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Preface

The computer software package C-SIDE estimates usual intake distributions for nutrients and

foods using statistical methodology developed at Iowa State University. The manual that accompa-

nies the software, A User’s Guide to C-SIDE (Department of Statistics and CARD 1996), explains

how to use C-SIDE to obtain estimates of usual intake distributions. This document provides a

detailed description of the statistical methodology itself.

Several papers describing the theory and application of the methodology have appeared in the

statistical literature, including Nusser et al. (1996a) and (1996b), but this document is the first to

fully describe every step of the method, including the derivation of many results mentioned only

briefly in other sources. The notation in this document may differ slightly from that used in other

sources. The algorithms documented in this report are those implemented by C-SIDE Version 1.0.

Todd Krueger helped with the documentation of the algorithms in Chapter 5, and Wayne

Fuller provided invaluable editing support. Judy Shafer and Sherrie Martinez performed the initial

typesetting and formatting.
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A TECHNICAL GUIDE TO C-SIDE

Introduction

The U.S. Department of Agriculture conducts surveys to assess the dietary adequacy of the

population. An important concept in analyzing data from these surveys is that of usual intake,

defined as the long-run average daily intake of a dietary component. To estimate distributions of

usual intake, surveys collect daily intake measurements on individuals for a small number of days.

Due to the small number of observations per individual, the distribution of individual mean intakes

performs poorly as an estimate of the distribution of usual intakes. This is because the variance of

the mean of a few daily intakes contains a sizable amount of within-individual variation. Assuming

that daily intakes of a dietary component for an individual measure the individual’s usual intake

with error, the problem of estimating the distribution of usual intakes can be thought of as the

problem of estimating the distribution of a random variable that is observed subject to measurement

error. Once an estimator of the usual intake distribution is obtained, it yields estimates of usual

intake moments, usual intake quantiles, and the proportion of the population with usual intake

below a specified level.

Several characteristics of dietary intake data make statistical analysis difficult. Intake data

are nonnegative, and the distributions of both daily intakes and individual mean intakes are often

highly skewed. Nuisance effects are often present in the data; daily consumption patterns differ

according to day-of-week and month of year. Within-individual variances may vary across individ-

uals, suggesting that the measurement error variance is not constant. Nusser et al. (1996a) propose

a method that combines power transformations and nonparametric regression splines to estimate

usual intake distributions of dietary components such as nutrients, which are consumed on a daily

basis. For infrequently consumed dietary components such as foods, Nusser et al. (1996b) extend

the method to settings in which the data arise from a mixture of consumers and nonconsumers. The

single-valued nonconsumer distribution is always zero and the consumer distribution is continuous,
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but not necessarily normal. The computer software package C-SIDE was developed to implement

the methodology detailed in this document.

The method for estimating usual intake distributions for nutrients has several steps. Daily intake

data are adjusted for nuisance effects, then the intake data for each sample day are adjusted to have

common mean and variance. Chapter 1 describe these preliminary adjustments. The adjusted daily

intake data are transformed to normality as described in Chapter 2. The transformed observed

intake data are assumed to follow a measurement error model, and the normal distribution methods

of Sections 3.1 and 3.2 are used to estimate the parameters of the model. A transformation that

carries the normal usual intake distribution back to the original scale is detailed in Section 3.3. The

back transformation of the fitted normal distribution adjusts for the bias associated with a nonlinear

transformation. The back transformation is used to define the distribution of usual intakes in the

original scale, and is used in conjunction with the estimated measurement error model to obtain the

estimates (Section 3.4) and associated standard errors (Chapter 4) for quantiles and cumulative

distribution function values of the usual intake distribution. The estimated density function of

usual intake is obtained from the back transformation as described in Section 3.5.

The method for estimating usual intake distributions for foods in C-SIDE requires an indi-

vidual’s usual intake to be unrelated to the individual’s probability of consumption. A test for

correlation between intake and probability of consumption is described in Section 5.1. Under the

independence assumption, the usual intake for an individual is modeled as the individual’s usual

intake on days that the food is consumed multiplied by the individual’s probability of consuming

the food on any given day. The method for estimating usual intake distributions for nutrients is

applied to the positive food intakes to estimate a consumption day usual intake distribution for

the population. The estimation of the distribution of the probability of consumption is described

in Section 5.2. The joint distribution of consumption day usual intakes and consumption probabil-

ities is used to derive the usual intake distributions over all days for consumers and for the entire

population. Section 5.3 gives the derivation and describes the estimation of moments, percentiles,

and density functions for food intake distributions.



Chapter 1

Preliminary Adjustments

1.1 The Data

The C-SIDE software analyzes a data set consisting of daily intake observations recorded on

each of n individuals. Let the observations be denoted by Y
(o)
ij , i = 1, 2, . . . , n, j = 1, 2, . . . , ki,

where ki, ki ≤ k, denotes the number of observations for individual i. Each individual has a

sampling weight Wi, i = 1, 2, . . . , n. If the data are assumed to be equally weighted, each Wi is 1.

Two sets of observation weights are created from the individual weights Wi as

W̃ij =Wi ,

w̃ij = k−1
i Wi ,

for j = 1, 2, . . . , ki. Both sets of weights are normalized to sum to unity.

Wij =




n∑

i=1

ki∑

j=1

W̃ij




−1

W̃ij , (1.1)

wij =




n∑

i=1

ki∑

j=1

w̃ij




−1

w̃ij . (1.2)

1.2 Summary Statistics

C-SIDE applies several preliminary smoothing procedures to the intake data. After each

smoothing procedure is complete, C-SIDE outputs some simple descriptive statistics for the

3
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smoothed intake data denoted below by Yij . The weights Wij from (1.1) are used to compute

the quantities

N =
n∑

i=1

ki ,

Ȳ =




n∑

i=1

ki∑

j=1

Wij




−1
n∑

i=1

ki∑

j=1

WijYij ,

s2 =




n∑

i=1

ki∑

j=1

Wij




−1
n∑

i=1

ki∑

j=1

Wij(Yij − Ȳ )2,

s =
√
s2 ,

m3 = s−3




n∑

i=1

ki∑

j=1

Wij




n∑

i=1

ki∑

j=1

Wij(Yij − Ȳ )3,

m4 = s−4




n∑

i=1

ki∑

j=1

Wij




n∑

i=1

ki∑

j=1

Wij(Yij − Ȳ )4 − 3 ,

If the observations Yij are equally weighted, the following formulas are used.

N =
n∑

i=1

ki ,

Ȳ = N−1
n∑

i=1

ki∑

j=1

Yij , (1.3)

s2 = N−1
n∑

i=1

ki∑

j=1

(Yij − Ȳ )2, (1.4)

s =
√
s2 ,

m3 = s−3
(
N2 − 3N + 2

)−1
N

n∑

i=1

ki∑

j=1

(Yij − Ȳ )3, (1.5)

m4 = s−4
(
N3 − 6N2 + 11N − 6

)−1 (
N2 +N

) n∑

i=1

ki∑

j=1

(Yij − Ȳ )4

−3
(
N2 − 5N + 6

)−1
(N − 1)2 , (1.6)
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The quantities m3 and m4 are estimates of skewness and kurtosis, respectively. The formulas (1.5)

and (1.6) are found in Fisher (1963).

1.3 Normal Scores

C-SIDE uses a variant of the Blom (1958) normal scores in the construction of semiparametric

normality transformations. For a set of N ordered observations Y(1), Y(2), . . . , Y(N), where Y(1) ≤
Y(2) ≤ . . . ≤ Y(N), a set of normal scores is constructed by computing

Z(i) = Φ−1

(
i− 3

8

N + 1
4

)
(1.7)

for i = 1, 2, . . . , N, where Φ−1denotes the inverse of the standard normal cumulative distribution

function. The first and last two Z(i) are multiplied by a constant so that the first five sample

moments of the Z(i) closely match the first five theoretical moments of the normal distribution. In

the general case, the constant 1.04 is used. In the specific case N = 400 (see Sections 3.3 and 5.3)

the constant is 1.0448.

1.4 Equal Weight Sample

Consider the intake data Yij and associated sampling weights wij from (1.2). The N ′ distinct

observations in the sample of intakes are ranked and re-indexed. The distinct values are denoted

by Y(k), k = 1, 2, . . . , N ′. The corresponding weights w(k) for the distinct values are

w(k) =
∑

{Yij=Y(k)}
wij .

The empirical cumulative distribution function F̃ , defined at N ′ + 2 points, is

F̃
(
Y(k)

)
=

∑

i<k

w(i) +
1

2
w(k) ,

F̃−1 (0) = max

(
Y(1) −

Y(2) − Y(1)

F̃
(
Y(2)

)
− F̃

(
Y(1)

) F̃
(
Y(1)

)
, 0

)
,
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F̃−1 (1) = Y(N ′) +
Y(N ′) − Y(N ′−1)

F̃
(
Y(N ′)

)
− F̃(N ′−1)

(
1− F̃

(
Y(N ′)

))
.

Let F̃ (y) be the function that is linear between the N ′ + 2 points. Thus, F̃ is obtained from the

usual step-function empirical cumulative distribution function F̂ by connecting the midpoints of

the rises of adjacent steps with straight lines. The lines passing through the first and last steps

are extended to 0 and 1, respectively. Let N =
∑n

i=1 ki. An equal weight sample {Y (e)
i }Ni=1 is

constructed by inverting F̃ at the points {pi}Ni=1, where pi = N−1(i − 0.5). The equal weight

sample has the property that the empirical cumulative distribution function F̂ constructed from

the N distinct values Y
(e)
i , using weights N−1 for each i, is essentially the same as F̃ computed

from the original, weighted data.

1.5 Power Transformation Selection

A power or log transformation is applied to intake data so that the transformed data appears

roughly normally-distributed. To avoid taking logarithms of observed zero intakes, a small fraction

of the (weighted) mean intake is added to each observation before any power transformations

are applied. See Equation (1.11). Given an equal weight sample of strictly positive observations

{Y(i)}Ni=1, ordered from smallest to largest, a value of α is chosen to minimize

N∑

i=1

(
Z(i) − β̂0 − β̂1Y

α
(i)

)2
, (1.8)

where {Z(i)}Ni=1 are the normal scores defined in Section 1.3, β̂0 and β̂1 are the usual least-squares

estimates for the intercept and slope in the regression of Z(i) on Yα
(i), and α ∈ {0, 1, 1.5−1, 2−1, 2.5−1,

. . . , (R−0.5)−1, R−1}. The value of R can be any positive integer greater than one, and is typically

taken to be 10. Note that the
{
Z(i)

}N
i=1

have sample mean zero by construction. Formulas for
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β̂0 and β̂1 are

β̂1 =

N∑
i=1

Z(i)

(
Y α

(i) −N−1
N∑
i=1

Y α
(i)

)

N∑
i=1

(
Y α

(i) −N−1
N∑
i=1

Y α
(i)

)2 ,

β̂0 = −β̂1

(
N−1

N∑

i=1

Y α
(i)

)
. (1.9)

From well-known results from least-squares theory, an equivalent form of (1.8) is given by

N∑

i=1

(
Z(i) − β̂0 − β̂1Y

α
(i)

)2
=

N∑

i=1

Z2
(i) − β̂

2

1

N∑

i=1

(
Y α

(i) −N−1
N∑

i=1

Y α
(i)

)2

. (1.10)

In the case α = 0, Y α
(i) should be taken to mean ln(Y(i)), where ln (·) denotes the natural logarithm

transformation.

