

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

INTENSIVE GRAZING FARMS NEW YORK 1996

George Conneman
Carl Crispell
James Grace
Kate Parsons
Linda D. Putnam

Department of Agricultural, Resource, and Managerial Economics College of Agriculture and Life Sciences Cornell University, Ithaca, New York 14853-7801

It is the Policy of Comell University actively to support equality of educational and employment opportunity. No person shall be denied admission to any educational program or activity or be denied employment on the basis of any legally prohibited discrimination involving, but not limited to, such factors as race, color, creed, religion, national or ethnic origin, sex, age or handicap. The University is committed to the maintenance of affirmative action programs which will assure the continuation of such equality of opportunity.

1996 DAIRY FARM BUSINESS SUMMARY
 Intensive Grazing Farms Table of Contents

Page
INTRODUCTION 1
Program Objectives 1
Format Features 1
INTENSIVE GRAZING SURVEY SUMMARY 2
Water Availability 3
Supplemental Feeding 3
Frequency of Rotation4
Additional Notes on Survey Results 4
Farmers' Comments from the Survey 4
CASE STUDIES 6
Howland Farm 6
Battisti Farm 7
SUMMARY OF GRAZING FARMS WITH OVER 100 COWS 8
SUMMARY AND ANALYSIS OF THE FARM BUSINESS 10
Business Characteristics 10
Income Statement 10
Profitability Analysis 12
Farm and Family Financial Status 15
Statement of Owner Equity 18
Cash Flow Statement 19
Repayment Analysis 20
Cropping Analysis 22
Dairy Analysis 24
Capital and Labor Efficiency Analysis 26
COMPARATIVE ANALYSIS OF THE FARM BUSINESS 28
Progress of the Farm Business 28
Regional Farm Business Chart 29
IDENTIFY AND SET GOALS 30
GLOSSARY AND LOCATION OF COMMON TERMS 32
INDEX 35

1996 DAIRY FARM BUSINESS SUMMARY INTENSIVE GRAZING FARMS

INTRODUCTION

Dairy farm managers throughout New York State have been participating in Cornell Cooperative Extension's farm business summary and analysis program since the early 1950's. Managers of each participating farm business receive a comprehensive summary and analysis of the farm business.

The farms included in the study are a subset of New York State farms participating in the Dairy Farm Business Summary (DFBS). Seventy-six farms indicated that they grazed dairy cows at least three months and moved to a fresh paddock at least every three days Operators of these 76 farms were asked to complete a grazing practices survey. Forty-three of the farms did complete it. The investigators chose to eliminate from the study those farms which owned no real estate and farms where less than 30 percent of the forage consumed by the cows during the grazing season was from grazing. Of the 59 remaining farms, surveys were obtained from 41. The investigators had special interest in practices used on farms with above average profitability. Therefore the study centered on 30 farms which were not first year grazers and on which at least 40 percent of forage consumed during the grazing season was grazed. These 30 farms were divided on the basis of net farm income (without appreciation) per cow above and beiow $\$ 390$ which was the average for all farms participating in DFBS. Twenty-one farms with net farm income per cow above $\$ 390$ are in the "More Profitable" group and nine farms with net farm income per cow below $\$ 390$ comprise the "Less Profitable" group.

Program Objective

The primary objective of the dairy farm business summary, DFBS, is to help farm managers improve the business and financial management of their business through appropriate use of historical farm data and the application of modern farm business analysis techniques. This information can also be used to establish goals that will enable the business to better meet its objectives. In short, DFBS provides business and financial information needed in identifying and evaluating strengths and weaknesses of the farm business.

Format Features

The first section of this publication reports data from the grazing practices survey. A comparison of intensive grazing farms with non-grazing farms is included on page 5. The second section, Case Studies, describes two New York grazing farms. The next section summarizes grazing farms that had more than 100 cows.

The summary and analysis portion of this report follows the same general format as in the 1996 DFBS individual farm report received by all participating dairy farmers. It may be used by any dairy farm manager who wants to compare his or her business with the average data of intensive grazing farms. A DFBS Data Check-in Form can be used by non-DFBS participants to summarize their businesses.

The summary and analysis portion of the report features:
(1) an income statement including accrual adjustments for farm business expenses and receipts, as well as measures of profitability with and without appreciation,
(2) a complete balance sheet with analytical ratios;
a statement of owner equity which shows the sources of the change in owner equity during the year;
a cash flow statement and debt repayment ability analysis;
an analysis of crop acreage, yields, and expenses;
an analysis of dairy livestock numbers, production, and expenses; and
a capital and labor efficiency analysis.

INTENSIVE GRAZING SURVEY SUMMARY

From the survey data of the 30 selected grazing farms, analysis of average production levels and profitability measures are shown as follows:

SELECTED PRODUCTION AND PROFITABILITY MEASURES Intensive Grazing Dairy Farms, 1996

	21 More Profitable	9 Less Profitable
\ldots	Dairy Farms	Dairy Farms
Pounds milk sold per cow	18,402	13,875
Net farm income/cow without appreciation	$\$ 729$	$\$-141$
Operating cost of producing milk per cwt.	$\$ 9.74$	$\$ 13.68$

Comparison of survey data on the various grazing practices, such as water availability, supplemental feeding, pasture species, pasture management, and frequency of rotation are shown as follows:

GRAZING PRACTICES

Intensive Grazing Dairy Farms, 1996

	21 More Profitable Dairy Farms	Less Profitable Dairy Farms
Average percent forage from pasture	65	81
Average length of grazing season	183	184
Average pounds grain fed per cow per day	17.4	12.6
Average percent crude protein	19	15
Average time out after a.m. milking	$8: 00 \mathrm{am}$	$8: 30 \mathrm{am}$
Percent farms grazing at night	95	55
Percent farms using fertilizer	48	33
Average pounds fertilizer used per acre	110	58
Percent farms using lime	38	44
Percent farms stating weeds were problem	39	56
Average percent pasture reseeded last 10 years	43	28
Average percent pasture previously harvested	64	58
Average percent pasture harvested this year	39	20
Average number times pasture clipped	1.6	1
Percent farms providing shade	31	22
Most common pasture species		native grass mix
First	orchard grass	native clover, timothy, weeds
Second	ladino clover	ladino clover
Third	native clover	22
Percent farms with water in every paddock	67	304
Average distance cows had to walk for water	256	1,825
feet when closest to barn	687	
feet when furthest from barn		

Providing water in every paddock, rotating to a new paddock after each milking, and supplementing with corn silage and grain seemed to be practices that led to higher production per cow and greater profitability within the "more profitable" group. Some of the "less profitable" farms used these same practices. The tables below compare the more profitable group to the less profitable group and tend to confirm that those practices lead to higher profitability (or less loss). Successful managers of grazing farms need all of the skills for managing the herd in the barn during winter in addition to grazing management skills.

Water Availability

Study of the financial data to determine effect of water in every paddock on farm profitability shown above was further analyzed. The data from the high profitability group in the table below shows the importance of water availability, in terms of maximizing milk production and net farm income or minimizing operating costs, especially purchased grain and concentrates.

WATER AVAILABILITY
Intensive Grazing Farms, 1996

	21 More Profitable Dairy Farms		9 Less Profitable Dairy Farms	
	Water in Every Paddock?		Water in Every Paddock?	
	Yes (14)*	No (7)	Yes (2)	No (7)
Pounds milk sold per cow	19,111	16,404	13,619	13,599
Net farm income per cow without appreciation	\$828	\$588	\$30	\$-174
Purchased grain cost per cwt.	\$3.76	\$4.77	\$4.66	\$4.84
Operating cost of producing milk per cwt.	\$9.41	\$9.61	\$12.74	\$14.10

*Number of responses to survey question.

Supplemental Feeding

The table at the bottom of page 2 shows that the more profitable operations have a much lower percent forage coming from pasture than the less profitable operations. This demonstrates the importance of sufficient high quality supplemental forage. The table below compares milk production and net farm income on farms feeding corn silage and other forages. The three less profitable farms which fed corn silage had high costs of production per ton of dry matter. See the table, Crop Related Accrual Expenses, on page 19.

SUPPLEMENTAL FEEDING
Intensive Grazing Farms, 1996

	21 More Profitable Dairy Farms		9 Less Profitable Dairy Farms	
	Fed Any Corn Silage* (11)**	Fed Non-Corn Silage (10)	Fed Any Corn Silage (3)	Fed Non-Corn Silage (4)
Percent forage from pasture	56\%	75\%	70\%	87\%
Pounds milk sold per cow	19,160	17,161	13,388	13,711
Net farm income per cow without appreciation	\$810	\$678	\$-197	\$-95
Pounds grain fed per cow per day	18	16	12	12

[^0]
Frequency of Rotation

In the more profitable group of grazers, 12 farmers rotated cows into fresh paddock once per day and 7 rotated cows into fresh paddocks after each milking. The table below compares rotation of cows onto a fresh paddock after each milking to high milk production and net farm income.

ROTATION FREQUENCY

Intensive Grazing Farms, 1996

	21 More Profitable Dairy Farms		9 Less Profitable Dairy Farms	
	Rotation		Rotation	
	After Each Milking (7)	Once a Day (12)	After Each Milking (4)	Once a Day (3)
Pounds milk sold per cow	20,918	16,921	14,216	12,928
Net farm income per cow w/o appreciation	\$972	\$630	\$-86	\$-358

Additional Notes on Survey Results

- All six of the more profitable farms that indicated problems with weeds stated the weeds were clipped regularly or spotsprayed.
- The importance of feeding grain is shown in the table on page 2: the more profitable group fed 17.4 pounds of grain per cow per day and the less profitable group fed 12.6 pounds per cow per day. The most common grain form was mash, followed by TMR (total mixed ration).
- The corn silage feeders in the more profitable group fed a 21 percent crude protein concentrate and those in the less profitable group fed a 16 percent crude protein concentrate.
- Smooth steel high tensile wire was most commonly used for perimeter and lane fences while polywire was most commonly used for internal fences.
- The more profitable farms indicated that on the whole there were fewer health problems with grazing than confinement housing.
- Problems with injuries, mastitis, calving, and feet and leg problems decreased for the majority of farmers.
- Problems with flies and parasites increased for the majority of farmers.
- Problems with heat detection and breedings per conception increased for some farmers and decreased for other about equally.

