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Bayesian Estimation of Non-Stationary Markov Models Combining 

Micro and Macro Data 

Hugo Storm, Thomas Heckelei, Ron C. Mittelhammer
 

Abstract: We develop a Bayesian framework for estimating non-stationary Markov 

models in situations where macro population data is available only on the 

proportion of individuals residing in each state, but micro-level sample data is 

available on observed transitions between states. Posterior distributions on non-

stationary transition probabilities are derived from a micro-based prior and a 

macro-based likelihood using potentially asynchronous data observations, 

providing a new method for inferring transition probabilities that merges previously 

disparate approaches. Monte Carlo simulations demonstrate how observed micro 

transitions can improve the precision of posterior information. We provide an 

empirical application in the context of farm structural change.  

Keywords: data combination; Markov process; micro and macro data; transition 

probabilities  

JEL classification codes: C11, C81 

1. Introduction 

A new Bayesian framework for inferring the transition probabilities of non-stationary 

Markov models is developed in this paper. Non-stationary Markov models facilitate analysis 

of factors influencing the probability that an individual will transition between predefined 

states. Data used for estimating Markov models can either be panel data, where the specific 

movement of an individual between states is observed over time, or aggregated data, 

providing only the number of individuals residing in each state over time. Following Markov 

terminology, we refer to such panel data and aggregated data as micro and macro data, 

respectively. The overall objective of our approach is to combine micro and macro 

information into a unified and consistent methodology for estimating transition probabilities.  

In recent years Markov models have been popular in the context of farm structural 

change analysis (Karantininis 2002, Huettel and Jongeneel 2011, Zimmermann and Heckelei 

2012a, Zimmermann and Heckelei 2012b, Arfa et al. 2014). For estimation, they rely on the 

generalized cross-entropy (GCE) approach, proposed by Golan and Vogel (2000) and first 

applied in a Markov context by Karantininis (2002). The GCE approach allows including 

prior information in the estimation. In the Markov context, prior information is typically 

specified for the transition probabilities and can be based on previous studies, theory or expert 

knowledge. Considering prior information allows estimating ill-defined systems which is the 

major strength of the GCE approach. On the other hand the use of prior information is often 
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criticized for introducing subjective prior beliefs. This criticism is addressed by Zimmermann 

and Heckelei (2012a) using macro data from the farm structural survey (FSS; Council 

Regulation (EC) No 1166/2008) in combination with micro data from the Farm accountancy 

network (FADN; Council Regulation (EC) No 1217/2009). The micro data is used to specify 

prior information on the transition probabilities in the GCE approach avoiding an otherwise 

rather ad hoc prior specification. Despite these contribution general shortcomings of the GCE 

approach persists. Particularly, the rather non-transparent way prior information is specified 

and used in estimation makes it difficult for the researcher and the research community to 

assess its influence. Further, it is not possible to specify an ignorance (or non-informative) 

prior for cases where no prior information is available (Heckelei et al., 2008). An additional 

shortcoming of the approach proposed by Zimmermann and Heckelei (2012a) is that it 

ignores the precision of prior information in the micro data. Thus micro and macro data is not 

weighted in estimation and the final results are independent of the size of the micro sample. 

Further, the approach requires the specification of reference distributions for residuals, 

including the specification of support points, which determine the signal-to-noise ratios in the 

Markov transition equations a priori. Lastly, since FSS data is only available every two to 

three years, the approach requires interpolating FSS macro data on a yearly basis. 

 Apart from the analysis of farm structural change the idea of combining micro and 

macro data was considered previously in the context of a medical application by Hawkins and 

Han (2000). They analyzed macro data obtained in repeated independent cross sectional 

surveys within a city district together with limited micro data obtained from respondents who 

were ‘coincidently’ interviewed in two consecutive cross sectional surveys. The behaviour 

under study was the benefits of an intervention program attempting to modify drug use-

related behaviour, and their Markov model was a two-state process relating to awareness, or 

not, of the health consequences of not bleaching shared drug needles. They defined a linear 

model, within the Classical statistical framework, that explained the binary marginal 

probabilities of being in one of the two awareness states in a certain time period (based on 

‘standard observed proportion estimates’ from aggregate data) as well as transition 

probabilities relating to transitions between the two states (from the micro data). 

Generalizations of Hawkins and Han’s binary state model to multinomial transitions are 

conceptually possible, but the parameter dimensionality, as well as the complexity of the 

covariance structure and constraint set imposed by the sampling design, quickly renders their 

general linear model approach intractable as the number of states increase beyond two.  