Once the best power α is selected, a scale factor β is chosen so that the values of (Y α
ij )×10−β are

not too large in absolute value. The value of β is

β =





⌊
log10

{
max

(∣∣∣Y α
(1)

∣∣∣ ,
∣∣∣Y α

(N)

∣∣∣
)}⌋

if α 6= 0 ,

⌊
log10

{
max

(∣∣lnY(1)

∣∣ ,
∣∣lnY(N)

∣∣)}⌋ if α = 0 ,

where bxc denotes the greatest integer less than or equal to x. The scaled values (Y α
ij )× 10−β are

used in the remaining calculations.

1.6 Ratio-adjustment to Remove Nuisance Effects

Consider the sample of original observations Y
(o)
ij and weights Wij described in Section 1.1. The

quantity

δ = ε
n∑

i=1

ki∑

j=1

WijYij (1.11)

is added to each of the Y
(o)
ij , where ε is a small positive number, typically 0.0001. Denote

these shifted observations by Y
(s)
ij . Suppose that the data set being analyzed contains observa-

tions taken on variables representing nuisance effects, such as day of week, interview sequence, or
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metabolic rate. Such nuisance effects may be either discrete or continuous. Let V1ij , V2ij , . . . , VDij

and U1ij , U2ij , . . . , UCij denote the collections of discrete and continuous nuisance variables, respec-

tively. Also, let l1, l2, . . . , lD denote the number of levels for each of the discrete variables.

Because all of the preliminary smoothing procedures are applied to power-transformed data, a

best power α and scale factor β are chosen as described in Section 1.5 before the ratio-adjustment

is performed. The power α is applied to the original Y
(s)
ij . Let

X
(s)
ij =





(
Y

(s)
ij

)α
× 10−β if α 6= 0 ,

ln
(
Y

(s)
ij

)
× 10−β if α = 0 ,

(1.12)

for i = 1, . . . , n, j = 1, . . . , ki. The ratio-adjustment of the {X (s)
ij } for the effects of

{V1ij , . . . , VDij , U1ij , . . . , UCij} is as follows.

1. Let Dk = [d2k d3k . . . dlkk] for k = 1, 2, . . . , D, where for m = 2, 3, . . . , lk, dmk is a column

vector with elements

dmkij =





1 if Vkij is at level m ,

0 if Vkij is not at level m ,

That is, Dk is a full-rank design matrix for the categorical variable Vkij .

2. Let 1 denote a column vector of ones, and U1,U2, . . . ,UC denote the column vectors of

observations for the continuous variables U1ij , U2ij , . . . , UCij . Write

M = [1 D1 D2 . . . DD U1 U2 . . . UC ] . (1.13)

The matrix M is N rows by C + 1 +
∑D

k=1 (lk − 1) columns. The matrix M need not be of

full column rank.

3. A weighted least-squares regression with model matrix M and response variable {X (s)
ij } is

performed, where the weights in the regression are the Wij from (1.1). The predicted values

X̂
(s)
ij from the regression are

X̂(s) = Mβ̂ , (1.14)
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where

β̂ =
(
M′ diag (Wij)M

)−
M′ diag (Wij)X

(s), (1.15)

X(s) is the column vector of observations X
(s)
ij , X̂(s) is the column vector of predicted values

X̂
(s)
ij , and A− denotes the generalized inverse of A.

4. Let X̄1 denote the weighted average of the observations taken in the first time period of the

survey. It may be that not all of the n individuals represented in the survey had a valid

observation in the first time period, in which case fewer than n observations are used to

compute X̄1. Then

X̄1 =

(∑

i∈I

Wi1

)−1∑

i∈I

Wi1X
(s)
i1 ,

where I ≡ {i : individual i has a valid observation in period 1} .

5. The ratio-adjusted observations X
(r)
ij are

X
(r)
ij = X̄1

(
X

(s)
ij

X̂
(s)
ij

)
. (1.16)

6. The ratio-adjusted intakes in the original scale are

Y
(r)
ij =





max

(
0,
(
X

(r)
ij × 10β

) 1
α − δ

)
if α 6= 0 ,

max
(
0, exp

(
X

(r)
ij × 10β

)
− δ
)

if α = 0 ,

(1.17)

for i = 1, . . . , n, j = 1, . . . , ki, where δ is the quantity in (1.11).

If it is desired to ratio-adjust to the grand mean rather than to the period one mean, let the

grand mean be

X̄.. =




n∑

i=1

ki∑

j=1

Wij




−1
n∑

i=1

ki∑

j=1

WijX
(s)
ij .

Then the X
(r)
ij of (1.16) are

X
(r)
ij = X̄..

(
X

(s)
ij

X̂
(s)
ij

)
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and the Y
(r)
ij are obtained from the X

(r)
ij as in (1.17).

1.7 Regression for Individual and Period Effects

This section describes the computations of a regression that will be used to adjust for time-in-

sample (period) effects. The adjustment is described in the next section.

Given data yij and weights wij , i = 1, 2, . . . , n, j = 1, 2, . . . , ki, let k = max (ki) and consider

the regression model

yij = αi + βj + εij , (1.18)

where αi is the effect due to individual i , and βj is the effect of taking an observation in the jth

time period (day), with the restriction β1 = 0. Furthermore, assume that the εij have mean zero.

Equation (1.18) can be written as

Y = Xβ + ε , (1.19)

where Y and ε are column vectors of yij and εij ,

β = [α1, α2, . . . , αn, β2, β3, . . . , βk]
′ ,

and the row of X corresponding to yij has a one in column i, and, if j > 1, another one in column

n+j−1. Every other entry in X is zero. Let W = diag(wij). It is desired to compute the weighted

least-squares estimate of β,

β̂ =
(
X′WX

)−1
X′WY . (1.20)

The inversion of X′WX is not feasible, due to the high dimension (n+ k − 1) of X. By taking

advantage of the special structure of the X matrix and results concerning inverses of partitioned

matrices, a solution is easily derived.

Write

X′WX =


 A C

C′ D


 , X′WY =


 Z1

Z2


 , (1.21)
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where

A = diag (wi·) i = 1, 2, . . . , n ,

D = diag (w.j) j = 2, 3, . . . , k ,

C = {Cij} =





wij if individual i had intake on day j ,

0 otherwise ,

Z1 =




ki∑

j=1

wijYij



n

i=1

,

Z2 =

[
n∑

i=1

wijYij

]k

j=2

.

The dot subscript indicates summation over the dotted index. For nonsingular X′WX,


 A C

C′ D



−1

=


 A−1 0

0 0


+


 −A

−1C

I


(D−C′A−1C

)−1
[
−C′A−1 I

]
. (1.22)

Note that A−1 = diag(w−1
i· ) , and D is typically of much lower order than A. Hence, inversion of

(D−C′A−1C) is easily performed.

Let U be the Cholesky root of (D−C′A−1C)−1, i.e. U′U = (D−C′A−1C)−1, and let

Q′ =


 −A

−1C

I


U′

,

so that

β̂ = (X′WX)−1X′WY =




 A−1 0

0 0


+Q′Q




 Z1

Z2




=


 A−1Z1

0


+Q′Q


 Z1

Z2




=


 A−1Z1

0


+Q′


Q


 Z1

Z2




 . (1.23)
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In the formulation of the model (1.19), the overall mean response (adjusted for individual and

period effects) is not directly estimable. An intuitively reasonable estimate for the overall mean is

given by

µ̂ =

(
n∑

i=1

wi·

)−1 n∑

i=1

wi·α̂i , (1.24)

where the αi are the first n elements of β.

1.8 Adjustment to Remove Period Effects

The estimation of usual intake distributions requires that the distribution of intakes for the

first time period be the same as that of intakes for the second and subsequent periods. The ratio-

adjusted intakes Y
(r)
ij defined in (1.17) are further adjusted so that the mean and variance for each

period’s observations are the same, where period indexes the interview number. Period one is the

first day-of-interview, period two is the second day-of-interview, etc.

The initial shift, power, and scale factors δ, α, and β used in the ratio-adjustment procedure

(Section 1.6) are applied to the Y
(r)
ij to get

X
(r)
ij =





10−β
(
Y

(r)
ij + δ

)α
if α 6= 0 ,

10−β ln
(
Y

(r)
ij + δ

)
if α = 0 ,

for i = 1, . . . , n, j = 1, . . . , ki. The weighted regression calculations described in Section 1.7 are

performed, with dataX
(r)
ij and weights wij from (1.2), to obtain estimates µ̂ and β̂2, β̂3, . . . , β̂k of the

period one mean and the period effects for the subsequent periods. Here, k denotes the maximum

number of time periods represented in the sample.

For i = 1, . . . , n, j = 1, . . . , ki, define

δij =





1 if the ith individual had an observation in the j th period,

0 otherwise .

If the original data (from Section 1.1) are equally weighted, then let

nj =
n∑

i=1

δij ,
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X̄j = n−1
j

n∑

i=1

δijX
(r)
ij ,

s2j = (nj − 1)−1
n∑

i=1

δij

(
X

(r)
ij − X̄j

)2
,

for j = 1, 2, . . . , k. Otherwise,

W·j =
n∑

i=1

δijWij ,

X̄j = W−1
.j

n∑

i=1

δijWijX
(r)
ij ,

s2j = W−1
.j

n∑

i−1

δijWij

(
X

(r)
ij − X̄j

)2
,

for j = 1, 2, . . . , k, whereWij are the weights defined in (1.1). Let

µ̂1 = µ̂ ,

s1 =
√
s21 ,

and for j = 2, . . . , k, let

µ̂j = µ̂+ β̂j ,

sj =
√
s2j ,

cj = s−1
j s1 ,

aj = µ̂j − c−1
j µ̂1 ,

bj = µ̂1 − cjµ̂j .

The new, adjusted data X
(h)
ij are

X
(h)
ij =





X
(∗)
ij − bj

[
1− (2 |aj |)−1X

(r)
ij

]
I
(
X

(∗)
ij ≤ 2 |aj |

)
if α 6= 0 and j 6= 1 ,

X
(∗)
ij if α = 0 or j = 1 ,

(1.25)
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where

X
(∗)
ij =





X
(r)
ij if j = 1 ,

cj

(
X

(r)
ij − µ̂j

)
+ µ̂1, if j 6= 1 ,

(1.26)

for i = 1, . . . , n, j = 1, . . . , ki. The constants aj and bj are the points of intersection of the line

defined in the second component of (1.26) and the X (r) and X(∗) axes, respectively. The indicator

function in the first component of (1.25) is a modification to the linear transformation in (1.26) to

ensure that adjusted transformed intakes are positive and that zero intakes are transformed into

zero intakes. Empirical results indicate that very few, if any, observations fall into the [0, 2 |aj |]
interval.

Finally, the adjusted data Y
(h)
ij in the original scale are

Y
(h)
ij =





max

(
0,
(
10βX

(h)
ij

) 1
α − δ

)
if α 6= 0 ,

max
(
0, exp

(
10βX

(h)
ij

)
− δ
)

if α = 0 ,

(1.27)

for i = 1, . . . , n, j = 1, . . . , ki.

If the data in Section 1.1 were assumed to be equally weighted, then the semiparametric normal-

ity transformations and subsequent analysis are performed on the Y
(h)
ij observations. Otherwise, an

equal weight sample Y
(e)
ij is constructed using the procedure described in Section 1.4, intake data

Y
(h)
ij , and sampling weights wij from (1.2).