Farmers' Comments from the Survey

- "Flies - under control if treated."
- "Less time spent with the cows, lower feed costs, lower production, more variation."
- "Dry matter intake - don't know the amount and constantly changing."
- "Heat - more cows are in the barn away from the heat; more want to stay there."
- "Super intensive management is needed."
- "Satisfaction would be higher if pasture forages were more suitable for grazing."
- "Forage was harvested at a higher quality while pasturing versus mechanical."
- "Went through the rotation every 13 days."
- "Less health problems - a real joy!"
- "Still need some forage equipment as season is only half of the year."
- "We think cows come along better post-calving while on pasture except if very hot."

INTENSIVE GRAZING FARMS VS. NON-GRAZING FARMS

New York State Dairy Farms, 1996

Item	All Intensive Grazing Farms	Non-Grazing Farms*	Profitable Grazing Farms**	Profitable NonGrazing Farms***
Number of farms	59	97	21	52
Business Size \& Production				
Number of cows	78	75	79	75
Number of heifers	60	58	63	60
Milk sold, lbs.	1,349,129	1,323,630	1,446,729	1,370,251
Milk sold/cow, lbs.	17,270	17,547	18,402	18,364
Milk plant test, \% butterfat	3.66\%	3.72\%	3.67\%	3.72\%
Tillable acres, total	255	240	239	250
Hay crop, tons DM/acre	2.5	2.4	2.8	2.6
Corn silage, tons/acre	13.9	14.0	15.9	14.5
Forage DM/cow, tons	6.6	8.0	6.0	8.2
Labor \& Capital Efficiency				
Worker equivalent	2.70	2.53	2.59	2.43
Milk sold/worker, lbs.	499,677	523,174	558,583	563,889
Cows/worker	29	30	31	31
Farm capital/worker	\$197,042	\$217,660	\$201,080	\$224,573
Farm capital/cow	\$6,821	\$7,342	\$6,592	\$7,276
Farm capital/cwt. milk	\$39	\$42	\$36	\$40
Milk Production Costs \& Returns				
Selected costs/cwt.:				
Hired labor	\$1.39	\$0.94	\$1.18	\$0.76
Grain \& concentrate	\$4.41	\$4.75	\$4.12	\$4.24
Purchased roughage	\$0.21	\$0.24	\$0.21	\$0.09
Replacements purchased	\$0.15	\$0.25	\$0.08	\$0.08
Vet \& medicine	\$0.32	\$0.35	\$0.33	\$0.33
Milk marketing	\$0.58	\$0.73	\$0.55	\$0.70
Other dairy expenses	\$0.95	\$1.06	\$0.88	\$0.95
Operating cost/cwt.	\$11.29	\$11.84	\$9.74	\$9.95
Total labor cost/cwt.	\$3.73	\$3.30	\$3.34	\$3.06
Operator resources/cwt.	\$3.51	\$3.47	\$3.35	\$3.61
Total cost/cwt.	\$16.33	\$17.05	\$14.51	\$15.24
A verage farm price/cwt.	\$14.78	\$15.02	\$14.75	\$15.02
Return over total costs/cwt.	\$-1.55	\$-2.03	\$0.24	\$-0.22
Related Cost Factors				
Hired labor/cow	\$240	\$166	\$217	\$140
Total labor/cow	\$646	\$582	\$612	\$560
Purchased dairy feed/cow	\$798	\$880	\$792	\$791
Purchased grain \& concentrate				
Vet \& medicine/cow	\$56	\$62	\$60	\$60
Machinery costs/cow	\$432	\$497	\$424	\$507
Feed \& crop exp./cwt.	\$5.48	\$5.82	\$5.11	\$5.26
Profitability Analysis				
Net farm income (without appreciation)	\$31,876	\$24,607	\$57,583	\$51,900
Net farm income per cow (w/o apprec.)	\$409	\$328	\$729	\$692
Labor \& management income/operator	\$6,551	\$-53	\$28,316	\$19,119
Rates of return on:				
Equity capital with appreciation	1.2\%	-0.2\%	8.1\%	5.9\%
All capital with appreciation	3.3\%	2.2\%	8.0\%	6.3\%

[^1]
CASE STUDIES

Howland Farm

Rob and Darlene Howland of Candor adopted intensive grazing in 1993 mainly to change the cropping system which had brought them much frustration in previous years. They were also attracted to the lower costs and increased free time that grazing advocates were promoting. With guidance from both Natural Resources Conservation Services and Farm Service Agency staff and what they learned from a Pro-Dairy Grazing course, a grazing plan was developed that included a fencing and watering system. The Howlands have learned a great deal since 1993 and have maintained high milk production at 22,911 pounds sold per cow in 1996.

Several changes and purchases have been made since switching to grazing. Rob stopped growing corn and alfalfa on wet land, where it had been so troublesome for eight out of the ten years he'd been there. In these eight years, numerous problems occurred, for example, the corn was planted late, or it was too muddy in the fall, or hay was being harvested too late resulting in poor quality. There simply wasn't time to tend to these extra crop acres and get barn chores done on time. Sixteen acres of the corn land was reseeded with alfalfa and timothy and ten acres was reseeded with orchardgrass. These 26 acres plus 29 acres reseeded to orchardgrass and Ladino Clover were added to 100 acres of native pasture. This formed the 155 acres on which 80 milking Holsteins and additional dry cows and heifers are grazed today.

A used four-wheeler was purchased after the first year of grazing when it was obvious how essential it was for retrieving cows, fixing fence, and dealing with water out in the pasture. Three small feeders were traded for a feeder with headlocks. This facilitated treating dry cows and heifers for flies while out in the pasture instead of spending time catching them and tying them up in the barn.

One other change that was made was buying a round baler and wrapper and selling the square bale equipment. Although they weren't bought specifically for grazing, Rob says "I wouldn't do without the round baler in terms of managing the pasture at the proper height." If the pasture is getting too tall, he will go in and take enough bales of baleage to keep ahead of the grass. He doesn't have to worry about the sun shining long enough to make dry hay or about uncovering the silo to add just a small amount of haylage. Although the equipment is efficient, it isn't cheap. In 1996 machinery costs were $\$ 544$ per cow compared to $\$ 432$ per cow for the 59 grazers.

An extensive watering system was developed that is capable of providing water at any point in the 155 acres of pasture. The first type consists of gravity flowing water out of three rebuilt ponds and one new pond, with the water piped from the pond through a dike to permanent tanks in the pasture. A pump pushes water from one pond over a knoll to moveable tubs. The second type consists of a well at the top of a hill with black plastic pipe running above ground along the fenceline with outlets to water tubs in the paddocks. The third type runs from a seasonal creek with a 1,300 gallon dry well buried below the creek bed.

Smooth steel high tensile wire was added to the existing barbed wire perimeter fence to enclose all paddocks. Laneways were made with high tensile wire. All internal fences are made with moveable hot tape. Very little pasture land is close to the barn and all is uphill from the barn. For some paddocks cows must walk $1 / 4$ mile up a steep hill. More paddocks, even further up and down more hills, are used for dry cows and heifers.

A complex feeding program which supplements the pasture forage enables the herd's high milk production. Milking is at $6: 30 \mathrm{a} . \mathrm{m}$. and $6: 30 \mathrm{p} . \mathrm{m}$., with each milking taking about two and a half hours. Thirty pounds of corn silage per cow per day is fed which is ready in the manger before the cows come in. When milking begins, an automated around-the-barn feeder which reads the cow number and feeds out programmed amounts of grain to each cow according to production is turned on. This makes two trips around the barn during each milking, completing the second when the last cow in the barn is being milked. The dry matter intake is balanced with 6 to 8 pounds of baleage per cow per day in May and 15 pounds from mid-June on. If pasture is short and dry due to drought, even more baleage is fed and the cows stay in the barn. This feeding program has been successful at achieving high milk production, but is expensive. In 1996 thirty-two percent of the milk receipts go to purchased grain and concentrates, while feed and crop expense is $\$ 5.66$ per cwt.

Rob has worked diligently on improving the soil fertility and the quality of the pastures since switching to grazing. Before grazing, 100 acres in native pasture hadn't been limed or fertilized in at least 17 years, although it had seen some manure. In 1993, soil tests showed that pH was low, as was phosphorous and nitrogen, while potash was acceptable. Lime has been applied twice since that first test, at a rate of 25 to 30 tons per year for the 155 acres. Every year, 125 pounds of urea and 75 pounds of mono-ammonium phosphate are applied to all 155 acres of pasture. Soil testing every three years will continue and the same fertilizer program will be followed until the phosphorous levels are optimal. pH levels will be
maintained at 6.0 to 6.2 . Twenty percent of the pastures are now reseeded with 70 percent orchard grass and 30 percent ladino clover, while 80 percent are native mixes.

The various challenges of grazing are dealt with as they come. A pour-on insecticide has brought great success in controlling flies. On especially hot days, the cows are brought in early and fed stored forage. The herd has been changed from fall-freshening to year-round, which alleviates the pressure of seeing a cow in heat and getting her bred immediately.

Rob has yet to see the "increased free time" that he looked forward to in 1993. He has one full-time employee and help from his wife and children and still finds himself working 15 hour days. He sees the work that comes with grazing different, but not any less. It is work, like bedding the cows down, that is more flexible and can be left for later if he is busy with hay. It is also work that is much safer for his children to perform than the more conventional work like spreading manure or operating large machinery.

With sound management and attention to detail, the Howlands have been very successful at grazing with high milk production. Despite higher than anticipated costs, they have an above average net farm income per cow of $\$ 755$ without appreciation.

Battisti Farm

Michael Battisti has been grazing Holsteins in Madison County for five years. He made the switch to rotational grazing for a number of reasons. His primary concern was to reduce his high cull rate. With full confinement, breeding problems and teat injuries were numerous. Machinery costs were also very high. Since he began grazing, he has cut his machinery costs in half to the 1996 figure of $\$ 697$ per cow. He has eliminated some tillage equipment and a harvestor silo as he no longer grows corn. Problems with breeding and injuries have dropped tremendously, as has his cull rate. Mike has improved his quality of life a great deal, mainly in terms of increased free time, with less time spent in the barn and in the hay field. Meanwhile milk production has remained high at 20,302 pounds per cow. This success was achieved while receiving nearly 100 percent of the herd's forage from pasture during the grazing season.