In contrast to the previous two Classical approaches, our Bayesian framework provides a 

flexible and tractable method of combining micro and macro data generating processes that is 

logically consistent and coherent within the tenets of the probability calculus while 

accommodating a relatively large number of Markov states. The rather complicated linkages 

between transition probabilities and observed Markov state outcomes, and the complex 

parametric constraints and covariance matrix structure of the combination of micro and macro 

data generating processes, are specified consistently as a matter of course in specifying the 

posterior probability distribution for the parameters of the transition equation. Moreover, the 

Bayesian framework allows prior information to be incorporated into the estimation of non-

stationary Markov models within an established coherent probabilistic framework. In 

addition, the Bayesian methodology provides a natural and relatively straightforward way of 
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combining data observations at either the macro or micro level that are asynchronous
1
, which 

is in contrast to the methods offered heretofore. Also we devise different specifications for 

both ordered and unordered Markov states, which is yet another flexible feature of the 

method. Overall, the Bayesian approach that we present offers a tractable full posterior 

information approach for combining micro and macro data-based information on non-

stationary transition probabilities that allows the estimation of functional relationships linking 

transition probabilities with their determinants.
2
  

Even though our focus is on combining micro and macro data it should be pointed out 

that the approach is also relevant for cases when no micro data is available. In these cases the 

approach allows specifying an ignorance prior such that a consistent estimation of non-

stationary Markov model with only macro data is possible. This is an important feature 

compared to the GCE approach in which each specification (even a uniform distribution) 

implies some form of prior information (Heckelei et al., 2008).  

Despite the analysis of farm structural change which is the primary focus here the 

proposed approach is equally relevant for other applications for which both macro and micro 

data is available. One example is an analysis of voter transitions in political science. Here, 

macro data on the vote shares of candidates is available from official statistics, whereas micro 

data can be obtained from voter (transition) surveys (McCarthy and Tyan 1977, Upton 1978). 

Additional examples of similar data situations can be found in the context of Ecological 

inference problems, which are closely related to Markov processes (Wakefield 2004, 

Lancaster et al. 2006). In general the proposed approach is relevant for all situations in which 

the micro sample is relatively small compared to the macro data. If the micro sample is 

relatively large the macro sample does not contribute additional information such that an 

approach relaying exclusively on the micro data is sufficient.  

 The paper is organized as follows: First, the Bayesian framework for non-stationary 

Markov models is developed in section 2. Two different specifications of the transition 

probabilities, that of ordered and unordered Markov states, are discussed, appropriate 

likelihood functions and prior densities are defined, and issues relating to computational 

implementation are identified. Then the design and results of a Monte Carlo simulation 

experiment are presented in section 3 and used to assess how the inclusion of prior 

information affects the posterior as well as the numerical stability of the sampling algorithm, 

and the degree to which estimator performance is improved under different micro sample 

sizes for both specifications. In section 4 the methodological framework is applied 

empirically in the context of an analysis of farm structural change in Germany. The 

application demonstrates how the framework can facilitate estimation in a situation where 

estimation with either micro or macro data alone would suffer from several limitations. 

Section 5 provides conclusions and a discussion of areas for further research. 

 

                                                 
1 By “synchronous” we mean both that observations over time occur in sequence without gaps (follow a tact) and that the 

micro and macro data are observed for the same time units. 
2 In their pedagogical contribution to the use of MCMC computational methodology Pelzer and Eisinga (2002) include an 

example of a Bayesian approach specifically designed for a two state Markov model which depends crucially on the 

characteristics of a Bernoulli process. The specification of prior information in their example is effectively ad-hoc, whereas 

our specification is fully consistent with the structure of the data generating process. Moreover, their example does not 

generalize to either stationary or non-stationary multinomial Markov processes.  
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2. Bayesian Approach for Non-Stationary Markov Models 

Markov processes provide a conceptual model for the movement of individuals between a 

finite number of predefined states, 1,...,i k , within the context of a stochastic process. The 

k  states are mutually exclusive and exhaustive. A Markov process is characterized by a 

 k k  transition probability (TP) matrix
3
 tP . The elements ijtP

 
of tP represent the probability 

that an individual moves from state i  in time 1t   to j  in time t . The  1k  -vector tn  

denotes the number of individuals in each state i  at time t and evolves over time according to 

a (first order) Markov process  

 1t t t
n P n . (1) 

In a non-stationary Markov process, the TPs change over time periods
4
 0,1,...,t T . 