If adjustment to the grand mean, rather than to the day one mean, is desired, let

µ̂G =





n−1
n∑

i=1

k−1
i

ki∑

j=1

X
(r)
ij

if the data are

equally weighted ,



n∑

i=1

k−1
i

ki∑

j=1

Wij




−1
n∑

i=1

k−1
i

ki∑

j=1

WijX
(r)
ij otherwise ,

s2p =




k∑

j=1

nj − k




−1
k∑

j=1

(nj − 1) s2j ,

sp =
√
s2p .
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Take β̂1 to be zero, and for j = 1, . . . , k, let

µ̂j = µ̂+ β̂j ,

cj = s−1
j sp,

aj = µ̂j − c−1
j µ̂G,

bj = µ̂G − cjµ̂j .

The grand-mean adjusted data are given by

X
(h)
ij =





X
(∗)
ij − bj

[
1− (2 |aj |)−1X

(r)
ij

]
I
(
X

(∗)
ij ≤ 2 |aj |

)
if α 6= 0 ,

X
(∗)
ij if α = 0 ,

(1.28)

where

X
(∗)
ij = cj

(
X

(r)
ij − µ̂j

)
+ µ̂G (1.29)

for i = 1, . . . , n, j = 1, . . . , ki. Equation (1.27) is used to obtain the adjusted data Y
(h)
ij from the

X
(h)
ij defined in (1.28).



Chapter 2

Semiparametric Normality Transformations

2.1 Anderson-Darling Test for Normality

Let {Xi}Ni=1 be an equal weight sample of observations from some distribution F . It is desired

to test H0 : F is the cumulative distribution function of a normal distribution vs. HA : not H0.

Let

X̄ = N−1
N∑

i=1

Xi ,

s2 = (N − 1)−1
N∑

i=1

(
Xi − X̄

)2
,

Zi = Φ

(
Xi − X̄

s

)
,

where Φ(·) denotes the standard normal cumulative distribution function. Let Z(i) denote the ith

order statistic of the standardized observations, and let

λi = max
(
1× 10−7, Z(i)

(
1− Z(N+1−i)

))
. (2.1)

The Anderson-Darling test statistic is

A = −
(
1 +

4

N
− 25

N2

) N∑

i=1

1 +N−1 (2i− 1) ln(λi) . (2.2)

See Stephens (1974). Note that the construction of the λi avoids taking the logarithm of very small

numbers. If A exceeds a given critical value in Table 2.1, the null hypothesis is rejected at the

nominal level given in the table. A critical value marked with an asterisk should be considered

approximate.

16
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Critical Value Nominal Type I Error Rate

0* 0.9999
0.127* 0.99
0.193* 0.90
0.250* 0.75
0.340* 0.50
0.465* 0.25
0.576 0.15
0.656 0.10
0.787 0.05
0.918 0.025
1.092 0.01

Table 2.1: Critical values for the Anderson-Darling test.

2.2 Join Point Determination

The semiparametric normality transformation performed by the C-SIDE software uses a piece-

wise polynomial to approximate the nonlinear function that relates observed quantiles of an intake

distribution to the corresponding quantiles of the standard normal distribution. An important step

in the transformation procedure is to determine join points, places where the polynomial will change

shape. The number of join points is variable, and is denoted by p. The p join points partition the

domain of the piecewise polynomial into p+ 1 regions. The constructed polynomial is to be linear

on the first and last regions and cubic over the p− 1 interior regions.

Let the data be
{(
T(i), Z(i)

)}N
i=1

, where the T(i) are the ordered observations from an intake

distribution and the Z(i) are the Blom normal scores (1.7) for a sample of size N . Let m = bτNc
and M = N −m+ 1, where τ is the pre-specified proportion of observations to be placed in each

of the end regions. Typically, τ is chosen to make m = 2. If necessary, the values of m and M are

adjusted so that both sets of observations
{
T(1), . . . , T(m)

}
and

{
T(M), . . . , T(N)

}
contain at least

two distinct values. Join points {Aj}pj=1 are defined by

A1 =
1

2

(
Z(m) + Z(m+1)

)
,
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Ap =
1

2

(
Z(M−1) + Z(M)

)
, (2.3)

Aj = A1 + (p− 1)−1 (j − 1) (Ap −A1) ,

for j = 2, . . . , p− 1. Join points chosen in this fashion are equally-spaced in the normal scale.

2.3 Grafted Polynomial Fitting

Given ordered equal weight data {Y(i)}Ni=1, consider the problem of estimating a smooth function

H such that {H(Y(i))}Ni=1 is very nearly normally distributed. The function should be such that

H(Y(i))
.
= Z(i) for all i = 1, 2, . . . , N , where Z(i) is the i

th Blom normal score (as defined in Section

1.3) for a sample of size N. A plot of the (Z(i), Y(i)) pairs is commonly known as a normal probability

plot. C-SIDE constructs a smooth estimate of the normal probability plot, and uses the smooth

estimate to define a transformation that carries the intakes into normality. Because distributions

of observed intakes are often decidedly nonnormal, power or log transformations are applied to

yield more nearly linear normal probability plots that are easier to smooth. Let {T(i)}Ni=1 be the

power-transformed values defined by the power selection algorithm of Section 1.5. The (Z(i), T(i))

pairs are used to construct a transformation g from Z to T . The function g is restricted so that

1. g is a piecewise function defined over p+ 1 regions,

2. g is a linear function over the first and last regions, but is a cubic polynomial over the p− 1

interior regions, and

3. g has two continuous derivatives and is monotone .

Because of conditions 1-3, the inverse of g exists and also satisfies 1-3. The inverse of g is used

in conjunction with the inverse of the power transformation to define H. C-SIDE estimates g by a

regression with functions of normal scores as independent variables and power-transformed intakes

as the dependent variable.
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1. Let A1, A2, . . . , Ap be join points in the normal scale as determined by the procedure in

Section 2.2. Define for i = 1, 2, . . . , N

xi1 = 1 , (2.4)

xi2 = Z(i) , (2.5)

Gij =





0 if Z(i) ≤ Aj−2,

(Zi −Aj−2)
3 if Z(i) > Aj−2,

for j = 3, 4, . . . , p+ 2, (2.6)

xij = Gij + C2jGi, p+1 + C3jGi, p+2 for j = 3, 4, . . . , p , (2.7)

where

C2j =
Ap −Aj−2

Ap−1 −Ap
, (2.8)

C3j =
−(Ap−1 −Aj−2)

Ap−1 −Ap
. (2.9)

The xij , j = 1, 2, . . . , p are the independent variables in the regression. Write

X = [x1 x2 . . . xp] , (2.10)

where xj denotes a column vector of the {xij}Ni=1, and compute

β̂ =
(
X′X

)−
X′T , (2.11)

where T is a column vector of the {T(i)}Ni=1. The values of {Aj}pj=1 and β̂ define a grafted

polynomial g(Z) = Xβ̂, where the elements of X depend on the values of Z and {Aj}pj=1.

2.4 Evaluation and Differentiation of Grafted Polynomials

The calculations in Section 2.3 give rise to a piecewise polynomial g(Z) of the form



20 / A TECHNICAL GUIDE TO C-SIDE

g (Z) =





β̂1 + β̂2Z Z < A1 ,

β̂1 + β̂2Z + β̂3(Z −A1)
3 A1 < Z ≤ A2 ,

β̂1 + β̂2Z + β̂3(Z −A1)
3 + β̂4(Z −A2)

3 A2 < Z ≤ A3 ,

β̂1 + β̂2Z +
k∑

j=3

β̂j(Z −Aj−2)
3 Ak−2 < Z ≤ Ak−1 ,

β̂1 + β̂2Z +
p∑

j=3

β̂j

[
(Z −Aj−2)

3 + C2j(Z −Ap−1)
3
]

Ap−1 < Z ≤ Ap ,

β̂1 + β̂2Z +
p∑

j=3

β̂j

[
(Z −Aj−2)

3 + C2j(Z −Ap−1)
3

+ C3j(Z −Ap)
3
]

Ap < Z ,

(2.12)

for k = 5, 6, . . . , p, where C2j and C3j are defined in (2.8) and (2.9). Evaluation and differentiation

of g(Z) with respect to Z is simple, due to the polynomial nature of g.

Operationally, it is often necessary to evaluate g and its derivative for a vector of normal scores

Z ={Zi}ni=1 . When evaluation of g is required, the expression

g(Z) = Xβ̂

is used, where the model matrix X is described in (2.4)-(2.10).

When the derivative g is required, the quantities (2.4)-(2.6) are differentiated to get

ui1 = 0 ,

ui2 = 1 ,

Hij =





0 if Zi ≤ Aj−2 ,

3(Zi −Aj−2)
2 if Zi > Aj−2 ,

for j = 3, 4, . . . , p+ 2 ,

uij = Hij + C2jHi, p+1 + C3jHi, p+2 , for j = 3, 4, . . . , p ,

where C2j and C3j are defined in (2.8) and (2.9), respectively. Let

U = [u1 u2 . . . up] ,

where uj denotes a column vector of the {uij}ni=1 . The derivative g′(Z) of g at the points Z =

{Zi}ni=1 is the vector g′(Z) = Uβ̂.
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Note that g and g′ are functions from Z to T , where Z denotes the normal scale and T denotes

the shifted, power transformed, scaled intake scale. To get a function from Z to Y , where Y

denotes the original intake scale, results on the composition of functions are used to obtain

Y = f(T ) = f (g (Z)) = h (Z) ,

where

f (t) =





(10βt)
1
α − δ if α 6= 0 ,

exp(10βt)− δ if α = 0 ,
(2.13)

and

Y ′ = f ′(T ) = f ′ (g (Z)) g′ (Z) = h′ (Z)

=





α−110β
[
10βg (Z)

] 1
α
−1
g′ (Z) if α 6= 0 ,

10β exp
(
10βg (Z)

)
g′ (Z) if α = 0 .

Note that it is possible to obtain negative values for g(Z) for very small values of Z , and that the

subtraction of δ in (2.13) can also produce negative estimates for intakes, which are by definition

nonnegative. Negative values of g(Z) are replaced with zeros when α 6= 0 , so that the exponentia-

tion of g(Z) can be performed by computer using the identity ax = exp (x ln a). Likewise, negative

estimates of intake are replaced with zeros.

2.5 Inversion of the Grafted Polynomial

Sections 2.3-2.4 detail the construction of a function h : Z → Y as f ◦ g, where f : T → Y and

g : Z → T. The function g is a grafted cubic polynomial, and the function f is a combination of a

shift, a power or log transformation, and a scale factor. The transformation H : Y → Z mentioned

in Section 2.3 is given by H = g−1
(
f−1 (Y )

)
.

Let f(t) be determined by α, β, and δ as in (2.13). Then

f−1(y) =





10−β (y + δ)α if α 6= 0 ,

10−β ln (y + δ) if α = 0 .
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There is no simple explicit form for g−1, but g−1 can be computed at any point t0, because g is a

cubic polynomial. Let g−1 (t0) = g−1(f−1(Y0)). Expanding the terms of g (see (2.12)) yields

g (Z) = C1Z
3 + C2Z

2 + C3Z + C4 ,

where C1, C2,C3, and C4 depend on β̂ from (2.11) and {Aj}pj=1 from (2.3). Computation of the

values of C1, C1,C3, and C4 is a tedious exercise in algebra involving repeated use of the expansion

(Z −Aj)
3 = Z3 − 3Z2Aj + 3ZA2

j −A3
j ,

and is omitted.