After making the switch to rotational grazing, a flatbarn parlor was built which enables close to eighty cows to be milked during the grazing season when the cows remain outside. Come November, cows are sold or culled in order to drop to the 63 cows for which stalls are available in the conventional barn. About 16 pounds per cow per day of a grain mixture composed of 80 percent high moisture corn with a protein supplement are fed before milking. The feeding program is kept simple and efficient by feeding all of the cows the same amount of grain. Mike's 1996 purchased grain and concentrate cost as a percentage of the milk receipts was 22 percent, where the average for the 59 grazers was 30 percent. Furthermore, his feed and crop expense was $\$ 4.24$ per hundredweight compared to the $\$ 5.48$ per cwt. for the 56 grazers.

The first year that the herd was rotationally grazed, the cows were still being fed some total mixed ration in the barn. Thus, when they were sent to pasture they were not grazing well. Mike realized that he was doing twice the work with both TMR feeding and moving cows between paddocks and not seeing any benefits. The following year, feeding in the barn was eliminated and a great improvement in the cows' grazing was seen. It took about a year to train the cows, especially the older cows who were accustomed to confinement. The heifers are grown on pasture, thus are well-trained by the time they freshen.

The first cows are milked between 4:15 a.m. and 4:30 a.m. and are out to pasture between 5:00 and 6:30 a.m. This gives them a good three or four hours of grazing before it gets hot. On extremely hot days in order to keep the dry matter intake high, fence will be moved often to provide the cows with fresh pasture. If they still aren't eating well, they are brought in at $3: 00$ in the afternoon to milk instead of the usual 4:00. This enables them to return to the pasture sooner when it is cooler. Leaving the cows in the barn isn't a consideration as there isn't adequate room and the stalls are small causing too many injuries.

The entire farm is fenced with smooth steel high tensile wire, which allows the cows, heifers, and weaned calves to graze all 220 acres of pasture. "Tumble wheels" are used, which facilitate moving interior fence, especially while the cows are grazing. Although the tumble wheels are costly, Mike feels they are definitely worthwhile for saving time and increasing dry matter intake.

Pastures have been improved through sound management over the years. Older pastures have been frost-seeded or broadcasted with seed. The majority of the pastures contain native grasses and white clover and some orchard grass and ladino clover. Mike likes the orchard grass the most for its high productivity and persistence. He doesn't bother with alfalfa due to its requirement of a long resting period between grazing.

The soils are good and lime is applied to maintain optimal pH . Mike's manure spreader sees minimal use throughout the grazing season as the cows are returning the manure to the pasture themselves. Liquid manure (from winter confinement) is spread from a slurry system after first cutting on the paddocks that see the least grazing time. Mike believes in taking care of the plant as well as the cow. The pastures are kept at a maximum of six to eight inches high. If a paddock is stressed and not ready for the cows, baleage is fed. If the pasture has gotten away from the cows, namely in the spring, it will either be clipped or harvested as haylage or baleage. Each paddock is usually clipped once or twice per year. In order to maintain cleanliness in the pastures, providing shade where cows would camp for long periods of time on hot days is avoided.

Water is provided in every paddock from a number of sources. The paddocks closest to the barn on that side of the road are supplied by the barn well through three-quarter inch black plastic. The more distant paddocks on the same side of the road and the majority of those on the opposite side are also supplied by the barn well through buried one and a half inch black plastic for increased flow of water. The paddocks that are too distant receive water from springs that fill a 1,000 gallon buried tank which then fills a stock tank. Water is hauled in wagons to other paddocks that are high on a hill. Most of the paddocks have 50 gallon drums cut in half as water tubs.

Mike enjoys the labor efficiency of the grazing system. He has a four-wheeler which he says is one of the most important things to have on a grazing farm. He can send one of his four children to retrieve the cows for milking while he lays the grain out in front of the stalls. Once the cows are in the barn, milking is basically a one-man job. Grain is placed in front of the six stalls in the flat-barn parlor only to encourage the first cows to come over to the parlor. After that, no grain is fed in the parlor in order to prevent cows that have been milked from waiting around for more grain. The cows go straight from the flat-barn parlor out of the barn and back to the pasture without a problem.

Mike would like to become more seasonal and possibly even not milk for a few months of the year. Heifers aren't bred after March until July 1 through November I when a Jersey bull is put in the pasture. This breeding schedule is maintained so that the heifers will calve during the grazing season and utilize the flat-barn parlor. After switching to grazing, using the bull was easier to breed the heifers when they were in remote pastures.

Environmental problems have diminished tremendously since starting rotational grazing. With the entire farm in pasture, erosion is no longer an issue and the rate of fertilizer application has decreased dramatically. Mike has worked hard to make grazing successful on his farm and he definitely enjoys the benefits. In 1996 his net farm income without appreciation per cow was above the state average of $\$ 390$ at $\$ 590$. He feels that if he could do it with all the obstacles on his farm, anyone can do it.

SUMMARY OF GRAZING FARMS WITH OVER 100 COWS

There were seven farms with more than 100 cows that indicated on the 1996 Dairy Farm Business Summary that they were grazers. Surveys were collected from five of these seven large grazing farms. The table on the following page compares these five grazing farms with 35 farms of similar size and location.

Grazing Practices Information Collected From the Surveys Follows:

- The five farms received an average of 48 percent of the forage from pasture during the grazing season.
- The average grazing length was 175 days.
- Four out of the five farms provided water in every paddock.
- Four out of five farms rotated cows after each milking; the fifth rotated once per day.
- Four out of five farms supplemented with corn silage alone or with hay and haylage.
- All farms fed a total mixed ration and an average of 18.4 pounds of grain per cow per day.
- The five farms reseeded an average of 74 percent of the pasture.
- Three out of the five farms applied an average of 124 pounds of fertilizer per acre and 40 percent of the farms applied lime.
- Generally, problems with flies, heat detection, and breedings per conception were more severe under grazing. Problems with mastitis and injuries were less severe and feet and leg problems went both ways.
- Orchardgrass and ladino clover were the most common pasture species.

INTENSIVE GRAZING FARMS WITH MORE THAN 100 COWS VS. NON-GRAZING FARMS OF SIMILAR SIZE, 1996

Item	Grazing Farms >100 Cows	Non-Grazing Farms
Number of farms	5	35
Business Size \& Production		
Number of cows	156	155
Number of heifers	137	107
Milk sold, lbs.	2,875,735	3,005,796
Milk sold/cow, lbs.	18,387	19,432
Milk plant test, \% butterfat	3.66\%	3.71\%
Tillable acres, total	479	387
Hay crop, tons DM/acre	3.4	3.0
Corn silage, tons/acre	17.0	16.6
Forage DM/cow, tons	6.4	7.6
Labor \& Capital Effeciency		
Worker equivalent	4.43	4.63
Milk sold/worker, lbs.	649,150	649,200
Cows/worker	35	33
Farm capital/worker	\$216,864	\$212,557
Farm capital/cow	\$6,158	\$6,349
Farm capital/cwt. milk	\$33	\$33
Milk Production Costs \& Returns		
Selected costs/cwt.:		
Hired labor	\$1.78	\$1.46
Grain \& concentrate	4.11	4.56
Purchased roughage	0.02	0.31
Replacements purchased	0.08	0.44
Vet \& medicine	0.45	0.39
Milk marketing	0.46	0.58
Other dairy expenses	0.92	1.03
Operating cost/cwt.	10.82	12.17
Total labor cost/cwt.	2.88	2.83
Operator resources/cwt.	2.68	2.56
Total cost/cwt.	14.30	16.02
Average farm price/cwt.	15.03	15.00
Return over total costs/cwt.	0.73	-1.02
Related Cost Factors		
Hired labor/cow	\$329	\$283
Total labor/cow	531	549
Purchased dairy feed/cow	760	885
Purchased grain \& concentrate as \% of milk receipts	27\%	30\%
Vet \& medicine/cow	\$84	\$75
Machinery costs/cow	\$397	\$481
Feed \& crop exp./cwt.	\$5.17	\$5.61
Profitability Analysis		
Net farm income (without appreciation)	\$100,500	\$49,635
Net farm income/cow (without appreciation)	\$644	\$320
Labor \& management income/operator	\$45,734	\$9,314
Rates of return on:		
Equity capital with appreciation	8.6\%	2.1\%
All capital with appreciation	8.5\%	4.6\%

SUMMARY AND ANALYSIS OF THE FARM BUSINESS

Business Characteristics

Planning the optimal management strategies is a crucial component of operating a successful farm. Various combinations of farm resources, enterprises, business arrangements, and management techniques are used by the dairy farmers in this region. The following table shows important farm business characteristics and the number of farms with each characteristic.

BUSINESS CHARACTERISTICS

59 Intensive Grazing Dairy Farms, 1996

Type of Farm	Number	Milking System	Number
Dairy	59	Bucket \& carry	0
Part-time dairy	0	Dumping station	3
Dairy cash-crop	0	Pipeline	43
		Herringbone parlor	9
		Other parlor	4
Type of Ownership	Number		
Owner	59	Production Records	Number
Renter	0	DHIC	35
		Owner-Sampler	7
Type of Business	Number	Other	7
Sole Proprietorship	46	None	10
Partnership	12		
Corporation	1	bST Usage	Number
		Used on <25\% of herd	5
Type of Barn	Number	Used on $25-75 \%$ of herd	12
Stanchion or Tie-Stall	42	Used on $>75 \%$ of herd	2
Freestall	13	Stopped using in 1996	0
Combination	4	Not used in 1996	40
Milking Frequency	Number	Business Record System	Number
2 times per day	55	Account Book	21
3 times per day	1	Agrifax (mail-in only)	3
Other	3	On-farm computer	31
		Other	4

The averages used in this report were compiled using data from all the participating dairy farms in this region unless noted otherwise. There are full-time dairy farms, part-time farms, dairy cash-crop farms, farm renters, partnerships, and corporations included in the average. Average data for these specific types of farms are presented in the State Business Summary.

Income Statement

In order for an income statement to accurately measure farm income, it must include cash transactions and accrual adjustments (changes in accounts payable, accounts receivable, inventories, and prepaid expenses).

Cash paid is the actual cash outlay during the year and does not necessarily represent the cost of goods and services actually used in 1996.

Change in inventory: Increases in inventories of supplies and other purchased inputs are subtracted in computing accrual expenses because they represent purchased inputs not actually used during the year. Decreases in purchased inventories are added to expenses because they represent inputs purchased in a prior year and used this year.

CASH AND ACCRUAL FARM EXPENSES

59 Intensive Grazing Dairy Farms, 1996

Change in prepaid expenses (noted above by \ll) is a net change in non-inventory expenses that have been paid in advance of their use. For example, prepaid lease expense on the beginning of year balance sheet represents last year's payment for use of the asset during this year. End of year prepaid expense represents payments made this year for next year's use of the asset. Adding payments made last year for this year's use of the asset, and subtracting payments made this year for next year's use of the asset is accomplished by subtracting the difference.

