatedly used to calibrate nearby coefficients, which could quickly consume degrees of freedom.
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Figure 13. The distribution of how much the GWPR model reduces the out-of-sample RMSE
compared to (a) a global fixed effects model and (b) a regional fixed effects model. A global
fixed effects model generates a constant coefficient for the whole sample, while a
region-specific fixed effects model generates different coefficients for each region by
estimating a fixed effects model for each region separately. We have divided our 958 counties
into three regions (c). We randomly draw 90% of the entire sample without replacement as
the training data set, and the remaining 10% of the sample as the testing data. The three
percentages on the X-axis are the minimum, mean, and maximum of the RMSE percentage
reduction.
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(a)

(b)

Figure 14. Temperature and Precipitation Coefficients Estimated Separately by State Using a
Fixed Effects Model
Notes: The same model as the second fixed effects model in table 3.

Therefore, inferences from GWPR should not be treated with the same confidence as traditional
statistical analysis. However, the value of the approach and the attempt to combine the exploratory
GWR and rich panel data are not diminished by its exploratory nature. The most important
contribution this approach provides is that further exploitation of the data can be carried out with
more confirmatory analyses. One such analysis is to investigate specific areas with few or no pseudo-
significant coefficients (of both temperature and precipitation) and try to identify other factors (other
than climatic ones) that might have a strong influence over corn yields.

[Received September 2013; final revision received July 2014.]
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Figure 15. Spatial Distribution of GWPR Coefficients of Growing Season Temperature with
Alternative Bandwidths
Notes: Each local model includes 10, 20, 50, 100, 150, or 200 counties. The baseline local model has thirty-two counties. It
should be noted that the local model with ten counties has fifty observations since we have five time periods.
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