Now, g−1(t0) is the value Z0 such that g(Z0) = C1Z
3
0 +C2Z

2
0 +C3Z0 +C4 = t0, or equivalently

such that

g̃(Z0) = C1Z
3
0 + C2Z

2
0 + C3Z0 + (C4 − t0) = 0 . (2.14)

If C1 = C2 = 0, i.e. g is linear in Z, then either t0 > g(Ap) or t0 < g(A1), and Z0 is

Z0 =
t0 − C4

C3
.

Suppose g is not linear in Z. Then by construction, g is cubic in Z. Solutions to (2.14) are

solutions to

ḡ (Z0) = Z3
0 +

C2

C1
Z2

0 +
C3

C1
Z0 +

(C4 − t0)
C1

= Z3
0 + pZ2

0 + qZ0 + r

= 0 .

The cubic equation

Z3 + pZ2 + qZ + r = 0

is reduced to the normal form

x3 + ax+ b = 0 , (2.15)
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where

a =
1

3

(
3q − p2

)
, b =

1

27

(
2p3 − 9pq + 27r

)
,

by the substitution

Z =
(
x− p

3

)
. (2.16)

The solutions x1, x2, and x3 to (2.15) are

x1 = A+B ,

x2, x3 = −1

2
(A+B)± i

√
3

2
(A−B) ,

where

A =
3

√

− b
2
+

√
b2

4
+
a3

27
,

B =
3

√

− b
2
−
√
b2

4
+
a3

27
.

Case I: If b2

4 + a3

27 > 0, there is one real root, x1.

Case II: If b2

4 + a3

27 = 0, there are three real roots, of which two are equal.

In this case, the roots are given by

(x1, x2, x3) =

(
∓2
√
−a
3
, ±
√
−a
3
, ±
√
−a
3

)
,

where the upper sign is used for b positive, and the lower sign is used for b negative.

Case III: If b2

4 + a3

27 < 0, there are three unequal real roots. The roots are

xk = 2

√
−a
3
cos

(
φ+ 2π(k − 1)

3

)
, k = 1, 2, 3,

where

cosφ = ∓
√
−27b2

4a3
,
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and the upper sign is used for b positive and the lower sign is used for b negative. Recalling the

substitution in (2.16), there are up to three real numbers, say Z1, Z2, Z3, such that g(Zi) = t0,

given by

Zi =
(
xi −

p

3

)
,

where the {xi} are the roots computed above.

Recall that g is one-to-one. On each interval [Aj−1, Aj ], g behaves like the cubic polynomial

ajZ
3 + bjZ

2 + cjZ + dj ,

for which there may be multiple Z values in (−∞,∞) that give a value of t0. However, there is only

one Z value in [Aj−1, Aj ] for which g has a function value of t0. In the absence of round-off error,

it is simple to inspect the potential roots Z1, Z2, and Z3 to determine which root is the desired

one. However, tiny numerical inaccuracies in the root-finding computation require a more robust

approach. In practice, g is evaluated at each potential root Zi, and the root for which |g(Zi)− t0|
is minimum is taken as the unique Z0 = g−1(t0). Because the ”wrong” roots can be very far from

the ”right” root, the evaluation of g for the potential roots requires additional bound checking to

prevent overflow errors.

2.6 Construction of Normality Transformations

Consider the adjusted, equal weight data Y
(e)
ij obtained after performing the procedures of

Chapter 1. Let N be the total number of observations and denote the ordered data by {Y(k)}Nk=1.

Let {Z(k)}Nk=1 be the associated Blom normal scores defined by (1.7). The procedure described

in Section 1.4 is performed to obtain a shift δ, power α, and scale factor β so that the set of

observations {T(k)}Nk=1 is roughly normally distributed, where

T(k) =





10−β
(
Y(k) + δ

)α
if α 6= 0 ,

10−β ln
(
Y(k) + δ

)
if α 6= 0 .
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Let p be the maximum number of join points permitted (typically between 10 and 12), and let

p0 = 3. The procedure of Section 2.2 is applied to the
{
(T(k), Z(k))

}
to obtain join points {Aj}p0

j=1.

The (T(k), Z(k)) data and the {Aj} are used to fit a grafted polynomial gp0(Z) as described in

Section 2.3. The grafted polynomial depends on the {Aj} and the vector of p0 parameter estimates

β̂ in (2.11). Recall that the derivative of g is to be nonnegative over the range of the {Z(k)}. As a

partial check for this condition, the fitted polynomials are required to have a positive derivative at

each join point.

If gp0 has a negative derivative at any of the {Aj}, the value of p0 is increased by 1, and the

grafted polynomial fitting is repeated using a new set of {Aj}. Otherwise, gp0 is checked to see if

it yields an acceptable normality transformation. Let Ẑ(k) = g−1
p0

(T(k)) where g−1
p0

(·) is computed

using results from Section 2.5.

The Anderson-Darling test for normality described in Section 2.1 is applied to the {Ẑ(k)}. If

the test is significant at some user-specified level (typically 0.15), the value of p0 is increased by 1,

and the grafted polynomial fitting is repeated using a new set of {Aj}. This process continues until
gp0 yields an acceptable normality transformation with a nonnegative derivative at each join point,

or until p0 = p. If p0 = p and gp does not satisfy the nonnegativity/normality criteria, C-SIDE

reports an error and stops.

The polynomial gp0(·) with the fewest join points, with a nonnegative derivative at each join

point, and with an Anderson-Darling test statistic less than the specified value, is chosen as the

transformation from Z to T . The inverse g−1
p0

(·) is the transformation from T to Z.

Thus, the transformation H that transforms the equal weight observations {Yij} into normally-

distributed observations {Ẑij} is

Ẑij ≡ H (Yij) =





g−1
p0

(
10−β (Yij + δ)α

)
if α 6= 0 ,

g−1
p0

(
10−β ln (Yij + δ)

)
if α = 0 ,

(2.17)

for i = 1, . . . , n, j = 1, . . . , ki.
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Usual Intake Distributions

3.1 Variance Components for Independent Within-Individual Observations

Assume that the transformation H derived in Section 2.6 produces transformed observations

{Xij} that satisfy the model

Xij = xi + uij ,

uij = σieij , i = 1, . . . , n, j = 1, . . . , ki , (3.1)

where

xi ∼ NI
(
µx, σ

2
x

)
, eij ∼ NI (0, 1) , σ2

i ∼
(
µA, σ

2
A

)
. (3.2)

Assume that xi, σ
2
i , and ukj are independent for all i, k, j. It follows that

E{u2
ij} = E{σ2

i e
2
ij} = µA .

Let

Xi· = k−1
i

ki∑

j=1

Xij , µ̂x = n−1
n∑

i=1

Xi·, N =
n∑

i=1

ki, n0 = N −N−1
n∑

i=1

k2
i ,

and consider the ANOVA of Table 3.1, in which k = max (ki) and the subtraction of (k − 1) from

the residual and total degrees of freedom corrects for the removal of period effects described in

Section 1.8. Equating mean squares to their expectations yields

µ̂A = [N − n− (k − 1)]−1
n∑

i=1

ki∑

j=1

(
Xij −X i·

)2
, (3.3)

σ̂2
x = n−1

0

[
n∑

i=1

ki
(
Xi· − µ̂x

)2 − (n− 1) µ̂A

]
. (3.4)

26
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Source df SS E{MS}

Individual n− 1
n∑

i=1

ki
(
X i· − µ̂x

)2
(n− 1)−1 n0σ

2
x + µA

Residual N − n− (k − 1)
n∑

i=1

ki∑

j=1

(
Xij −X i·

)2
µA

Total N − 1− (k − 1)

Table 3.1: ANOVA for one-way classification with unbalanced data.

Assume that ki > 1 for m of the n individuals and let

Ai = (ki − 1)−1
m∑

j=1

(
Xij −X i·

)2
, (3.5)

si =
√
Ai , (3.6)

di = (ki − 1) , (3.7)

where i = 1, . . . ,m is used to index the individuals with multiple observations. To investigate the

possibility that the Ai are correlated with the X i·, two sets of regression calculations are performed.

1. Let 1 denote a column vector of ones, S a column vector of the si, W a diagonal matrix of

the di, and compute

β̂1 =
(
1′W1

)−1
1′WS ,

SSR = β̂
2

1

(
1′W1

)
.

2. Let X̄ denote a column vector of the X i·, let T = [1 X̄], and define

β̂2 =
(
T′WT

)−
T′WS ,

SSF =
(
Tβ̂2

)′
W
(
Tβ̂2

)
,

SSE =
(
S−Tβ̂2

)′
W
(
S−Tβ̂2

)
,

MSE =
SSE

(m− 2)
,
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Ĉov
(
β̂2

)
= MSE

(
T′WT

)−
,

F =
(SSF − SSR)

MSE
.

Then a test of H0 : Individual standard deviations are uncorrelated with individual means

vs. HA : Individual standard deviations are linearly related to individual means has p-value

1−Pr
(
F 1
m−2 ≤ F

)
, where F 1

m−2 denotes a random variable distributed as Snedecor’s F with

1 numerator and (m− 2) denominator degrees of freedom.

Recall from (3.2) that σ2
i ∼ (µA, σ

2
A). An estimate of µA is obtained from (3.3). The fourth

moment of uij is

E
{
u4
ij

}
= E

{
3σ4

i

}
.

Now,

E
{
A2

i |i
}

= σ4
i +Var

{
A2

i

}

= σ4
i

[
1 + 2 (ki − 1)−1

]
.

It follows that an unbiased estimator of E
{
u4
ij

}
is

3m−1
m∑

i=1

[
1 + 2 (ki − 1)−1

]−1
A2

i ,

and an approximately unbiased estimator of σ2
A is

σ̂2
A = m−1

m∑

i=1

[
1 + 2 (ki − 1)−1

]−1
A2

i − µ̂2
A . (3.8)

Let M̂A4 be the standardized estimator

M̂A4 = 3µ̂−2
A m−1

m∑

i=1

[
1 + 2 (ki − 1)−1

]−1
A2

i . (3.9)
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If σ2
A = 0, then M̂A4 estimates 3, the fourth moment of the standard normal distribution, and

µ̂−2
A σ̂2

A = m−1
m∑

i=1

[
1 + 2 (ki − 1)−1

]−1
(
Ai

µ̂A

)2

− 1

= m−1
m∑

i=1

[
1 + 2 (ki − 1)−1

]−1
(ki − 1)−2

[
(ki − 1)Ai

µ̂A

]2

− 1

=
1

3

(
M̂A4 − 3

)
.

Now, assuming µ̂A = µA,

Ci =
(ki − 1)Ai

µ̂A
∼ χ2

(ki−1) .

The variance of C2
i is given by

Var
{
C2
i

}
= µ4i − µ2

2i , (3.10)

where µki denotes the kth noncentral moment of a chi-square random variable with degrees of

freedom di = (ki − 1).

Now,

µ2
2i =

(
2di + d2

i

)2
= d4

i + 4d3
i + 4d2

i

and

µ4i = 24
Γ
(
4 + di

2

)

Γ
(
di
2

) = 24

(
di
2
+ 3

)(
di
2
+ 2

)(
di
2
+ 1

)(
di
2

)

= (di + 6) (di + 4) (di + 2) (di)

= d4
i + 12d3

i + 44d2
i + 48di .