Change in accounts payable: An increase in accounts payable from beginning to end of year is added when calculating accrual expenses because these expenses were incurred (resources used) in 1996 but not paid for. A decrease is subtracted because it represents payment for resources used before 1996.
Accrual expenses are an estimate of the costs of inputs actually used in this year's production. They are the cash paid, less changes in inventory and prepaid expenses, plus accounts payable.

CASH AND ACCRUAL FARM RECEIPTS

59 Intensive Grazing Dairy Farms, 1996

Receipt Item		Cash Receipts	+		Change in Inventory	+		Change in Accounts ceivabl	$=$		Accrual Receipts
Milk sales	\$	199,795					\$	-438		\$	199,358
Dairy cattle		7,480		\$	3,977			0			11,457
Dairy calves		1,372						0			1,372
Other livestock		1,771			171			0			1,942
Crops		2,345			2,506			209			5,060
Government receipts		4,157			45 *			25			4,227
Custom machine work		671						13			685
Gas tax refund		129						-2			127
Other		2,405						-3			2,402
Less nonfarm noncash capital**			(-)		115 **				(-)		115
Total Receipts	\$	220,126		\$	6,584		\$	-196		\$	226,514

[^2]Cash receipts include the gross value of milk checks received during the year plus all other payments received from the sale of farm products, services, and government programs. Nonfarm income is not included in calculating farm profitability.

Changes in inventory of assets produced by the business are calculated by subtracting beginning of year values from end of year values excluding appreciation. Increases in livestock inventory caused by herd growth and/or quality are added, and decreases caused by herd reduction and/or quality are subtracted. Changes in inventories of crops grown are also included. An increase in advanced government receipts is subtracted from cash income because it represents income received in 1996 for the 1997 crop year in excess of funds earned for 1996. Likewise, a decrease is added to cash government receipts because it represents funds earned for 1996 but received in 1995.

Changes in accounts receivable are calculated by subtracting beginning year balances from end year balances. Payments in January for milk produced in December 1996 compared to January 1996 payments for milk produced in 1995 are included as a change in accounts receivable.

Accrual receipts represent the value of all farm commodities produced and services actually generated by the farm business during the year.

Profitability Analysis

Farm operators* contribute labor, management, and equity capital to their businesses and the combination of these resources, and the other resources used in the business, determines profitability. Farm profitability can be measured as the return to all family resources or as the return to one or more individual resources such as labor and management.

These measures should be considered estimates as they include inventory values that are only estimates and they include an unknown degree of error stemming from cash flow imbalances.

[^3]Net farm income is the return to the farm operators and other unpaid family members for their labor, management, and equity capital. It is the farm family's net annual return from working, managing, and financing the farm business. This is not a measure of cash available from the year's business operation. Cash flow is evaluated later in this report.

Net farm income is computed both with and without appreciation. Appreciation represents the change in values caused by annual changes in prices of livestock, machinery, real estate inventory, and stocks and certificates (other than Farm Credit). Appreciation is a major factor contributing to changes in farm net worth and must be included for a complete profitability analysis.

NET FARM INCOME
Intensive Grazing Dairy Farms, 1996

Item	59 New York Dairy Farms		21 More Profitable Farms		9 Less Profitable Farms	
Total accrual receipts	\$	226,514	\$	248,705	\$	99,662
Appreciation: Livestock		910		1,607		587
Machinery		1,963		1,301		2,120
Real Estate		4,380		4,345		4,943
Other Stock \& Certificates		124		-10		-61
Total Including Appreciation	\$	233,891	\$	255,948	\$	107,251
Total accrual expenses		194,638	-	191,122	-	105,466
Net Farm Income (with appreciation)	\$	39,253	\$	64,826	\$	1,785
Net Farm Income Per Cow (with appreciation)	\$	503	\$	821	\$	40
Net Farm Income (without appreciation)	\$	31,876	\$	57,583	\$	-5,804
Net Farm Income Per Cow (without appreciation)	\$	409	\$	729	\$	-129

The chart below shows the relationship between net farm income per cow (with appreciation) and pounds of milk sold per cow. Generally, farms with a higher production per cow have higher profitability per cow.

NET FARM INCOME PER COW AND MILK PER COW
59 Intensive Grazing Dairy Farms, 1996

Labor and management income is the return which farm operators receive for their labor and management used in the farm business. Appreciation is not included as part of the return to labor and management because it results from ownership of assets rather than management of the farm business. Labor and management income is calculated by deducting a charge for family labor unpaid and the opportunity cost of using equity capital, at a real interest rate of five percent, from net farm income excluding appreciation. The interest charge of five percent reflects the long-term average rate of return above inflation that a farmer might expect to earn in comparable risk investments.

LABOR AND MANAGEMENT INCOME
 Intensive Grazing Dairy Farms, 1996

Item	59 New York Dairy Farms	21 More Profitable Farms	9 Less Profitable Farms	
Net farm income without appreciation	$\$$	31,876	$\$$	57,583
Family labor unpaid @ \$1,500 per month	-	5,400	-	5,550
Interest on average equity capital @ 5\% real rate	-	17,697	-	$-17,204$
Labor \& Management Income per farm	$\$$	8,779	$\$$	$-5,804$
Labor \& Management Income per Operator/Manager	$\$$	6,551	$\$$	28,829

Labor and management income per operator averaged $\$ 6,551$ on these 59 farms in 1996. The range in labor and management income per operator was from about $\$-55,000$ to more than $\$ 100,000$. Returns to labor and management were negative on 40 percent of the farms. Labor and management income per operator was between $\$ 0$ and $\$ 40,000$ on 55 percent of the farms while 5 percent showed labor and management incomes of $\$ 40,000$ or more per operator.

DISTRIBUTION OF LABOR \& MANAGEMENT INCOMES PER OPERATOR 59 Intensive Grazing Dairy Farms, 1996

Return on equity capital measures the net return remaining for the farmer's equity or owned capital after a charge has been made for the owner-operator's labor and management. The earnings or amount of net farm income allocated to labor and management is the opportunity cost of operators' labor and management estimated by the cooperators. Return on equity capital is calculated with and without appreciation. The rate of return on equity capital is determined by dividing the amount returned by the average farm net worth or equity capital. Return on total capital is calculated by adding interest paid to the return on equity capital and then dividing by average farm assets to calculate the rate of return on total capital.

RETURN ON EQUITY CAPITAL AND RETURN ON TOTAL CAPITAL Intensive Grazing Dairy Farms, 1996

Item	59 New York Dairy Farms		21 More Profitable Farms		9 Less Profitable Farms	
Net farm income with appreciation	\$	39,253	\$	64,826	\$	1,785
Family labor unpaid @ 1 1,500 per month	-	5,400	-	5,550	-	4,500
Value of operators' labor \& management	-	29,708	-	31,316	-	17,744
Return on equity capital with appreciation	\$	4,145	\$	27,960	\$	-20,459
Interest paid	$+$	13,494	$+$	13,632	\pm	6,206
Return on total capital with appreciation	\$	17,639	\$	41,592	\$	-14,253
Return on equity capital without appreciation	\$	-3,232	\$	20,717	\$	-28,048
Return on total capital without appreciation	\$	10,262	\$	34,349	\$	-21,842
Rate of return on average equity capital:						
with appreciation		1.2\%		8.1\%		-13.4\%
without appreciation		-0.9\%		6.0\%		-18.3\%
Rate of return on average total capital:						
with appreciation		3.3\%		8.0\%		-5.9\%
without appreciation		1.9\%		6.6\%		-9.0\%

Farm and Family Financial Status

The first step in evaluating the financial position of the farm is to construct a balance sheet which identifies and values all the assets and liabilities of the business. The second step is to evaluate the relationship between assets, liabilities, and net worth and changes that occurred during the year.

Financial lease obligations are included in the balance sheet. The present value of all future payments is listed as a liability since the farmer is committed to make the payments by signing the lease. The present value is also listed as an asset, representing the future value the item has to the business. For 1996 , lease payments were discounted by 8.75 percent to obtain their present value.

Advanced government receipts are included as current liabilities. Government payments received in 1996 that are for participation in the 1997 program are the end year balance and payments received in 1995 for participation in the 1996 program are the beginning year balance.

Current Portion or principal due in the next year for intermediate and long term debt is included as a current liability.

1996 FARM BUSINESS \& NONFARM BALANCE SHEET

Intensive Grazing Dairy Farms, 1996

Nonfarm Assets, Liabilities \& Net Worth (Average of 43 farms reporting)

Assets		Jan. 1		Dec. 31	Liabilities \& Net Worth	Jan. 1		Dec. 31	
Personal cash, checking					Nonfarm Liabilities	\$	3,958	\$	2,999
\& savings	\$	1,928	\$	2,034					
Cash value life insurance		8,245		6,552					
Nonfarm real estate		14,642		14,526					
Auto (personal share)		3,983		3,950					
Stocks \& bonds		6,150		6,904					
Household furnishings		10,858		11,274					
All other nonfarm assets		1,767		2,459					
Total Nonfarm Assets	\$	47,573	\$	47,699	NONFARM NET WORTH	\$	43,615	\$	44,700

Farm \& Nonfarm Assets, Liabilities, and Net Worth*	Jan. 1	Dec. 31
Total Assets	$\$ 567,364$	$\$ 591,933$
Total Liabilities	$\boxed{183,665}$	179,455
TOTAL FARM \& NONFARM NET WORTH	$\$ 383,699$	$\$ 412,478$

[^4]Balance sheet analysis involves examination of relative asset and debt levels for the business. Percent equity is calculated by dividing end of year net worth by end of year assets and multiplying by 100 . The debt to asset ratio is compiled by dividing liabilities by assets. Low debt to asset ratios reflect business solvency and the potential capacity to borrow. Debt levels per productive unit represent old standards that are still useful if used with measures of cash flow and repayment ability.