Data used for estimating a non-stationary Markov process can either be macro or micro level. 

In the case of macro data, only the aggregate numbers of individuals in the states, ,tn  is 

observed at each time period. For micro data, the movement of each individual between states 

is also observed over time. Thus, the  k k -matrix tN  with elements ijtn  representing the 

number of individuals that transition from state i  at 1t   to j  in t , is directly observed.  

In this section we assume data observations are synchronous, as defined in footnote 1, 

both for ease of exposition and to be consistent with precedence in the literature. However, 

the proposed approach is considerably more flexible in that asynchronous data can be 

analyzed in a straightforward way, and in the empirical application in section 4, macro data 

available only every two to three years will be combined with yearly micro data. Similarly, 

the reverse case, where macro data has a higher temporal resolution than the micro data, can 

be considered as well.  

The structural specification of the TP matrix tP  depends on the underlying behavioural 

model. In the following subsection we review TP matrix specifications corresponding to 

ordered as well as unordered Markov states to define notation and establish the foundation for 

the definition of the posterior. Then the data likelihood function, representing the macro data, 

and a prior density, representing the micro data are defined and combined into the posterior 

distribution for the TPs.
5
 The last subsection presents computational methodology relating to 

the use of the posterior distribution for inference purposes. 

Specification of the Transition Probability Matrix 

For appropriate specification of the TPs, the nature of the relationship between Markov 

states need to be considered, and we discuss two different behavioural models that 

differentiate between ordered and unordered Markov states. We argue that for ordered 

                                                 
3Bold letters are used for vectors or matrices. 
4Depending on the problem context, one could also consider only two time periods observed over various regions, or a 

combination of multiple time and regional observations.  
5 In his dissertation, Rosenqvist (1986) introduces the conceptual rudiments of combining micro and macro data in a prior-

likelihood framework. However, the analysis was restricted to stationary processes with synchronous observations and the 

micro and macro data observations were assumed to be disjoint. Our Bayesian framework is not constraint by any of these 

assumptions and moreover, we provide a tractable empirical method of implementation. 
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Markov states the ordered logit model is superior to the more common multinomial logit 

model with respect to both model assumptions and from a computational point of view.  

In cases where the states of the Markov process are unordered, the multinomial logit 

model is a suitable specification for the TPs
6
. The specification based on the multinomial logit 

model assumes that the transition of individuals between different states can be represented 

by a random utility model. The utility that would accrue to individual l  upon moving from 

state i  in 1t   to j  in t  is denoted as ,ijtl ijt ijtlU V   where the deterministic component of 

utility is specified as 1ijt t ijV 
 z b , with 1tz  being a vector of lagged exogenous variables. The 

deterministic part varies only over time and not over individuals because aggregated (macro) 

data is considered. Consequently, the deterministic component of utility reflects exogenous 

variables that affect the utility of all individuals alike. The random error ijtl
 
varies over time 

and individuals. It is assumed that an individual chooses a transition that maximizes her utility 

ijtlU . The assumption that ijtl
 
are iid random draws from a Gumbel distribution result in a 

multinomial logit specification for each row of tP .  

If the Markov states are ordered, an ordered choice model is an appropriate specification 

for the underlying behavioral model. In this case it is assumed that there exists an unobserved 

continuous latent variable *

itlY  for each individual l  that determines the outcome of the 

observed variable itlY  according to 

 *

1if , 1,...,itl j itl jY j c Y c i j k       (2) 

where the 
jc ’s are the thresholds for each Markov state, with o kc and c   . The 

index i  indicates that an individual was in state i  at 1t  . The unobserved latent variable *

itlY  

consists of a deterministic part 1t i
z β  plus a random part *

itl . The vector of unknown 

parameters iβ  are allowed to differ between the k  different states in 1t  . As in the 

preceding multinomial logit model, the deterministic part varies over time but not over 

individuals. Assuming that *

it  are iid random draws from a logistic distribution
7
 results in an 

ordered logit model for each row of tP . 

One important difference between the ordered logit and the multinomial logit model is 

that only one error term, instead of one error term for each alternative, is considered for each 

individual. This implies that the assumption of ‘Independence of Irrelevant Alternatives’ (IIA) 

does not apply to the ordered logit model. This is more appropriate whenever the alternatives 

are ordered since in this case it can be expected that the error associated with one state is more 

similar to the error of an alternative close to it than to an alternative further away (Train 

2009). Also from a computational point of view, the ordered logit specification is often 

                                                 
6 A multinomial probit model could be an appropriate alternative for the error structure specification, but is left for future 

work. 
7 Assuming that the 

*

it  are random draws from a normal distribution would result in a probit (see footnote 6). 
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preferable since only  2zk n k k   parameters
8
 need to be estimated, as compared to 

( 1) zk k n  parameters for the multinomial logit model.  