Hence, (3.10) becomes

Var
{
C2
i

}
= 8d3

i + 40d2
i + 48di ,

and

Var
{
µ̂−2
A σ̂2

A

}
= m−2

m∑

i=1

[
1 + 2d−1

i

]−2
d−4
i

[
8d3

i + 40d2
i + 48di

]

= m−2
m∑

i=1

[
1 + 2d−1

i

]−2 [
8d−1

i + 40d−2
i + 48d−3

i

]
. (3.11)
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It follows that

Var
{
M̂A4

}
= 9Var

{
µ̂−2
A σ̂2

A

}
,

and that an approximate size α test for H0 :MA4 = 3 vs. HA :MA4 6= 3 is to reject H0 if

∣∣∣M̂A4 − 3
∣∣∣

√
Var

{
M̂A4

} ≥ tm−1
α/2 , (3.12)

where tdα denotes the upper α percentile of a Student’s t distribution with d degrees of freedom. In

most cases, m is very large, and tm−1
α/2 can be replaced with the corresponding α/2 percentile from

the normal distribution.

3.2 Variance Components for Correlated Within-Individual Observations

As in Section 3.1, assume that the transformationH derived in Section 2.6 produces transformed

observations {Xij} that satisfy the model

Xij = xi + uij ,

uij = σieij , i = 1, . . . , n, j = 1, . . . , ki , (3.13)

where

xi ∼ NI
(
µx, σ

2
x

)
, eij ∼ N (0, 1) , σ2

i ∼
(
µA, σ

2
A

)
.

As in Section 3.1, assume xi and σ
2
i are independent for all i. However the assumption that the uij

are independent is relaxed. Assume that the ki observations for individual i are taken on a daily

basis, and that k = max (ki) days are represented in the survey. It is possible that some individuals

may not have all k daily observations recorded. Suppose, for a known correlation coefficient ρ, that

for j,m = 1, . . . , k,

Cov {uij , ulm} =





0 if i 6= l ,

σ2
i ρ

|j−m| if i = l .
(3.14)
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C-SIDE performs calculations for the structure (3.14) only if k ≤ 3 and the value of ρ is

supplied. Carriquiry et al. (1995) provide estimates of the between-day correlation coefficient ρ

for several common nutrients. If k = 3, and ki = 2 for some i, it must be known whether the two

observations are taken on consecutive days or if the two observations are separated by an additional

day.

Case I: k = 2, and the first m individuals have two observations.

Let

X̄i· = k−1
i

ki∑

j=1

Xij , µ̂x = n−1
n∑

i=1

X̄i· .

It follows that

E
{
X

2
i·

}
=





µ2
x + σ2

x + µA if ki = 1 ,

µ2
x + σ2

x +
1
2 (1 + ρ)µA if ki = 2 ,

and

E





ki∑

j=1

(
Xij −X i·

)2


 =





0 if ki = 1 ,

µA (1− ρ) if ki = 2 .

Then an estimator of µA is

µ̂A = [m (1− ρ)− 1]−1
n∑

i=1

ki∑

j=1

(
Xij −X i·

)2
. (3.15)

The subtraction of 1 in the reciprocal term corrects for the adjustment in Section 1.8.

Furthermore, assuming µ̂x = µx,

E
{
ki
(
X̄i· − µ̂x

)2}
=





σ2
x + µA if ki = 1 ,

2σ2
x + (1 + ρ)µA if ki = 2 ,

and

E

{
n∑

i=1

ki
(
X̄i· − µ̂x

)2
}

= (n+m)σ2
x + (n+mρ)µA . (3.16)

Instead of using (3.16) to estimate σ2
x, let

σ̂2
x = n−1

0

[
n∑

i=1

ki
(
X̄i.− µ̂x

)2 − n−1 (n− 1) (n+mρ) µ̂A

]
, (3.17)
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where N =
∑n

i=1 ki and n0 = N −N−1
∑n

i=1 k
2
i .

The factor n−1(n− 1) makes (3.17) equal (3.4) when ρ = 0. Note that in Case I, N = n+m,

and
∑n

i=1 k
2
i = n + 3m, so that n0 =

[
n+m− 1− 2 (n+m)−1m

]
. For large values of n and m,

the effect of using n0 instead of (n+m) is negligible.

For correlated Xij and k = 2, the quantities

Ai =
(Xi1 −Xi2)

2

2 (1− ρ) , i = 1, 2, . . . ,m (3.18)

are analogous to the {Ai}mi=1 of (3.5). The regression of individual standard deviations on individual

means and the estimation of M̂A4 and σ̂2
A are carried out exactly as in Section 3.1, with (3.18)

replacing (3.5).

Case II: k = 3.

Let

Xi· = k−1
i

ki∑

j=1

Xij , µ̂x = n−1
n∑

i=1

X i· .

It follows that

E
{
X2

i·

}
=





µ2
x + σ2

x + µA if ki = 1 ,

µ2
x + σ2

x +
1
2(1 + ρ)µA if ki = 2 consecutive days ,

µ2
x + σ2

x +
1
2(1 + ρ2)µA if ki = 2 nonconsecutive days ,

µ2
x + σ2

x +
1
9(3 + 4ρ+ 2ρ2)µA if ki = 3 ,

and

E





ki∑

j=1

(
Xij −X i·

)2


 =





0 if ki = 1 ,

µA (1− ρ) if ki = 2 consecutive days ,

µA
(
1− ρ2

)
if ki = 2 nonconsecutive days ,

µA
(
2− 4

3ρ− 2
3ρ

2
)

if ki = 3 .

Let

m1 =
n∑

i=1

I (ki = 1) ,
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m2c =
n∑

i=1

I (ki = 2 consecutive days) ,

m2n =
n∑

i=1

I (ki = 2 nonconsecutive days) ,

m3 =

n∑

i=1

I (ki = 3) .

Then

E





n∑

i=1

ki∑

j=1

(
Xij −X i·

)2


 =

[
m2c (1− ρ) +m2n

(
1− ρ2

)
+m3

(
2− 4

3
ρ− 2

3
ρ2

)]
µA

= K1µA ,

which yields

µ̂A = (K1 − 2)−1
n∑

i=1

ki∑

j=1

(
Xij −X i·

)2
. (3.19)

The subtraction of 2 in the reciprocal term corrects for the adjustment in Section 1.8.

Furthermore, assuming µ̂x = µx,

E
{
ki
(
Xi· − µ̂x

)2}
=





σ2
x + µA if ki = 1 ,

2σ2
x + (1 + ρ)µA if ki = 2 consecutive days,

2σ2
x +

(
1 + ρ2

)
µA if ki = 2 nonconsecutive days,

3σ2
x +

(
1 + 4

3ρ+
2
3ρ

2
)
µA if ki = 3 ,

and thus

E

{
n∑

i=1

ki
(
X i· − µ̂x

)2
}

=
[
m1 +m2c (1 + ρ) +m2n(1 + ρ2)

+ m3

(
1 + 4

3ρ+
2
3ρ

2
)]
µA +

[m1 + 2 (m2c +m2n) + 3m3]σ
2
x . (3.20)

As in Case I, let N =
∑n

i=1 ki and estimate σ2
x by

σ̂2
x =

(
N −N−1

n∑

i=1

k2
i

)−1( n∑

i=1

ki
(
X i· − µ̂x

)2 − n−1 (n− 1)K2µ̂A

)
,
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where K2 = m1+m2c(1+ρ)+m2n(1+ρ2)+m3(1+
4
3ρ+

2
3ρ

2). The quantities Ai for the correlated

data in Case II are

Ai =





(Xi1 −Xi2)
2

2(1− ρ) if ki = 2 consecutive days,

(Xi1 −Xi3)
2

2(1− ρ2)
if ki = 2 nonconsecutive days,

1

2

[
(Xi1 − 2Xi2 +Xi3)

2

6− 8ρ+ 2ρ2
+

(Xi1 −Xi3)
2

2− 2ρ2

]
if ki = 3 .

(3.21)

The regression of individual standard deviations on individual means and the estimation of MA4

and σ̂2
A are carried out exactly as in Section 3.1, with (3.21) replacing (3.5).

3.3 Usual Intake Transformation

Assume that a transformation H(y) transforms adjusted equal weight intakes {Yij} to normal-

scale intakes {Xij} . Assume the {Xij} satisfy a measurement-error model

Xij = xi + uij ,

uij = σieij , i = 1, . . . , n, j = 1, . . . , ki ,

where

xi ∼ NI(µx, σ
2
x), eij ∼ N(0, 1), σ2

i ∼
(
µA, σ

2
A

)
,

Cov {uij , ulm} =





0 if i 6= l ,

σ2
i ρ

|j−m| if i = l ,

and the xi, σ
2
i are independent for all i. Note that if ρ is zero, ρ0 is taken to be one. Sections 3.1

and 3.2 develop estimators for µx, σ
2
x, µA,and σ

2
A . The transformation g that takes usual intakes

from the normal space into the original space is constructed by approximating y, the conditional

expectation of Y , at 400 values of x and then fitting a smooth function to the (x, y) points. For

i = 1, . . . , 400, let

xi =

√
σ̂2
xZ(i) ,
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where Z(i) is the ith Blom normal score defined in (1.7). A set of points {(cj , wj)}9j=1 is used to

approximate the measurement error distribution. Then an estimate of the conditional expectation

at transformed usual intake xi is

yi =
9∑

i=1

wjyij , (3.22)

where

yij = max
(
0, H−1(xi + cj)

)
. (3.23)

To allow for heterogeneous within-individual variances, the (cj , wj) are constructed so that the

first five moments of the nine-point discrete distribution match the first five estimated moments of

the measurement error distribution. The set of (cj , wj) for the standard normal distribution are

shown in Table 3.2. These (cj , wj) satisfy

9∑

j=1

wj = 1 , (3.24)

9∑

j=1

wjc
k
j = 0 for k = 1, 3, 5 , (3.25)

9∑

j=1

wjc
2
j = 1 , (3.26)

9∑

j=1

wjc
4
j = 3 . (3.27)

Recall that M̂A4 of (3.9) is a standardized estimate of the fourth moment of the measurement error

distribution. If M̂A4 is greater than 7.5, it is replaced with 7.5. To modify the (cj , wj) of Table 3.2

to get the correct fourth moment in (3.27), the weights for (±1.3,±0.8,±0.5) are multiplied by a

cj 0 ±0.5 ±0.8 ±1.3 ±2.1
wj 0.252489 0.159698 0.070458 0.080255 0.063345

Table 3.2: Values of (cj , wj) for the standard normal distribution
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constant a and the absolute value of ±2.1 is replaced by b. The system of equations defining a and

b is

0.2206474993a+ 0.0633452382b = 0.50 ,

0.268055472a+ 0.0633452382b2 = 0.50M̂A4 ,

where 0.2206474993 is the weighted sum of squares for (1.3, 0.8, 0.5), 0.268055472 is the weighted

sum of fourth powers for (1.3, 0.8, 0.5), a is the multiplier to be applied to the wj and b is the value

to replace (2.1)2. Solving for b in terms of a in the first equation yields

b = 7.893253129− 3.483253128a ,

and substituting this expression into the second equation yields a as the (sensible) solution to

0.768571092a2 − 3.215197658a+ 3.9466265649− 0.5M̂A4 = 0 .

Thus

a = (1.537142184)−1

[
3.215197658−

(
1.537142184M̂A4 − 1.795556375

)1/2
]
.