BALANCE SHEET ANALYSIS

Intensive Grazing Dairy Farms, 1996

Item	59 New York Dairy Farms			21 More Profitable Farms		9 Less Profitable Farms		
Financial Ratios - Farm:								
Percent equity		68\%			67\%		66\%	
Debt/asset ratio: total		32						
long-term		30						
intermediate/current								
Farm Debt Analysis:								
Accounts payable as \% of total debt		4\%			2\%		7\%	
Long-term liabilities as a $\%$ of total debt		46\%			47\%		41\%	
Current \& inter. liabilities as a $\%$ of total debt		54\%			53\%		59\%	
			York arms	2 Profit	More le Farms	Profi		Farms
			Per		Per			Per
			Tillable		Tillable			Tillable
	Per		Acre	Per	Acre	Per		Acre
Farm Debt Levels:	Cow		Owned	Cow	Owned	Cow		Owned
Total farm debt	\$ 2,234	\$	1,063	\$ 2,241	\$ 1,035	\$ 1,962	\$	803
Long-term debt	1,025		488	1,052	486	804		329
Intermediate \& long term	1,832		872	1,899	877	1,365		559
Intermediate \& current debt	1,209		575	1,190	550	1,158		474

Farm inventory balance is an accounting of the value of assets used on the balance sheet and the changes that occur from the beginning to end of year. Changes in the livestock inventory are included in the dairy analysis. Net investment indicates whether the capital stock is being expanded (positive) or depleted (negative).

FARM INVENTORY BALANCE
59 Intensive Grazing Dairy Farms, 1996

Item	Real Estate				Machinery \& Equipment			
Value beginning of year			\$	257,679			\$	88,114
Purchases	\$	11,177*			\$	10,197		
Gift \& inheritance	+	4.904			+	1,248		
Lost capital	-	1,527						
Sales	-	512			-	498		
Depreciation	-	6,235			-	8,998		
Net investment			$=$	7,808			$=$	1,949
Appreciation			$+$	4,380			$+$	1,963
Value end of year			\$	269,867			\$	92,026

[^5]The Statement of Owner Equity has two purposes. It allows (1) verification that the accrual income statement and market value balance sheet are consistent (in accountants terms, they reconcile) and (2) identification of the causes of change in equity that occurred on the farm during the year. The Statement of Owner Equity allows you to determine to what degree the change in equity was caused by (1) earnings from the business, and nonfarm income, in excess of withdrawals being retained in the business (called retained earnings), (2) outside capital being invested in the business or farm capital being removed from the business (called contributed/withdrawn capital), (3) increases or decreases in the value (price) of assets owned by the business (called change in valuation equity), and (4) the error in the business cash flow accounting.

Retained earnings is an excellent indicator of farm generated financial progress.

STATEMENT OF OWNER EQUITY (RECONCILIATION) Intensive Grazing Dairy Farms, 1996

*May not add due to rounding.

Cash Flow Statement

Completing an annual cash flow statement is an important step in understanding the sources and uses of funds for the business. Understanding last year's cash flow is the first step toward planning and managing cash flow for the current and future years.

The annual cash flow statement is structured to show net cash provided by operating activities, investing activities, financing activities and from reserves. All cash inflows and outflows, including beginning and end balances, are included. Therefore, the sum of net cash provided from all four activities should be zero. Any imbalance is the error from incorrect accounting of cash inflows/outflows. You should be aware that all profitability measures may be affected by this error.

ANNUAL CASH FLOW STATEMENT
 59 Intensive Grazing Dairy Farms, 1996

Item	Average					
Cash Flow from Operating Activities						
Cash farm receipts	\$	220,126				
- Cash farm expenses		181,538				
$=$ Net cash farm income			\$	38,588		
Personal withdrawals \& family expenses including nonfarm debt payments	\$	27,554				
Nonfarm income		8,913				
- Net cash withdrawals from the farm			\$	18,641		
$=$ Net Provided by Operating Activities					\$	19,947
Cash Flow From Investing Activities						
Sale of assets: machinery	\$	498				
+ real estate		512				
+ other stock \& cert.		1				
$=$ Total asset sales			\$	1,011		
Capital purchases: expansion livestock	\$	789				
+ machinery		10,197				
+ real estate		11,177				
+ other stock\& cert.		77				
- Total invested in farm assets			\$	22,240		
$=$ Net Provided by Investment Activities					\$	$-22,229$
Cash Flow From Financing Activities						
Money borrowed (intermediate \& long term)	\$	21,521				
+ Money borrowed (short term)		1,631				
+ Increase in operating debt		0				
+ Cash from nonfarm capital used in business		2,478				
+ Money borrowed - nonfarm		258				
$=$ Cash inflow from financing			\$	25,888		
Principal payments (intermediate \& long term)	\$	22,519				
+ Principal payments (short term)		438				
+ Decrease in operating debt		365				
- Cash outflow for financing			\$	23,322		
$=$ Net Provided by Financing Activities					\$	2,566
Cash Flow From Reserves						
Beginning farm cash, checking \& savings			\$	3,405		
- Ending farm cash, checking \& savings				4,291		
$=$ Net Provided from Reserves					\$	-886
Imbalance (error)					\$	398

Repayment Analysis

A valuable use of cash flow analysis is to compare the debt payments planned for the last year with the amount actually paid. The measures listed below provide a number of different perspectives on the repayment performance of the business. However, the critical question to many farmers and lenders is whether planned payments can be made in 1997 The cash flow projection worksheet on the next page can be used to estimate repayment ability, which can then be compared to planned 1997 debt payments shown below.

FARM DEBT PAYMENTS PLANNED
Same Intensive Grazing Dairy Farms, 1995 \& 1996

Debt Payments	Same 46 New York Farms			Same 18 More Profitable Farms			Same 8 Less Profitable Farms		
	1996 Payments		$\begin{gathered} \text { Planned } \\ 1997 \\ \hline \end{gathered}$	1996 Payments		$\begin{gathered} \hline \text { Planned } \\ 1997 \\ \hline \end{gathered}$	1996 Payments		$\begin{gathered} \hline \text { Planned } \\ 1997 \\ \hline \end{gathered}$
	Planned	Made		Planned	Made		Planned	Made	
Long term	\$10,715	\$ 11,005	\$ 10,574	\$ 12,140	\$ 13,188	\$ 11,423	\$ 3,545	\$ 3,752	\$ 3,596
Intermediate term	18,500	23,267	18,271	20,121	29,134	20,060	10,343	10,568	11,748
Short term	604	594	1,654	216	425	756	0	40	1,188
Operating (net reduction)	1,757	4	2,001	1,927	1,450	1,450	3,402	0	4,197
Accounts Pay. (net reduction)	1,388	2,886	1,273	2,165	5,046	1,529	3,108	2,272	3,225
Total	\$32,964	\$ 37,756	\$33,773	\$36,569	\$49,243	\$35,218	\$20,398	\$ 16,632	\$23,954
Per cow	\$ 434	\$ 497		\$ 441	\$ 593		\$ 443	\$ 362	
Per cwt. 1996 milk	\$ 2.51	\$ 2.88		\$ 2.39	\$ 3.22		\$ 3.19	\$ 2.60	
Percent of total 1996 farm receipts	15\%	17\%		14\%	19\%		20\%	16\%	
Percent of 1996 milk receipts	17\%	19\%		16\%	22\%		22\%	18\%	

The cash flow coverage ratio measures the ability of the farm business to meet its planned debt payment schedule. The ratio shows the percentage of payments planned for 1996 (as of December 31, 1995) that could have been made with the amount available for debt service in 1996. Farmers who did not participate in DFBS in 1995 have their 1996 cash flow coverage ratio based on planned debt payments for 1997.

CASH FLOW COVERAGE RATIO
Same Intensive Grazing Dairy Farms, 1995 \& 1996

Item	Same 46New York Farms		Same 18 More Profitable Farms		Same 8 Less Profitable Farms	
Cash farm receipts	\$	213,761	\$	247,528	\$	101,896
- Cash farm expenses		173,333		190,705		101,332
+ Interest paid		12,342		13,983		6,443
- Net personal withdrawals from farm*		19,626		29,726		4,310
$(\mathrm{A})=$ Amount Available for Debt Service	\$	33,144	\$	41,080	\$	2,697
	\$	32,964	\$	36,569	\$	20,398
(A/B) = Cash Flow Coverage Ratio for 1996		1.01		1.12		0.13

[^6]
ANNUAL CASH FLOW WORKSHEET

Intensive Grazing Dairy Farms, 1996

Includes change in advance government receipts. ${ }^{ *}$ Includes change in prepaid expenses. ***Excludes change in interest account rayhn

Cropping Analysis

The cropping program is an important part of the dairy farm business and often represents opportunities for improved productivity and profitability. A complete evaluation of what the available land resources are, how they are being used, how well crops are producing, and what it costs to produce them is important to evaluating alternative cropping and feed purchasing alternatives.

LAND RESOURCES AND CROP PRODUCTION
Intensive Grazing Dairy Farms, 1996

Item	59 New York Dairy Farms			21 More Profitable Farms			9 Less Profitable Farms		
Land	Owned	Rented	d Total	Owned	Rented	Total	Owned	Rented	Total
Tillable	166	89	255	171	67	238	110	36	146
Nontillable	42	9	52	41	12	53	36	0	36
Other nontill.	106	6	112	95	14	109	90	0	90
Total	314	105	419	307	93	400	236	36	272
Crop Yields	Farms	Acres*	Prod/Acre	Farms	Acres*	Prod/Acre	Farms	Acres*	Prod/Acre
Hay crop	56	137	2.5 tn DM	21	118	2.8 tn DM	6	130	2.0 tn DM
Corn silage	44	53	$\begin{aligned} & 13.9 \mathrm{tn} \\ & 4.5 \mathrm{tn} \mathrm{DM} \end{aligned}$	12	47	$\begin{aligned} & 15.9 \mathrm{tn} \\ & 5.1 \mathrm{tn} \mathrm{DM} \end{aligned}$	5	28	$\begin{aligned} & 11.3 \mathrm{tn} \\ & 3.2 \mathrm{tn} \mathrm{DM} \end{aligned}$
Other forage	10	21	2.8 tn DM	4	20	2.6 tn DM	0	0	0.0 tn DM
Total forage	56	182	3.0 tn DM	21	148	3.2 tn DM	6	153	2.1 tn DM
Corn grain	22	53	111 bu	9	54	122 bu	1	23	114 bu
Oats	5	14	48 bu	0	0	0 bu	1	6	58 bu
Wheat	4	34	42 bu	0	0	0 bu	0	0	0 bu
Other crops	9	29		4	41		0	0	
Tillable pasture	43	59		19	58		5	49	
Idle	17	42		5	31		4	29	
Total Tillable Acres	59	255		21	239		9	146	

*This column represents the average acreage for the farms producing that crop. For the 59 New York dairy farms, average acreages including those farms not producing were hay crop 130, corn silage 40 , corn grain 20 , oats 1 , wheat 2 , tillable pasture 43, and idle 12.