 A further advantage of the ordered choice model is that the interpretation of the latent 

variable is often straightforward. For example, in the case of farm structural change noted in 

the introduction, where Markov states refer to firm size classes, the latent variable can be 

interpreted directly as firm size (see section 4). In the medical context where classes refer to 

different stages of illness, the latent variable can be interpreted as the degree of illness. 

However, the decision between an ordered and unordered choice model is not always 

straightforward and can depend on the problem context as well as decision makers’ 

behavioural characteristics. In the voter transition example, one could regard the candidates as 

unordered choices, but alternatively one could also argue that they are ordered according to a 

one-dimensional political spectrum (‘right’ to ‘left’), in which case both models have 

justification and the choice between the two must be guided by additional theoretical and/or 

substantive behavioural arguments.  

Posterior  

The posterior is defined as the joint density of a micro data prior and a macro data 

likelihood. Since micro and macro data are interdependent, the likelihood is the conditional 

density of the macro data given the micro data. The prior density represents information 

derived from a sample of micro observations on state transitions. It should be pointed out that 

the distinction between prior and likelihood is somehow artificial. Both are likelihood 

specification representing two different data sets. Also they are sampled at the same time 

which usually distinguishes prior and likelihood information. The labeling is thus more a 

convention and is motivated from the works in the context of the entropy estimation by 

Zimmermann and Heckelei (2012a), mentioned above, using micro data to specify the support 

and prior densities in an entropy estimation based on macro data.  

The foundation for the likelihood function is provided by the first-order non-stationary 

Markov process proposed by MacRae (1977). For the specification of a macro data based 

likelihood function MacRae (1977) points out that the nature of the likelihood specification 

depends critically on whether the state proportions, tx , are observed over time for the entire 

population of size N , which she refers to as perfect observations, or whether the state 

proportions, ty , are only a random sample of size tM N  drawn and observed at each time 

period, referred to as imperfect observations. In the case of perfect observations the 

distribution of tx  is fully characterized by 1tx . However, for imperfect observations the 

distribution of ty  also depends on earlier observations, 2 0,...,ty y , which provide additional 

information on .ty  For the latter case MacRae (1977) proposed a limited information 

likelihood approach which is appropriate whenever macro data is available for only a sample 

of the population. In the following, we focus on the case of perfect observations, i.e., a census 

type of macro data set, which characterizes the type of data available in our empirical 

application provided in section 4.  

                                                 
8 If a constant is included and 1c  is normalized to zero  2k k  cut points need to be estimated in addition to one 

parameter for each explanatory variable and state (
z

k n  ) . 
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 MacRae (1977) shows that in the case of perfect observations, the state proportions are 

distributed as a weighted sum of independent multinomial random variables with probabilities 

equal to the corresponding rows in tP  and weights equal to the state proportions in 1t  . The 

resulting likelihood function is given by  

 

   0 1 , 1

1 1 1

, ,..., ! / !ijt

t t

T k k

T i t ijt ijt

t i j

L n P




  

 
  

 
  
Η

β n n n . (3) 

The 'itn s  are the elements of the data vector tn . The matrix tΗ
 
is of dimension  k k

and has entries 
ijt

 
denoting the (unobserved) number of individuals transitioning from state i  

at time 1t   to state j  at time t . The summation involving tΗ  in likelihood expression (3) is 

over the set t  of all matrices tΗ  having rows that sum to corresponding elements in 1tn  

and columns that sum to the corresponding entries in tn , so that  

  1,t t k t t t k t
   Η 1 Η n Η 1 n ,

 

 (4) 

with k1  being a  1k   vector of ones. The set of matrices represented by t  is the 

collection of all conceptually possible outcomes of between-states transition numbers when 

moving from observed state distribution 1tn  in time 1t   to the observed state distribution tn
 

in time t . With micro data available we observe that some transitions have occurred at the 

micro level. Let *

tN  denote the micro data i.e. a matrix of observed transitions with *

ijtn  being 

the number of state i-type units in time 1t   that we observed to be state j-type unites in time 

t . The likelihood of the event of moving from 1tn  to tn  changes given that certain ways of 

transitioning to achieve tn  are ruled out by the *

tN  observations. Particularly, the set of all 

possible combination is now defined as  

  * *

1: ,  and t t s t t t s t t t
    H 1 H n H 1 n H N  (5) 

such that the likelihood becomes  

    
*

* *

0 1 1 , 1

1 1 1

, ,..., ; ,..., ! / !ijt

t t

T k k

T T i t ijt ijt

t i j

L n P




  