The new largest value is b1/2, and the new set of (cj , wj) are given in Table 3.3. The first five

moments of the discrete distribution determined by the new (cj , wj) are
(
0, µ̂A, 0, µ̂

2
AM̂A4, 0

)
. The

approximations yi given by (3.23) and (3.22) for i = 1, 2, . . . , 400 form a “representative sample” of

usual intakes in the original scale, just as the xi, i = 1, 2, . . . , 400 form a representative sample of

N
(
0, σ̂2

x

)
variates. Recall that the construction of the Blom scores (Section 1.3) matches the first

five sample moments of the scores to the first five theoretical moments of the normal distribution.

Hence, the first five sample moments of the yi are estimates of the first five moments of the usual

intake distribution in the original scale.

cj 0 ±0.5µ̂A ±0.8µ̂A ±1.3µ̂A ±
√
bµ̂A

wj 0.873310− 0.620820a 0.159698a 0.070458a 0.080255a 0.063345

Table 3.3: Values of (cj , wj) for the measurement error distribution.
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To construct a smooth function g (x) that carries N
(
0, σ̂2

x

)
intakes back to original scale usual

intakes, the methodology developed in Chapter 2 is used. The values of δ, α, and β used in the

construction of H applied to the {yi}400i=1 yield

ti =





10−β (yi + δ)α if α 6= 0 ,

10−β ln (yi + δ) if α = 0 .

A grafted polynomial g1 (x), with the same number of join points as was used to construct H, is

fit to the (ti, xi) pairs. Because the yi are weighted averages of points on a smooth function, the

grafted polynomial fit to the (ti, xi) is almost always very good. On the rare cases that g1 (x)

has negative derivatives, the number of join points is reduced by one until an acceptable grafted

polynomial is obtained.

The distribution of original-scale usual intake y is obtained from the distribution of normal

scale intake x by the transformation

y ≡ g (x) =





max
(
0,
(
10βg1 (x)

) 1
α − δ

)
if α 6= 0 ,

max
(
0, exp

(
10βg1 (x)

)
− δ
)

if α = 0 .
(3.28)

3.4 Quantiles and Cumulative Distribution Function Values for Usual Intake

As explained in Section 3.3, estimates of the first five moments of the usual intake (y) distribu-

tion can be constructed from the representative sample {yi}400i=1. Other characteristics of the usual

intake distribution are also of interest. Consider, for p ∈ [0, 1], estimation of Qp such that

Pr (y ≤ Qp) = p. (3.29)

Alternatively, consider for A ∈ [0, ∞], estimation of

p0 = F (A) = Pr (y ≤ A) . (3.30)

Recall that, by construction, the yi of (3.22) can be thought of as a sample of usual intakes

in the original scale, and hence, estimates required in (3.29) and (3.30) can be obtained from the
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estimated cumulative distribution function F̂ of the {yi}400i=1. The estimate F̂ is constructed by

taking

F̂ (yi) = P̂r (y ≤ yi) =
i− 3/8

400.25
, (3.31)

where y1 < y2 < . . . < y400. The slopes of the first and last step are extended to 0 and 1,

respectively, to obtain F̂−1 (0) and F̂−1 (1). Linear interpolation of F̂ is used to compute quantiles

and cumulative distribution function values.

3.5 Estimated Density of Usual Intakes

Assume that X is a N
(
µx, σ

2
x

)
random variable, and that y = g (x) is a one-to-one trans-

formation from (−∞, ∞) to [0, ∞), with derivative g′(x) = d
dxg (x) and inverse transformation

x = g−1 (y). Assume that the derivative d
dyg

−1 (y) is continuous and nonzero on [0, ∞). Then the

density function of Y = g(X) is

fY (y) =
(√

2πσx

)−1
exp

{
−1

2

(
g−1 (y)− µx

)2

σ2
x

}∣∣∣∣
d

dy
g−1 (y)

∣∣∣∣

=
(√

2πσx

)−1
exp

{
−1

2

(
g−1 (y)− µx

)2

σ2
x

}
∣∣g′
(
g−1 (y)

)∣∣−1
. (3.32)

Equation (3.32) is used to estimate the density function of the usual intakes for a grid of points

{xi}Mi=1, where M is specified by the user.
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Variances of Usual Intake Quantiles

4.1 Taylor Approximation Standard Errors

The function g of (3.28) is a differentiable transformation from x to y, and can be used to

obtain approximate standard errors for percentiles and cumulative distribution function values.

The following derivation assumes

1. g (·) is a fixed, known function, and

2. the Xij consist of k independent measurements taken on each of a simple random sample of

n individuals.

Suppose that the {Xij} of Section 3.1 follow the model

Xij = xi + uij i = 1, n, j = 1, . . . , k ,

where

xi ∼ NI
(
µx, σ

2
x

)
, uij ∼ NI

(
0, σ2

u

)
,

and uij is independent of xk for all i, j, k. Associated with the model is the ANOVA of Table 4.1.

The usual estimators of µx, σ
2
u, and σ

2
x are

µ̂x = X̄.. = (nk)−1
n∑

i=1

k∑

j=1

Xij ,

σ̂2
u = [n (k − 1)]−1

n∑

i=1

k∑

j=1

(
Xij − X̄.

)2
,

σ̂2
x = k−1

[
(n− 1)−1 k

n∑

i=1

(
X̄i. − X̄..

)2 − σ̂2
u

]
,

39
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where X̄. = k−1
∑k

j=1Xij .

Under the model,

Var {µ̂x} =
1

n
σ2
x +

1

nk
σ2
u ,

so

V̂ar {µ̂x} =
1

n
σ̂2
x +

1

nk
σ̂2
u (4.1)

is an unbiased estimator of Var{µ̂x}. Note that

T1 ≡ σ−2
u

n∑

i=1

k∑

j=1

(
Xij − X̄i.

)2 ∼ χ2
n(k−1) ,

T2 ≡
(
σ2
u + kσ2

x

)−1
k

n∑

i=1

(
X̄.− X̄..

)2 ∼ χ2
n−1 ,

and T1 and T2 are independent. Then

Var
{
σ̂2
x

}
= Var

{
σ2
u + kσ2

x

k (n− 1)
T2 −

σ2
u

kn (k − 1)
T1

}

=

[
σ2
u + kσ2

x

k (n− 1)

]2

2 (n− 1) +

[
σ2
u

kn (k − 1)

]2

2n (k − 1)

= k−2
{
2
(
σ2
u + kσ2

x

)2
(n− 1)−1 + 2σ4

u [n (k − 1)]−1
}
.

Therefore,

V̂ar
{
σ̂2
x

}
= k−2

{
2
(
σ̂2
u + kσ̂2

x

)2
(n− 1)−1 − 2σ̂4

u [n (k − 1)]−1
}
. (4.2)

Source df SS E{MS}

Individual n− 1 k
n∑

i=1

(
X̄j. − X̄..

)2
σ2
u + kσ2

x

Residual n (k − 1)
n∑

i=1

k∑

j=1

(
Xij − X̄i.

)2
σ2
u

Total nk − 1
n∑

i=1

k∑

j=1

(
Xij − X̄..

)2

Table 4.1: ANOVA for one-way classification with balanced data.
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From the Taylor expansion for the square root function at the point σ2
x,

σ̂x
.
= σx +

(
4σ̂2

x

)−1/2 (
σ̂2
x − σ2

x

)
. (4.3)

It follows that

Var {σ̂x} .=
(
4σ̂2

x

)−1
Var

{
σ̂2
x

}
,

which yields

V̂ar {σ̂x} .
=

(
4σ̂2

x

)−1
V̂ar

{
σ̂2
x

}

=
(
2σ̂2

xk
2
)−1

{
(n− 1)−1 (σ̂2

u + kσ̂2
x

)2
+ [n (k − 1)]−1 σ̂4

u

}
. (4.4)

Assume x ∼ N
(
µx, σ

2
x

)
. Then for any fixed A,

F (A) ≡ Pr (x ≤ A) = Φ
(
σ−1
x (A− µx)

)
,

where Φ (·) is the standard normal distribution function. The estimated probability that x ≤ A is

F̂ (A) = Φ
(
σ̂−1
x (A− µ̂x)

)
. (4.5)

Using a Taylor expansion about the point (µx, σx) and (4.3),

F̂ (A)
.
= F (A)− φ

(
σ−1
x (A− µx)

) [
σ−1
x (µ̂x − µx) + σ−2

x (A− µx) (σ̂x − σx)
]

.
= F (A)− φ

(
σ−1
x (A− µx)

) [
σ−1
x (µ̂x − µx) +

(
σ2
x

)−3/2
(A− µx)

(
σ̂2
x − σ2

x

)]
,

where φ (·) is the standard normal density. Because µ̂x and σ̂2
x are independent, it follows that

Var
{
F̂ (A)

}
.
= φ2 (σx (A− µx))

[
σ−2
x Var {µ̂x}+

(
σ2
x

)−3
(A− µx)2 Var

{
σ̂2
x

}]
,

which yields an estimator for Var
{
F̂ (A)

}
,

V̂ar
{
F̂ (A)

}
= φ2 [σ̂x (A− µ̂x)]

{
σ̂−2
x V̂ar {µ̂x}+

(
σ2
x

)−3
(A− µ̂x)2 V̂ar

{
σ̂2
x

}}
, (4.6)

where V̂ar {µ̂} and V̂ar
{
σ̂2
x

}
are defined in (4.1) and (4.2), respectively. The estimated standard

error of F̂ (A) is the square root of V̂ar
{
F̂ (A)

}
.
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Now, for fixed p ∈ [0, 1], let Qp denote the pth percentile, that is, Qp is such that

F (Qp) = Pr (x ≤ Qp) = p

or Qp = F−1 (p). From (4.5), an estimator of Qp is

Q̂p = σ̂xΦ
−1 (p) + µ̂x (4.7)

and its variance is

Var
{
Q̂p

}
=
[
Φ−1 (p)

]2
Var {σ̂x}+Var {µ̂x} .

An estimator of Var
{
Q̂p

}
is

V̂ar
{
Q̂p

}
=
[
Φ−1 (p)

]2
V̂ar {σ̂x}+ V̂ar {µ̂x} , (4.8)

where V̂ar {σ̂x} and V̂ar {µ̂x} are as in (4.4) and (4.1). Let the random variable y be defined by

y = g (x) ,

where x ∼ N
(
µx, σ

2
x

)
and g is a known function with finite first derivative. Let Qy (p) denote the

pth percentile of y, i.e.

Pr (y ≤ Qy (p)) = p ,

and let Qx (p) denote the pth percentile of x. Then

Qy (p) = g (Qx (p)) .

A reasonable estimator of Qy (p) is

Q̂y (p) = g
(
Q̂x (p)

)
, (4.9)

where Q̂x (p) is the same as Q̂p in (4.7).

To get an estimator of the variance of Q̂y (p), the Taylor expansion of (4.9) at Qx (p) is used to

obtain

Q̂y (p)
.
= g (Qx (p)) +

∂g (x)

∂x

[
Q̂x (p)−Qx (p)

]
.
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It follows that

Var
{
Q̂y (p)

}
.
=

[
∂g (x)

∂x

]2

Var
{
Q̂x (p)

}
. (4.10)

Equation (4.8) is used to obtain an estimator of (4.10) as

V̂ar
{
Q̂y (p)

}
.
=

[
∂g (x)

∂x

]2 {[
Φ−1 (p)

]2
V̂ar {σ̂x}+ V̂ar {µ̂x}

}
. (4.11)

Small modifications of the procedure are necessary when the number of measurements per individual

are not constant. Instead of (4.1), let

V̂ar {µ̂x} =
1

n
σ̂2
x +

1

n
σ̂2
u, (4.12)

where the multiplier for σ̂2
u reflects the adjustment of Section 1.8.