Average crop acres and yields compiled for the region are for the farms reporting each crop. Yields of forage crops have been converted to tons of dry matter using dry matter coefficients reported by the farmers. Grain production has been converted to bushels of dry grain equivalent based on dry matter information provided.

The following crop/dairy ratios indicate the relationship between forage production, forage production resources, and the dairy herd.

CROP/DAIRY RATIOS

Intensive Grazing Dairy Farms, 1996

Item	59 New York Dairy Farms	21 More Profitable Farms	9 Less Profitable Farms
Total tillable acres per cow			
Total forage acres per cow	3.27	3.03	3.22
Harvested forage dry matter, tons per cow	2.23	1.89	2.27
	6.59	6.03	4.87

A number of cooperators have allocated crop expenses among the hay crop, corn, and other crops produced. Fertilizer and lime, seeds and plants, and spray and other crop expenses have been computed per acre and per production unit for hay and corn. Additional expense items such as fuels, labor, and machinery repairs are not included. Rotational grazing was used by all farms reported in the below tables.

CROP RELATED ACCRUAL EXPENSES
Intensive Grazing Dairy Farms Reporting, 1996

		Total		All		Corn		Corn								
		Per		Corn		Silage		Grain			Cr			Per		Per
Item		Till. Acre		Per Acre		Per Ton DM		$\begin{aligned} & \text { Per Dry } \\ & \text { Sh. Bu. } \end{aligned}$		Per Acre		$\begin{gathered} \text { Per } \\ \text { Ton DM } \end{gathered}$		Till Acre		Total Acre
All Grazing Far																
No. of farms reporting		59		19							18					
Ave. number of acres		255		65							9			62		131
Fert. \& lime	\$	18.87	\$	41.74	\$	9.75	\$	0.37	\$	16.00		\$ 6.37	\$	32.02	\$	15.27
Seeds \& plants		12.65		28.94		6.76		0.26		6.44		2.56		1.97		0.94
Spray \& other		14.41		40.60		9.48		0.36		5.57		2.22		1.56		0.75
TOTAL	\$	45.93	\$	111.28		25.99		0.99	\$	28.01		\$ 11.15		35.55	\$	16.96

More Profitable Grazing Farms
No. of farms

| reporting
 Ave. number | 21 | | 9 | | | | | 9 | | | 7 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| \quad of acres | | | | | | | | | | | |

Less Profitable Grazing Farms
No. of farms

Most machinery costs are associated with crop production and should be analyzed with the crop enterprise. Total machinery expenses include the major fixed costs (interest and depreciation), as well as the accrual operating costs. Although machinery costs have not been allocated to individual crops, they are shown below per total tillable acre.

ACCRUAL MACHINERY EXPENSES

Intensive Grazing Dairy Farms, 1996

Machinery Expense	59 New York Dairy				21 More Profitable				9 Less Profitable			
	Total Expenses		Per Till. Acre		Total Expenses		Per Till. Acre		Total Expenses		Per Till. Acre	
Fuel, oil \& grease	\$	4,338	\$	17.01	\$	4,245	\$	17.76	\$	2,337	\$	16.12
Mach. repair \& vehicle exp.		12,331		48.36		11,725		49.06		7,726		53.28
Machine hire, rent \& lease		3,351		13.14		4,241		17.74		1,522		10.50
Interest (5\%)		4,697		18.42		4,458		18.65		2,366		16.32
Depreciation		8,998		35.29		8,836		36.97		4,598		31.71
Total	\$	33,715	\$	132.22	\$	33,505	\$	140.19	\$	18,549	\$	127.92

Dairy Analysis

Analysis of the dairy enterprise can reveal strengths and weaknesses of the dairy farm business. Information on this page should be used in conjunction with DHI and other dairy production information. Changes in dairy herd size and market values that occur during the year are identified in the table below. The change in inventory value without appreciation is attributed to physical changes in herd size and quality. Any change in inventory is included as an accrual farm receipt when calculating all of the profitability measures on pages 13 and 14.

DAIRY HERD INVENTORY

Intensive Grazing Dairy Farms, 1996

Item	Dairy Cows			Heifer								
	No.	Value		Bred			Open			Calves		
				No.		Value	No.		Value	No.		Value
59 New York Dairy Farms												
Beg. year (owned)	77	\$	76,718	20	\$	17,119	19	\$	9,643	19	\$	5,486
+ Change w/o apprec.			1,706			1,046			1,995			-771
+ Appreciation			605			94			161			25
End year (owned)	79	\$	79,029	22	\$	18,259	23	\$	11,799	17	\$	4,740
End including leased	79											
Average number	78			60		age group						
21 More Profitable Dairy Farms												
Beg. year (owned)	76	\$	77,725	22	\$	19,093	18	\$	8,991	20	\$	5,981
+ Change w/o apprec.			3,950			2,311			2,173			-914
+ Appreciation			1,110			246			141			98
End year (owned)	79	\$	82,785	25	\$	21,650	21	\$	11,305	18	\$	5,165
End including leased	79											
Average number	79			63	(al	l age group						
9 Less Profitable Dairy Farms												
Beg. year (owned)	45	\$	38,939	5	\$	3,244	9	\$	3,444	4	\$	656
+ Change w/o apprec.			667			1,162			762			-72
+ Appreciation			277			0			55			0
End year (owned)	45	\$	39,883	6	\$	4,406	10	\$	4,261	5	\$	584
End including leased	45											
Average number	45			21	(al	l age gro						

Total milk sold and milk sold per cow are extremely valuable measures of size and productivity, respectively, on the dairy farm. These measures of milk output are based on pounds of milk marketed during the year. Farm managers on DHI should compare milk sold per cow with their rolling herd average on the test date nearest December 31 to see how close the DHI estimate of milk produced is to actual milk sales.

MILK PRODUCTION

Intensive Grazing Dairy Farms, 1996

Item	59 New York Dairy Farms	21 More Profitable Dairy Farms	9 Less Profitable Dairy Farms
Total milk sold, lbs.	$1,349,129$	$1,446,729$	614,684
Milk sold per cow, lbs.	17,270	18,402	13,559
Average milk plant test, percent butterfat	3.66%	3.67%	3.63%

The cost of producing milk has been compiled using the whole farm method and is featured in the following table. Accrual receipts from milk sales can be compared with the accrual costs of producing milk per cow and per hundredweight of milk. Using the whole farm method, operating costs of producing milk are estimated by deducting nonmilk accrual receipts from total accrual operating expenses including expansion livestock purchased. Purchased inputs cost of producing milk are the operating costs plus depreciation. Total costs of producing milk include the operating costs of producing milk plus depreciation on machinery and buildings, the value of unpaid family labor, the value of operators' labor and management, and the interest charge for using equity capital.

ACCRUAL RECEIPTS FROM DAIRY, COSTS OF PRODUCING MILK, AND PROFITABILITY

Intensive Grazing Dairy Farms, 1996

Item	59 New York Dairy Farms				21 More Profitable Dairy Farms				9 Less Profitable Dairy Farms			
	Per Cow		Per Cwt.		Per Cow		Per Cwt.		Per Cow		Per Cwt.	
Accrual Cost of												
Producing Milk												
Operating costs	\$	1,952	\$	11.29	\$	1,784	\$	9.74	\$	1,866	\$	13.66
Purchased inputs costs	\$	2,147	\$	12.41	\$	1,973	\$	10.77	\$	2,092	\$	15.31
Total Costs	\$	2,824	\$	16.33	\$	2,657	\$	14.51	\$	2,756	\$	20.18
Accrual Receipts												
From Milk	\$	2,556	\$	14.78	\$	2,702	\$	14.75	\$	1,963	\$	14.37
Net Farm Income without Apprec.	\$	409	\$	2.36	\$	729	\$	3.98	\$	-138	\$	-0.94
Net Farm Income with Apprec.	\$	503	\$	2.91	\$	821	\$	4.48	\$	30	\$	0.29

The accrual operating expenses most commonly associated with the dairy enterprise are listed in the table below.
Evaluating these costs per unit of production enables an evaluation of the dairy enterprise.

DAIRY RELATED ACCRUAL EXPENSES

Intensive Grazing Dairy Farms, 1996

Item	59 New York Dairy Farms				21 More Profitable Dairy Farms				9 Less Profitable Dairy Farms			
	Per Cow		Per Cwt.		Per Cow		Per Cwt.		Per Cow		Per Cwt.	
Purchased dairy grain \& concentrate	\$	762	\$	4.41	\$	754	\$	4.12	\$	648	\$	4.74
Purchased dairy roughage		36		0.21		38		0.21		163		1.19
Total Purchased Dairy Feed	\$	798	\$	4.62	\$	792	\$	4.33	\$	811	\$	5.93
Purchased grain \& conc. as $\%$ of milk receipts							\%					
Purchased feed \& crop exp.	\$	948	\$	5.48	\$	936	\$	5.11	\$	881	\$	6.45
Purchased feed \& crop exp. as $\%$ of milk receipts							\%					
Breeding	\$	33	\$	0.19	\$	37	\$	0.20	\$	18	\$	0.13
Veterinary \& medicine		56		0.32		60		0.33		46		0.33
Milk marketing		101		0.58		101		0.55		90		0.66
Bedding		12		0.07		9		0.05		10		0.08
Milking supplies		64		0.37		45		0.25		62		0.45
Cattle lease		0		0.00		0		0.00		1		0.01
Custom boarding		2		0.01		0		0.00		9		0.07
Other livestock expense		53		0.31		70		0.38		33		0.24

Capital and Labor Efficiency Analysis

Capital efficiency factors measure how intensively the capital is being used in the farm business. Measures of labor efficiency are key indicators of management's success in generating products per unit of labor input.