 
  

 
  
Η

β n n n N N  (6) 

 The number of elements in set t  or *

t  increases exponentially with the number of 

states, making the implementation of expression (3) or (6) for larger samples challenging (or 

intractable) from a computational point of view. For example, in the case of only 3 states and 

200 observations, there are over 2.5 million combinations of  3 3 -matrices possible if 

approximately the same number of individuals reside in each of the three states. For the 

unconditional likelihood (3) this dimensionality problem can be approached using a large 

sample approximation that avoids the computation of the set t  (see Hawkes 1969 and 
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Brown and Payne 1986). The large sample approximation used the property that the 

multinomial distribution can be approximated with a multivariate normal distribution in large 

samples. In our case each i -th row itH  of tH  is multinomial with size , 1i tn   over 1,...,k  

categories. If , 1i tn   is large itH  is approximately multivariate normal with mean *
, 1i it i tn μ P , 

where *
itP  denotes the i  row of tP  without the element of the last column, and covariance 

matrix   * * *
, 1i i t it it itn diag   V P P P , where  diag   denotes a square matrix with the argument 

vector as the main diagonal and zero off-diagonal elements. Since transitions between 

observations are independent, each row of tH  is independent and the probability of tH  is 

approximately equal to a multivariate normal random  1 1k k    vector  * *
1 ....t t ktM  H H  with 

mean 1[ ... ]k  μ μ μ  and variance  

 

1

2

0 0

0 0

0 0 k

 
 
 
 
 
 

V

V
V

V

. (7) 

Defining  * *
1 ... kB  I I , with *

iI  being an identity matrix of size 1k  , we have t tBM n . 

Using that each linear transformation of a multivariate normal random variable is also 

multivariate normal it follows that tn  is multivariate normal with mean * *
1t tBμ P n  and 

variance  

  * * * * *
1 1t t t t tdiag      BVB P n P n P Γ , (7) 

where *
tP  and *

tn  is equal to tP  and tn  without the last column and row, respectively. 

Therefore, the probability of tn  given 1tn  can be approximated by a normal density such that 

   *

1 1; ,t t t t tP  n n n P n Γ . From this it follows that (3) can be approximated by a large 

sample log-likelihood,
 laL , given by 

 

 

     

0 1

1* * * *

1 1

1

, ,...,

0.5 log .

a T

T

t t t t t t t t

t

L



 





 
      

 


β n n n

Γ n P n Γ n P n
 

(8) 

When considering the micro observations, itH  is still multinomial with size , 1i tn   over 

1,...,k  categories except that the constraint *
it itH N  need to be considered. As argued above 

the approach is intended for situation in which the micro data is only available for a fraction 

of the observation in the macro data. In these situations the limits imposed by *
it itH N  are 

hardly binding such that the approximation of tH  by a multivariate normal remains valid. The 

validity of this large sample approximation is assessed in the Monte Carlo simulations 

considering different sizes of the micro sample. 
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The specification of the prior density  p β , considers the underlying sampling 

distribution of the micro observations. Recall that itn  is the number of individuals that were in 

state i  at time t , let i

tX  be the vector of shares across states in t for individuals who were in 

state i  in 1t  , and let itP  be the i -th row of tP . The propensity of each individual in the 

micro sample to transit between states is in accordance with the appropriate elements of tP . 

Analogous to the case of macro data, the distribution across states in t of individuals who 

were in state i  in 1t   is multinomial around mean itP  with size itn . The observed number of 

individuals in each of the k states in t, , 1,...,itn i k , is then the corresponding weighted sum 

of vectors , 1,..., .i

t i kX  Therefore, the prior density can be represented as a likelihood 

similar to (3), except that now information about the individual transitions ijtn is available, 

making the summation over the set t  unnecessary because the actual transitions are 

observed. Hence the likelihood simplifies to  

 

     1 , 1

1 1 1

,..., ! / !ijt

T k k
n

T i t ijt ijt

t i j

p L n n

  

 
   

 
 β β N N P , (9) 

where the  k k -matrix tN  has elements ijtn  representing the number of individuals 

that transition from state i  at 1t   to j  in t . We emphasize that for the case of aggregated 

data discussed above, the distribution of tn  differs between imperfect and perfect 

observations, while for micro observations, this distinction does not apply. In the latter case, 

the distribution of tx  is fully characterized by 1tx  regardless of whether a sample or the entire 

population is observed. The fundamental difference is that in the case of micro observations, 

individuals in the sample in time period t  are all the same as in 1t   which is usually not the 

case for macro data. Consequently, information earlier than 1tx
 

contains no additional 

information about tx . 