The ANOVA of Table 4.1 yields

SSB = k
n∑

i=1

(
Xi. − X̄..

)2
,

MSB = (n− 1)−1 SSB = σ̂2
u + kσ̂2

x ,

de = n (k − 1) ,

SSE =
n∑

i=1

k∑

j=1

(
Xij − X̄.

)2
,

MSE = d−1
e SSE = σ̂2

u .

Then (4.2) can be written as

V̂ar
{
σ̂2
x

}
= k−2

{
2 (n− 1)−1MSB2 + 2d−1

e MSE2
}
. (4.13)

For the case where each individual has ki independent measurements, the ANOVA of Table 3.1

yields

SSB =
n∑

i=1

ki
(
X̄i. − µ̂x

)2
, (4.14)

MSB = (n− 1)−1 SSB , (4.15)
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N =
n∑

i=1

ki , (4.16)

m0 =

(
N −N−1

n∑

i=1

k2
i

)
n−1, (4.17)

de = N − n− (k − 1) , where k = max ki , (4.18)

SSE =
n∑

i=1

ki∑

j=1

(
Xij − X̄i.

)2
, (4.19)

MSE = (N − n)−1 SSE , (4.20)

V̂ar
{
σ̂2
x

}
= m−2

0

{
2 (n− 1)−1MSB2 + 2d−1

e MSE2
}
. (4.21)

For the case where each individual has ki correlated measurements, the expression (4.21) is used

with

de =





(N − n) (1− ρ)− 1, if k = 2 ,

(m2c +m2n + 2m3)−
(
m2c +

4
3m3

)
ρ −

(
m2n + 2

3m3

)
ρ2 − 2, if k = 3 ,

(4.22)

where ρ is the correlation between measurements on the same individual and

m2c =
n∑

i=1

I (ki = 2 consecutive days) ,

m2n =
n∑

i=1

I (ki = 2 nonconsecutive days) ,

m3 =
n∑

i=1

I (ki = 3) .

Operationally, C-SIDE obtains point estimates Q̂y (p) and F̂ (A) via linear interpolation of

(3.31), but uses the derivative of g when required in (4.11).

4.2 Variance Estimation Using Replicate Weights

If the data from Section 1.1 come from a simple random sample of individuals, the results from

Section 4.1 can be used to estimate the variances of estimated usual intake quantiles and cumulative



Chapter 4. Variances of Usual Intake Quantiles / 45

distribution function values. A similar Taylor linearization technique can be used to estimate the

variances of the estimated usual intake moments. The derivations in Section 4.1 do not allow for

stratification or clustering of the sampled individuals, and hence are not applicable when the data

are obtained under a complex survey design.

C-SIDE supports the use of the jackknife and the balanced repeated replication (BRR) method

for approximating variances of estimates obtained from survey data. Both the jackknife and the

BRR method compute estimates of the parameter of interest from each of several subsamples of

the parent sample. The variance of the parent sample is estimated by the variability between the

subsample estimates. In what follows, let θ represent the parameter of interest.

Suppose that the data from Section 1.1 come from a stratified cluster sample with L strata and

two clusters per stratum. For more complicated surveys, it may be necessary to group individuals

into L “pseudo-strata,” each with two “pseudo-clusters,” before using the jackknife or BRR variance

estimation procedures. Denote the parent sample weight for individual i, who belongs to the kth

cluster of the jth stratum, by W
(0)
ijk , j = 1, . . . , L, k = 1, 2.

• For the jackknife method, L sets of replicate weights
{
W

(l)
ijk

}n

i=1
, l = 1, . . . , L, are created.

The lth set of replicate weights assigns zero weight to the observations from a randomly se-

lected cluster in the lth stratum and doubles the weights for the observations in the remaining

cluster of the lth stratum.

A more formal description of the procedure will highlight the difference between the jackknife

method and the BRR method. Let g be an L× 1 vector with lth element selected at random

from the set {−1, 1}. Then the jackknife weights are

W
(l)
ij1 =





2W
(0)
ij1 if j = l and g (l) = −1 ,

0 if j = l and g (l) = 1 ,

W
(0)
ij1 if j 6= l ,

(4.23)
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and

W
(l)
ij2





0 if j = l and g (l) = −1 ,
2W

(0)
ij2 if j = l and g (l) = 1 ,

W
(0)
ij2 if j 6= l .

(4.24)

If necessary, each set of jackknife replicate weights
{
W

(l)
ijk

}n

i=1
can be adjusted to the same

control totals as the parent sample weights
{
W

(0)
ijk

}n

i=1
. Let θ̂ be the estimate of θ obtained

using the parent sample weights, and let θ̂l, l = 1, . . . , L be the estimate obtained using the

lth set of replicate weights. The jackknife estimator of the variance of θ̂ is given by

V̂arJK

(
θ̂
)
=

L∑

l=1

(
θ̂l − θ̂

)2
. (4.25)

This estimator of variance can be considered to have L degrees of freedom.

• For the BRR Method, M sets of replicate weights
{
W

(l)
ijk

}n

i=1
, l = 1, . . . ,M , are created,

whereM is the smallest multiple of 4 that is greater than the number of strata L. The lth set of

replicate weights assigns zero weight to the observations from one cluster in each stratum and

doubles the weights for the observations in the remaining clusters. For a particular replicate,

this construction modifies the parent sample weights for the entire data set in contrast to

the construction of a jackknife replicate, which modifies the parent sample weights for the

observations in only one stratum. The choice of which clusters receive zero weights in a BRR

replicate is determined in a systematic manner, instead of being random, as is the case for a

jackknife replicate. Let H = H (j, l) be an L×M matrix obtained by taking L rows from a

Hadamard matrix1 of order M . Then the BRR weights are

W
(l)
ij1 =





2W
(0)
ij1 if H (j, l) = −1 ,

0 if H (j, l) = 1 ,
(4.26)

1A Hadamard matrix of order n is an n× n orthogonal matrix with entries ±1.
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and

W
(l)
ij2 =





0 if H (j, l) = −1 ,
2W

(0)
ij2 if H (j, l) = 1 .

(4.27)

If necessary, each set of BRR replicate weights
{
W

(l)
ijk

}n

i=1
can be adjusted to the same control

totals as the parent sample weights
{
W

(0)
ijk

}n

i=1
. Let θ̂ be the estimate of θ obtained using

the parent sample weights, and let θ̂l, l = 1, . . . ,m be the estimate obtained using the lth set

of replicate weights. The BRR estimator of the variance of θ̂ is given by

V̂arBRR

(
θ̂
)
=

1

M

M∑

l=1

(
θ̂l − θ̂

)2
. (4.28)

This estimator of variance should be considered to have only L degrees of freedom, even

though M > L replicate estimates are used in the computation of (4.28).

Empirical evidence (Dodd et al. 1996) suggests that the BRR estimator (4.28) is less biased

and more stable than the jackknife estimator (4.25) when the parameter of interest is a usual intake

quantile. For a general discussion of variance estimation for complex surveys, see Wolter (1985).

If the user supplies the appropriate BRR or jackknife replicate weights along with the parent

sample weights for nutrient data, C-SIDE can produce variance estimates for usual intake quantiles,

usual intake cumulative distribution function values, and usual intake moments using the formulas

(4.25) and (4.28), where the calculations for each replicate are carried out internally. For food

data, or for survey designs for which (4.25) and (4.28) do not hold, the user must run C-SIDE sep-

arately for the parent sample and each replicate, then combine the estimates using the appropriate

analogues to (4.25) and (4.28).



Chapter 5

Analysis of Food Intake

5.1 Test for Correlation Between Intake and Probability of Consumption

The method for estimating usual intake distributions for foods requires an individual’s usual

intake to be independent of the individual’s probability of consumption. A test for correlation

between intake and probability of consumption is performed by C-SIDE.

At the first stage of analysis, the consumption day usual intake distribution is estimated using

only the positive food intakes. The procedures described in Chapters 1-3 are applied to the data

for the n individuals with at least one nonzero food intake. Let

ki = number of days the food is consumed by the ith individual ,

k̄ =




n∑

i=1

ki∑

j=1

Wij




−1
n∑

i=1

ki∑

j=1

Wijki ,

Bij = ki − k̄ ,

for i = 1, . . . , n, j = 1, . . . , ki, where the {Wij} are the weights defined in (1.1). Let B denote the

column vector of observations for the variable Bij , and let

MC =
[
M B

]
,

where M is obtained from (1.13) if the positive intakes were ratio-adjusted for nuisance variables

and is otherwise a column vector of ones. The weighted least squares regression with model matrix

MC and response variable X
(s)
ij from (1.12) is performed to obtain regression parameter estimates

β̂C =
(
M′

Cdiag (Wij)MC

)−
M′

Cdiag (Wij)X
(s),

48
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where X(s) denotes the column vector of observations X
(s)
ij . Let êij denote the deviation from

regression,

êij = X
(s)
ij −MCijβ̂C ,

where MCij is the row of MC corresponding to X
(s)
ij , the jth observation for the ith individual.

Define

dij = WijMCij êij ,

di. =

ki∑

j=1

dij ,

G =
n

n− p

n∑

i=1

d′
i.di. ,

where p is the dimension of the vector MCij . The estimated variance of β̂C is

V̂ar
{
β̂C

}
= H−GH−, (5.1)

where H = M′
Cdiag(Wij)MC . Equation (5.1) is the Taylor variance approximation as computed

in survey data analysis software such as PCCARP (Fuller et al. 1989). Let β̂p be the coefficient of

Bij and let v̂pp be the associated diagonal element of V̂ar
{
β̂C

}
. An approximate size 0.05 test for

H0 : Intake is uncorrelated with probability of consumption is to reject H0 if

v−1/2
pp β̂p ≥ 2 .

This test statistic is output by C-SIDE.

5.2 Estimating the Distribution of Individual Consumption Probabilities

In estimating a usual intake distribution for a food, let πi ∈ [0, 1] be the ith individual’s proba-

bility of consuming the food on a given day, i = 1, . . . , n. Then for l = 0, 1, . . . , k, the probability

that individual i consumed the food on l out of k sample days is
(
k

l

)
πli (1− πi)

k−l ,
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under the assumption of independent days. The information available to support estimation of the

distribution η (π) of individual consumption probabilities is the proportion of sample days on which

the food is consumed by the ith individual. Let

π̂i = k−1
k∑

j=1

δij ,

where for j = 1, . . . , k,

δij =





1 if the ith individual consumed the food on day j ,

0 otherwise .

There are only k + 1 possible values of π̂i. Let Wi be the sampling weight associated with the ith

individual. (Recall that the Wi are used in the construction of observation weights Wij and wij in

Section 1.1.) Then for l = 0, 1, . . . , k,

Ψ̂l =

(
n∑

i=1

Wi

)−1 n∑

i=1

WiI

(
π̂i =

l

k

)
(5.2)

is the weighted relative frequency of individuals who consume the food on l out of k days. If the

data are equally weighted, each Wi is one.

The consumption probability distribution η (·, θ) is modeled as a discrete distribution with

M + 1 probability values

{pm}Mm=0 = {0, p1, . . . , pM}

with corresponding probability masses {θm}Mm=0. Under the model, Ψ̂l arises from a mixture of the

M + 1 binomial probabilities of consumption on l out of k days, with binomial parameters k and

pm, and mixture parameters θ = (θ0, . . . , θM ), where θm ∈ [0, 1] and
∑M

m=0 θm = 1. Hence, the

expected value of Ψ̂l is equal to

Ψl (θ) =
∑

m∈El

θm

(
k

l

)
plm (1− pm)k−l ,
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where

El =




{0, 1, . . . ,M − 1} if l < k ,

{1, 2, . . . ,M} if l = k .