CAPITAL EFFICIENCY
Intensive Grazing Dairy Farms, 1996

	Per	Per	Per Tillable	Per Tillable
Item	Worker	Cow	Acre	Acre Owned

59 New York Dairy Farms

Farm capital	$\$$	197,042	$\$$	6,821	$\$$	2,086	$\$$
Real estate				3,394			3,205
Machinery \& equipment		34.791			1,204		1,595
Asset turnover ratio		0.44					

21 More Profitable Dairy Farms

Farm capital	$\$$	201,080	$\$$	6,592	$\$$	2,179	$\$ 8$
Real estate				3,223			3,046
Machinery \& equipment	34,422		1,129		373	1,489	
Asset turnover ratio		0.49					

9 Less Profitable Dairy Farms

Farm capital	$\$$	133,155	$\$$	5,415	$\$$	1,681	$\$$
Real estate				2,796			2,215
Machinery \& equipment		25,680			1,052		326
Asset turnover ratio		0.44					

Capital and Labor Efficiency Analysis (continued)

LABOR FORCE INVENTORY AND ANALYSIS

Intensive Grazing Dairy Farms, 1996

Labor Force	Months	Age	Years of Educ.	Value of Labor \& Mgmt.	
59 New York Dairy Farms					
Operator number 1	13.9	46	14	\$	23,569
Operator number 2	3.1	47	13		4,953
Operator number 3	0.5	47	16		1,186
Family paid	2.0				
Family unpaid	3.6				
Hired	9.3				
Total	32.4	$/ 12=\begin{array}{r} 2.70 \mathrm{Y} \\ 1.34 \mathrm{C} \end{array}$	nt er Equiva		
21 More Profitable Dairy Farms					
Total Labor Force	31.1	/ $12=2.59 \mathrm{~W}$			
Operator's Labor		1.23 O	er Equival		
9 Less Profitable Dairy Farms					
Total Labor Force	22.0	$/ 12=1.83 \mathrm{~W}$			
Operator's Labor		1.250	er Equival		

Labor Efficiency	59 New York Dairy Farms				21 More Profitable Dairy Farms				9 Less Profitable Dairy Farms			
		Total	Per Worker			Total	Per Worker			Total	Per Worker	
Cows, average number Milk sold, pounds Tillable acres Work units		78		29		79		31		45		25
		,349,129		499,677		446,729		558,583		637,110		348,148
		255		94		239		92		145		79
		802		297		800		309		430		235
Labor Costs	59 New York Dairy Farms				21 More Profitable Dairy Farms				9 Less Profitable Dairy Farms			
	$\begin{aligned} & \text { Per } \\ & \text { Cow } \\ & \hline \end{aligned}$		Per Cwt.		$\begin{aligned} & \text { Per } \\ & \text { Cow } \end{aligned}$		Per Cwt.		$\begin{gathered} \text { Per } \\ \text { Cow } \end{gathered}$		Per Cwt.	
Value of operator(s)												
Family unpaid (\$1,500/mo.)		69		0.40		70		0.38		100		0.73
Hired		240		1.39		217		1.18		53		0.39
Total Labor	\$	646	\$	3.73	\$	612	\$	3.34	\$	707	\$	5.17
Machinery Cost	\$	432	\$	2.50	\$	424	\$	2.32	\$	412	\$	3.02
Total Labor \& Mach.	\$	1,078	\$	6.23	\$	1,036	\$	5.66	\$	1,119	\$	8.19

COMPARATIVE ANALYSIS OF THE FARM BUSINESS

Progress of the Farm Business

Comparing your business with average data from regional DFBS cooperators that participated in both of the last two years can be helpful to establishing your goals for these parameters. It is equally important for you to determine the progress your business has made over the past two or three years, to compare this progress to your goals, and to set goals for the future.

PROGRESS OF THE FARM BUSINESS
Same Intensive Grazing Dairy Farms, 1995 \& 1996

Selected Factors	Same 46 New York Dairy Farms				Same 18 More Profitable Dairy Farms				Same 8 Less Profitable Dairy Farms			
		1995		1996		1995		1996		1995		1996
Size of Business												
Average number of cows		74		76		78		83		46		46
Average number of heifers		53		57		61		66		18		22
Milk sold, lbs.		1,293,390		1,312,663		1,458,734		1,528,102		634,310		639,990
Worker equivalent		2.56		2.58		2.63		2.69		1.81		1.81
Total tillable acres		235		240		248		254		136		145
Rates of Production												
Milk sold per cow, lbs.		17,597		17,232		18,742		18,411		13,789		13,875
Hay DM per acre, tons		2.1		2.4		2.1		2.9		1.8		2.1
Corn silage per acre, tons		11.6		13.4		13.2		16.1		10.1		11.1
Labor Efficiency												
Cows per worker		29		29		30		31		25		25
Milk sold/worker, lbs.		505,230		508,784		554,652		568,068		350,448		353,586
Cost Control												
Grain \& conc. purchased												
Dairy feed \& crop exp.												
Labor \& mach. costs/cow	\$	1,007	\$	1,052	\$	1,048	\$	1,045	\$	930	\$	1,115
Operating cost of producing cwt. of milk	\$	10.00	\$	10.97	\$	9.47	\$	9.78	\$	10.54	\$	13.68
Capital Efficiency**												
Farm capital per cow	\$	6,333	\$	6,421	\$	6,590	\$	6,641	\$	4,880	\$	5,296
Mach. \& equip. per cow	\$	1,176	\$	1,192	\$	1,209	\$	1,150	\$	872	\$	950
Asset turnover ratio		0.40		0.46		0.41		0.49		0.38		0.46
Profitability												
Net farm income w/o apprec.	\$	22,592	\$	35,929	\$	35,270	\$	60,121	\$	4,754	\$	-6,031
Net farm income w/apprec.	\$	25,394	\$	42,198	\$	36,518	\$	66,922	\$	-510	\$	2,352
Labor \& mgt. income per operator/manager	\$	2,673	\$	11,081	\$	10,958	\$	28,836	\$	-4,533	\$	-14,390
Rate of return on equity												
Rate of return on all capital w/appreciation		1.0\%		4.0\%		2.9\%		7.9\%		-6.5\%		-5.7\%
Financial Summary												
Farm net worth, end year	\$	310,085	\$	336,671	\$	346,568	\$	389,151	\$	119,914	\$	166,504
Debt to asset ratio		0.35		0.33		0.34		0.32		0.46		0.36
Farm debt per cow	\$	2,178	\$	2,151	\$	2,256	\$	2,219	\$	2,161	\$	2,057

[^7]
Regional Farm Business Chart

The Farm Business Chart is a tool which can be used in analyzing your business. Compare your business by drawing a line through or near the figure in each column which represents your current level of performance. The five figures in each column represent the average of each 20 percent or quintile of farms included in the regional summary. Use this information to identify business areas where more challenging goals are needed.

FARM BUSINESS CHART FOR FARM MANAGEMENT COOPERATORS

59 Intensive Grazing Dairy Farms, 1996

Size of Business			Rate of Production			Labor Efficiency	
Worker Equivalent	No. of Cows	Pounds Milk Sold	Pounds Milk Sold Per Cow	Tons Hay Crop DM/Acre	Tons Corn Silage Per Acre	Cows Per Worker	Pounds Milk Sold Per Worker
(11)*	(11)	(11)	(10)	(9)	(9)	(11)	(11)
5.03	174	3,233,761	21,140	3.9	20	42	737,286
3.03	80	1,446,550	18,080	2.8	16	32	555,383
2.30	59	977,947	16,794	2.4	15	28	483,102
1.91	48	729,315	15,316	2.0	13	24	376,359
1.43	38	515,126	11,837	1.4	8	18	247,283
Cost Control							
Grain Bought Per Cow			Machinery Costs Per Cow	Labor \& Machinery Costs per Cow	Feed \& Crop Expenses Per Cow		Feed \& Crop Expenses Per Cwt. Milk
(10)			(11)	(11)	(10)		(10)
\$423			\$216	\$783	\$578		\$3.95
644			367	1,014	821		4.81
734			437	1,126	912		5.45
837			524	1,236	1,052		6.16
999			680	1,504	1,165		7.29

Value and Cost of Production			Profitability			
Milk Receipts Per Cow	Oper. Cost Milk Per Cwt.	Total Cost Production Per Cwt.	Net Farm Income w/Apprec.	Net Farm Inc. w/o Apprec.	 Mgt. Inc. Per Oper.	Change in Net Worth w/Apprec.
(10)	(10)	(10)	(3)	(3)	(3)	(6)
\$3,154	\$8.41	\$13.87	\$108,331	\$97,365	\$46,618	\$94,476
2,771	10.32	15.41	54,620	45,539	22,113	34,968
2,439	11.17	17.08	32,358	26,038	6,117	19,989
2,217	12.39	18.77	15,515	9,488	-8,018	6,427
1,753	14.71	23.95	-8,803	-13,593	-32,101	-11,838

[^8]
IDENTIFY AND SET GOALS

If businesses are to be successful, they must have direction. Written goals help provide businesses with an identifiable direction over both the long and short term. Goal setting is as important on a dairy farm as it is in other businesses. Written goals are a tool which farm operators can use to ensure that the business continues to move in the desired direction. Goals should be SMART:

1. Goals should be Specific.
2. Goals should be Measurable.
3. Goals should be Achievable but challenging.
4. Goals should be Rewarding.
5. Goals should be Timed with a designated date by which the goal will be achieved.

Goal setting on a dairy farm should be a process for writing down and agreeing on goals that you have already given some thought to. It is also important to remember that once you write out your goals they are not cast in concrete. If a change takes place which has a major impact on the farm business, the goals should be reworked to accommodate that change. Refer to your goals as often as necessary to keep the farm business progressing.

It is important to identify both objectives (long-range) and goals (short-range) when looking at the future of your farm business.

A suggested format for writing out your goals is as follows:
a. Begin with a mission statement which describes why the business exists based on the preferences and values of the owners.
b. Identify 4-6 objectives.
c. Identify SMART goals.

Worksheet for Setting Goals

I. Mission and Objectives

Worksheet for Setting Goals (Continued)

II. Goals

What
How
When
Who is Responsible
\qquad

Summarize Your Business Performance

The Farm Business and Financial Analysis Charts on pages 22-25 can be used to help identify strengths and weaknesses of your farm business. Identify three major strengths and three areas of your farm business that need improvement.

Strengths: \qquad —

Needs improvement: \qquad

GLOSSARY AND LOCATION OF COMMON TERMS

Accounts Payable - Open accounts or bills owed to feed and supply firms, cattle dealers, veterinarians and other providers of farm services and supplies.

Accounts Receivable - Outstanding receipts from items sold or sales proceeds not yet received, such as the payment for December milk sales received in January.

Accrual Expenses - (defined on page 11)
Accrual Receipts - (defined on page 12)
Annual Cash Flow Statement - (defined on page 19)

Appreciation - (defined on page 13)
Asset Turnover Ratio - The ratio of total farm income to total farm assets, calculated by dividing total accrual operating receipts plus appreciation by average total farm assets.

Balance Sheet - A "snapshot" of the business financial position at a given point in time, usually December 31. The balance sheet equates the value of assets to liabilities plus net worth.
bST Usage - An estimate of the percentage of herd, on average, that was injected with bovine somatotropin during the year.