The minimum chi-squared estimator (Agresti, 1990, page 471) for this problem is the value of θ

that minimizes

n
k∑

l=0

[
Ψ̂l −Ψl (θ)

]2
[Ψl (θ)]

−1 . (5.3)

The number of estimated parameters, M + 1, exceeds the number of terms in the chi-squared

objective function, k + 1.

The maximum entropy estimator (Shannon 1948; Jaynes 1957) for this problem is the value of

θ that maximizes

Γ (θ) = −
M∑

m=0

θm ln θm (5.4)

subject to
∑M

m=0 θm = 1 and constraints representing prior information on the θm, where θm ∈ [0, 1]

and θ ln θ is zero for θ = 0. In the absence of any prior information, Γ (θ) is maximized when

θm = (M + 1)−1 for m = 0, 1, . . . ,M . The function Γ (θ) reaches a global minimum when θm is

one for some m0 and zero for all other values of m. Combining the chi-square and entropy criteria

leads to a modified minimum chi-squared estimator similar to that found on page 472 of Agresti

(1990). The estimator used in C-SIDE is defined as the value of θ that minimizes

n
k∑

l=0

[
Ψ̂l −Ψl (θ)

]2
Ψ̃−1

l +
M∑

m=1

θm
1− θ0

ln

(
θm

1− θ0

)
, (5.5)

where
∑M

m=0 θm = 1, θm ∈ [0, 1],

Ψ̃l =





max
{
Ψ̂0,

(
1−Ψ

)k}
if l = 0 ,

max
{
Ψ̂k, Ψ

k
}

if l = k ,

Ψ̂l

(
1− Ψ̃0 − Ψ̃k

)(
1− Ψ̂0 − Ψ̂k

)−1
if l = 1, 2, . . . , k − 1 ,

and

Ψ =

(
k

n∑

i=1

Wi

)−1 n∑

i=1

Wi

k∑

j=1

δij .
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The first term in (5.5) contains the sample information. The modified denominator in this term

prevents numerical difficulties that can arise when Ψ̂l = 0. The second term in (5.5) is a maximum

entropy term that smooths the probability mass across all possible values of pm given the sample

information in the first term. Note that θ0, which is the proportion of the population that never

consumes the food, is not included in the entropy term. C-SIDE uses the value 50 for M . The

estimated consumption probability distribution has mass on the points {0, 0.02, 0.04, . . . , 0.98, 1}.
For a given set of Ψ̂l, the vector θopt that minimizes (5.5) is obtained by the following algorithm,

in which the symbol ← means “receives the value of.”

1. Let qm ← 0 for m = 0, 1, . . . , 50, and let Lopt ← 106.

2. Steps 2a-2c are performed for i = 1, . . . , 50, 000.

2a. For j = 0, 1, . . . , 50, let

Lj = n
k∑

l=0

[
Ψ̂l −Ψl

(
θ(j)

)]2
Ψ̃−1

l +
50∑

m=1

θ
(j)
m

1− θ(j)
0

ln

(
θ
(j)
m

1− θ(j)
0

)
,

where the jth element of θ(j) is i−1(qj + 1) and all other elements of θ(j) are i−1qj .

2b. For the value of j corresponding to the minimum Lj value, qj ← qj + 1.

2c. If min
j

(Lj) < Lopt, Qm ← qm for m = 0, 1, . . . , 50, iopt ← i, and Lopt ← min
j

(Lj) .

3. For m = 0, 1, . . . , 50, the mth element of θopt is

θm =
Qm

iopt
.

5.3 Estimation of Usual Food Intake Distributions

The usual intake of a food for individual i, denoted by ui, is

ui = yiπi ,
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where yi is the usual intake given that the food is consumed and πi is the probability of positive

consumption. The distribution of usual intakes for consumers is the distribution of yiπi, which can

be derived from the joint distribution of yi and πi. In C-SIDE, the distribution is computed under

the assumption that yi is independent of πi. Then the joint distribution of yi and πi is the product

of the respective marginal distributions.

Let Fy (y) denote the consumption day usual intake distribution, with associated density func-

tion fy (y) . Let η (π; θ) = {(pm, θm)}50m=0 denote the consumption probability distribution. The

cumulative distribution function of usual intake for the entire population is then

FU (u) = Pr (yπ ≤ u) = θ0 +
50∑

m=1

θm

∫ u/pm

0
fy (y) dy

= θ0 +
50∑

m=1

θmFy (u/pm) . (5.6)

The cumulative distribution function of usual intake for consumers is

FC (u) = (1− θ0)
−1 [FU (u)− θ0] , (5.7)

where consumers are those individuals with πi > 0. The methodology described in Chapters 1-3

applied to the positive daily intakes yields the estimated consumption day usual intake distribution

F̂y (y) , and the method described in Section 5.2 yields the estimated consumption probability

distribution η̂
(
π; θ̂

)
=
{(

pm, θ̂m

)}50

m=0
. Substituting the appropriate estimates into Equations

(5.6) and (5.7) yields F̂U (u) and F̂C (u), respectively, where F̂U (u) is the estimated usual intake

distribution for the entire population and F̂C (u) is the estimated usual intake distribution for

consumers. The estimated distributions are used to obtain a representative sample of size N =

400 of estimated usual intakes for consumers. The representative sample is {γ i}400i=1 , where τ i =

(400.25)−1 (i− 3
8

)
and γi is the τ

th
i quantile of F̂C defined by

τ i =
(
1− θ̂0

)−1 [
F̂U (γi)− θ̂0

]

=
(
1− θ̂0

)−1
[

50∑

m=1

θ̂mF̂y (γi/pm)

]
.



54 / A TECHNICAL GUIDE TO C-SIDE

The following iterative procedure is used to estimate γ1, γ2, . . . , γ400.

1. Let (p̄, θ̄) be the element of
{(

pm, θ̂m

)}
θ̂m 6=0

with the smallest nonzero second coordinate.

The initial approximation γ(0) to γ1 is

γ(0) = p̄ȳ ,

where ȳ is the
(
θ̄
−1
τ1

(
1− θ̂0

))th
quantile of the estimated consumption day usual intake

distribution. The quantities γb, γs, fb, fs, and γh are initialized with 0.

2. Steps 2a-2c are performed for i = 1, . . . , 400.

2a. Denote the current approximation to γi by γ
(k), and let

f =
(
1− θ̂0

)−1
50∑

m=1

θ̂mF̂y

(
γ(k)/pm

)
,

D = f − τ i .

If |D| < 10−6, go to 2b. If |D| ≥ 10−6, go to 2c.

2b.
(
|D| < 10−6

)

γi ← γ(k).

The initial approximation γ(0) to γi+1 is then obtained.

γb ← 0 ,

fb ← 0 ,

γs ← γ(k),

fs ← f ,

m ←





f−1γ(k) if i = 1 ,

(f − τ i−1)
−1 (γ(k) − γi−1

)
if i > 1 ,

γ(0) ← γ(k) −m (f − τ i+1) ,

i ← i+ 1 .
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Go back to Step 2a.

2c.
(
|D| ≥ 10−6

)
A new approximation γ(k+1) to γi is obtained.

If D > 0,

fb ← f ,

γb ← γ(k),

and if f > τ400 and i < 400,

γh ← γ(k).

If D < 0,

fs ← f ,

γs ← γ(k).

If k < 10,

m ← (fb − fs)−1 (γb − γs) ,

γ(k+1) ← γ(k) −mD ,

k ← k + 1 .

Go back to Step 2a.

If k ≥ 10,

• If γb = 0 and γh > 0, γb ← γh.

• If γb = 0 and γh = 0, γh ← ÿ, where ÿ is the estimated τ th
400 quantile of the

consumption day usual intake distribution. Then γb ← γh.
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γ(k+1) ← γ(k) +
1

2
(γb − γs) ,

k ← k + 1 ,

Go back to Step 2a.

The {γi}400i=1 are a representative sample of estimated usual intakes for consumers. Percentiles

of the FC distribution are estimated via linear interpolation of the empirical cumulative distri-

bution function of the representative sample, and moments for the usual intake distribution for

consumers are estimated by the moments of the representative sample. The estimated proportion

of consumers with usual intake below γi is τ i = (400.25)−1 (i− 3
8

)
. It follows that γi estimates the(

τ i

(
1− θ̂0

)
+ θ̂0

)th
quantile of the usual food intake distribution, FU , for the entire population.

Let xi = Φ−1 (τ i) for i = 1, . . . , 400, where Φ−1 (·) denotes the inverse of the standard

normal cumulative distribution function. The xi are the Blom normal scores for a sample of size

400 from the standard normal distribution. The methodology of Chapter 2 is used to estimate a

transformation G (u) that carries usual intakes u for consumers to standard normality. The density

fC (u) of the consumer distribution is estimated using Equation (3.32) with µx = 0, σ2
x = 1 and

g−1(·) = G(·). The usual intake distribution FU (u) for the entire population is a mixture of a

single value (0) and a continuous distribution (FC (u)) with mixing parameters θ0 and (1− θ0),

respectively.

Let u denote the usual intake of a food for a randomly selected individual on an arbitrary day.

Let C be a Bernoulli random variable:

C =





0 if the person never consumes the food ,

1 otherwise .

The probability that C = 0 is θ0. Denote the mean of the consumer distribution by

µC = E {u|C = 1} .



Chapter 5. Analysis of Food Intake / 57

An estimator of µC computed from the {γi}400i=1 is

µ̂C =
1

400

400∑

i=1

γi , (5.8)

The mean of the whole-population distribution is

µU = 0Pr (C = 0) + E {u|C = 1}Pr (C = 1) (5.9)

and the estimator for µU is

µ̂U = µ̂C

(
1− θ̂0

)
. (5.10)

Denote the variance of the consumer distribution by

σ2
C = Var {u|C = 1} .

An estimator of σ2
C computed from the {γi}400i=1 is

σ̂2
C =

1

399

400∑

i=1

(γi − µ̂C)2 . (5.11)

The estimated variance of u is obtained from the formula

Var {u} = Var {E {u|C}}+ E {Var {u|C}} .

Now,

Var {u|C} =





0 if C = 0 ,

σ2
C if C = 1 ,

so that

E {Var {u|C}} = σ2
C (1− θ0) .

Also,

Var {E {u|C}} = E
{
E {u|C}2

}
− E {E {u|C}}2

= µ2
C (1− θ0)− [µC (1− θ0)]

2

= µ2
C

[
(1− θ0)− (1− θ0)

2
]

= µ2
Cθ0 (1− θ0) .
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Thus, the variance of the whole-population distribution is

σ2
U = σ2

C (1− θ0) + µ2
Cθ0 (1− θ0) , (5.12)

and its estimator is

σ̂2
U = σ̂2

C

(
1− θ̂0

)
+ µ̂2

C θ̂0

(
1− θ̂0

)
. (5.13)

Higher order moments are estimated in a similar fashion, using θ̂0 and the estimated moments of

the consumer distribution. Formulas similar to (1.5) and (1.6) are used to estimate the third and

fourth moments of the consumer distribution. The replicate weighting methods described in Section

4.2 may be used to calculate approximate standard errors for the estimated moments, although the

C-SIDE internal replicate weighting is not available for foods.
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