Capital Efficiency - The amount of capital invested per production unit. Relatively high investments per worker with low to moderate investments per cow imply efficient use of capital.

Cash From Nonfarm Capital Used in the Business - Transfers of money from nonfarm savings or investments to the farm business where it is used to pay operating expenses, make debt payments and/or capital purchases.

Cash Flow Coverage Ratio - (defined on page 20)

Cash Paid - (defined on page 10)
Cash Receipts - (defined on page 12)
Change in Accounts Payable - (defimed on page 11)
Change in A ccounts Receivable - (defined on page 12)
Change in Inventory - (defined on page 10)
Current Portion - (defined on page 15)
Dainy (farm) - A farm business where dairy farming is the primary enterprise, operating and managing this farm is a full-time occupation for one or more people and cropland is owned.

Dairy Cash-Crop (farm) - Operating and managing this farm is the full-time occupation of one or more people, cropland is owned but crop sales exceed 10 percent of accrual milk receipts.

Debt Per Cow - Total end-of-year debt divided by end-of-year number of cows.
Debt to Asset Ratios - (defined on page 17)
Dry Matter - The amount or proportion of dry material that remains after all water is removed. Commonly used to measure dry matter percent and tons of dry matter in feed.

Equity Capital - The farm operator/manager's owned capital or farm net worth.

Expansion Livestock - Purchased dairy cattle and other livestock that cause an increase in herd size from the beginning to the end of the year.

Farm Debt Payments as Percent of Milk Sales - Amount of milk income committed to debt repayment, calculated by dividing planned debt payments by total milk receipts. A reliable measure of repayment ability, see page 20.

Farm Debt Payments Per Cow - Planned or scheduled debt payments per cow represent the repayment plan scheduled at the beginning of the year divided by the average number of cows for the year.

Financial Lease - A long-term non-cancellable contract giving the lessee use of an asset in exchange for a series of lease payments. The term of a financial lease usually covers a major portion of the economic life of the asset. The lease is a substitute for purchase. The lessor retains ownership of the asset.

Income Statement - A complete and accurate account of farm business receipts and expenses used to measure profitability over a period of time such as one year or one month.

Labor and Management Income - (defined on page 14)

Labor and Management Income Per Operator - The return to the owner/manager's labor and management per fulltime operator.

Labor Efficiency - Production capacity and output per worker.
Liquidity - Ability of business to generate cash to make debt payments or to convert assets to cash.
Net Farm Income - (defined on page 13)
Net Worth - The value of assets less liabilities equal net worth. It is the equity the owner has in owned assets.
Operating Costs of Producing Milk - (defined on page 25)
Opportunity Costs - The cost or charge made for using a resource based on its value in its most likely alternative use. The opportunity cost of a farmer's labor and management is the value he/she would receive if employed in his/her most qualified alternative position.

Other Livestock Expenses - All other dairy herd and livestock expenses not included in more specific categories. Other livestock expenses include; bST, DHIC, registration fees and transfers.

Part-Time Dairy (farm) - Dairy farming is the primary enterprise, cropland is owned but operating and managing this farm is not a full-time occupation for one or more people.

Personal Withdrawals and Family Expenditures Including Nonfarm Debt Payments - All the money removed from the farm business for personal or nonfarm use including family living expenses, health and life insurance, income taxes, nonfarm debt payments, and investments.

Profitability - The return or net income the owner/manager receives for using one or more of his or her resources in the farm business. True "economic profit" is what remains after deducting all the costs including the opportunity costs of the owner/manager's labor, management, and equity capital.

Purchased Inputs Cost of Producing Milk - (defined on page 25)

Renter - Farm business owner/operator owns no tillable land and commonly rents all other farm real estate.

Repayment Analysis - An evaluation of the business' ability to make planned debt payments.
Replacement Livestock - Dairy cattle and other livestock purchased to replace those that were culled or sold from the herd during the year.

Return on Total Capital - (defined on page 15)

Solvency - The extent or ability of assets to cover or pay liabilities. Debt/asset and leverage ratios are common measures of solvency.

Total Costs of Producing Milk - (defined on page 25)
Whole Farm Method - A procedure used to calculate costs of producing milk on dairy farms without using enterprise cost accounts. All non-milk receipts are assigned a cost equal to their sale value and deducted from total farm expenses to determine the costs of producing milk.
Page(s)
11,16
Accounts Payable
12,16
Accounts Receivable
11,13
Accrual Expenses
12,13
Accrual Receipts
22
Acreage
15,16
Advanced Government Receipts
27
Age
20
Amount Available for Debt Service
Annual Cash Flow Statement. 19
Appreciation 13,17,24
Asset Turnover Ratio 26
Balance Sheet 16
Barn Type 10
bST Usage 10
Business Type 10
Capital Efficiency 26
Cash From Nonfarm Capital Used in the Business 19
Cash Flow Coverage Ratio 20
Cash Paid 10
Cash Receipts 12,19
Change in Accounts Payable 11
Change in Accounts Receivable 12
Change in Inventory 10,11
Change in Net Worth 18
Crop Expenses 11,23
Crop/Dairy Ratios 22
Current Portion 15,16
Dairy (farm) 10
Dairy Cash-Crop (farm) 10
Debt per Cow. 17
Debt to Asset Ratios 17
Depreciation 11,17
Dry Matter 22
Education 27
Equity Capital 15
Expansion Livestock 11,19
Expenses 11
Farm Business Chart 29
Farm Debt Payments as Percent of Milk Sales. 20
Farm Debt Payments Per Cow 20

Page(s)

Financial Lease 16
Income Statement 10
Inflows 19
Labor \& Mgmt. Income 14
Labor \& Mgmt. Income Per Oper. 14
Labor Efficiency 27
Land Resources 22
Liquidity 17
Lost Capital. 17
Machinery Expenses 11,23
Milking Frequency 10
Milk Production 24
Milking System 10
Money Borrowed 19
Net Farm Income 13
Net lnvestment 17
Net Worth 16
Number of Cows 24
Operating Costs of Prod. Milk 25
Opportunity Cost. 14
Other Livestock Expenses 11
Outflows 19
Part-Time Dairy (farm) 10
Percent Equity 17
Personal Withdrawals and Family Expenditures Including Nonfarm Debt Payments 19
Principal Payments 19
Profitability 12
Purchased Inputs Cost. 25
Receipts 12
Record System 10
Repayment Analysis 20
Replacement Livestock 11
Retained Earnings 18
Return on Equity Capital 15
Return on Total Capital 15
Solvency 17
Total Costs of Producing Milk 25
Whole Farm Method 25
Worker Equivalent 27
Yields Per Acre 22

EB No	Title
97-13	Fruit Farm Business Summary, Lake Ontario Region, New York, 1996
97-12	Dairy Farm Business Summary, Northern New York Region, 1996
97-11	Dairy Farm Business Summary, Central Valleys Region, 1996
97-10	"Maximizing the Environmental Benefits per Dollar Expended": An Economic Interpretation and Review of Agricultural Environmental Benefits and Costs
97-09	Dairy Farm Business Summary, Northern Hudson Region, 1996
97-08	Dairy Farm Business Summary, New York Large Herd Farms, 300 Cows or Larger, 1996
97-07	Dairy Farm Business Summary, Southeastern New York Region, 1996
97-06	Dairy Farm Business Summary, Western and Central Plateau Region, 1996
97-05	Dairy Farm Business Summary: Western and Central Plain Region, 1996
97-04	Fruit Farm Business Summary, Lake Ontario Region, New York, 1995
97-03	Labor Productivities and Costs in 35 of the Best Fluid Milk Plants in the U.S.
97-02	Micro DFBS: A Guide to Processing Dairy Farm Business Summaries in County and Regional Extension Offices for Micro DFBS Version 4.0
97-01	Changing Patterns of Fruit and Vegetable Production in New York State, 1970-94

Author(s)

White, G.B., A.M. DeMarree and L.D. Putnam

Milligan, R.A., L.D. Putnam, P. Beyer, A. Deming, T. Teegerstrom, C. Trowbridge and G. Yarnall

LaDue, E.L., S.F. Smith, L.D.
Putnam, D. Bowne, Z. Kurdieh, C. Mentis, T. Wengert and C.Z. Radick

Poe, G.

Smith, S.F., L.D. Putnam, C.S. Wickswat, S. Buxton and D.R. Wood

Karszes, J., W.A. Knoblauch and L.D. Putnam

Knoblauch, W.A., L.D. Putnam, S.E. Hadcock, L.R. Hulle, M. Kiraly, C.A. McKeon

Knoblauch, W.A., L.D. Putnam, C.A. Crispell, J.S. Petzen, J.W. Grace, A.N. Dufresne and G. Albrecht

Knoblauch, W.A., L.D. Putnam, J. Karszes, M. Stratton, C. Mentis and George Allhusen

White, G.B., A. DeMarree and L.D. Putnam

Erba, E.M., R.D. Aplin and M.W. Stephenson

Putnam, L.D., W.A. Knoblauch and S.F. Smith

Park, K., E.W. McLaughlin and C. Kreider

[^0]: *Any Corn Silage is either corn silage alone or a mix with baleage, hay, or hay crop silage.
 **Number of responses to survey question.

[^1]: *Farms with similar herd size, production per cow, and location as the 59 rotational grazing farms.
 $* *$ Farms with net farm income/cow without appreciation greater than the preliminary state average of $\$ 390$, had been grazing at least two years, and forage from pasture at least 40 percent.
 ***Farms with similar herd size and production per cow as the 21 profitable grazing farms and net farm income/cow without appreciation greater than $\$ 390$.

[^2]: *Change in advanced government receipts.
 **Gifts or inheritances of cattle or crops included in inventory.

[^3]: * Operators are the individuals who are integrally involved in the operation and management of the farm business. They are not limited to those who are the owner of a sole proprietorship or are formally a member of the partnership or corporation.

[^4]: *Assumes that average nonfarm asscts and liabilities for the nonreporting farms were the same as for those renorting

[^5]: * $\$ 4,384$ land and $\$ 7,392$ building and/or depreciable improvements.

[^6]: *Personal withdrawals and family expenditures less nonfarm income and nonfarm money borrowed. If family withdrawals are excluded, or inaccurately included, the cash flow coverage ratio will be incorrect.

[^7]: *Farms participating both years.
 **Average for the year.

[^8]: *Page number of the participant's DFBS where the factor is located.