Computational Implementation  

In order to conduct inference in the model depicted above, integrating and/or taking 

expectations based on the posterior density  h β d    * *

0 1 1, ,..., ; ,...,T TL pβ n n n N N β or on 

its approximation      0 1, ,...,a a Th L pβ d β n n n β
 
is required. An analytical approach to 

such computations is generally intractable. Instead a Monte Carlo integration approach is 

implemented based on sampling from the posterior density via a Metropolis Hastings (MH) 

algorithm.
9
 For our purposes, we evaluate the optimal Bayesian estimator under quadratic 

                                                 
9 An interesting alterative to the simple random walk MH sample would be the development of a data augmentation sample 

algorithm, in the spirit of Albert and Chib (1993), for a non-stationary Markov model using aggregated data. Our first 

implementation of such an algorithm, building on Musalem et al. (2009) who proposed a concept to consider aggregated data 

in an simple ordered logit model, suffered, however, form slow convergence problems. Convergence problems are known for 

the Albert and Chib (1993) algorithm and could be overcome using alternatives such as those proposed by Frühwirth-

Schnatter and Frühwirth (2007) or Scott (2011). These algorithms, however, focus on simple multinomial logit models and 

are not directly transferable to the Markov case using aggregated data.  
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loss, the posterior mean, by calculating the mean of an iid sample from  h β d for sufficiently 

large sample sizes. 

 Specifically, a random walk MH algorithm with a multivariate normal generating 

density is employed.
10

 The variance of the proposal density is adjusted such that an 

acceptance rate in the interval  .2, .3 is obtained. In cases where the number of parameters to 

be estimated is large, a ‘Block-at-a-Time’ algorithm proposed by Chib and Greenberg (1995) 

is employed in which the parameters to be estimated are divided into blocks.  

3. Monte Carlo Simulation of Prior Information Effects 

In this section we analyze the influence of prior information, in the form of a sample of 

micro observations, on the posterior distribution and associated estimators’ performance as 

well as on the behaviour of the sampling algorithm. Based on an underlying population of 

10,000indn 
 
individuals, four different scenarios are considered regarding the availability of 

prior information, including a case of no micro observations, and micro samples of n = 100, 

500, and 1000. The scenarios are further distinguished by the number of Markov states (

3,4,5k  ). Data is generated for 100T   time periods and 6zn   explanatory variables 

including a constant. All simulations are undertaken for a Markov model based on either the 

multinomial logit specification or the ordered logit specification discussed above, and are 

performed using Aptech’s GAUSS
TM

 11. 

Data Generating Process 

The data generating process distinguishes between the two different behavioural models, 

based on the multinomial logit and ordered logit specification discussed in section 2. In both 

cases the parameterization is chosen so that the deterministic part constitutes roughly one 

third of the model’s total variation. Furthermore, in both cases indn  individuals are considered 

that transition over time between the k  states in accordance with the underlying behavioural 

model. The initial state of each individual in 1t   is randomly chosen with probability equal 

to 1,...,iu i k  , where the probability is the same for all individuals and given by 

1

k

i i h

h

u u u


   with  ~ 0,1iu iid , where  ,a b denotes the continuous uniform 

distribution on the interval a to b. 

 In the multinomial logit model each individual l  chooses the state of the next period 

based on the utility, 
ijtlU , associated with a specific transition from state i  in 1t   to j  in t . 

The utility ijtl ijt ijtlU V  
 

consists of a deterministic part 1ijt t ijV 
 z b  and an individual 

random part ijtl  and is generated by drawing the elements of the (lagged) exogenous 

variables 1tz  from  1,4  and the elements of the  1zn   ‘true’ parameter vectors 
ijb  

from  1,1 . Since only differences in utilities are relevant, the parameters of the last 

                                                 
10 To mitigate computer overflow problems the Metropolis acceptance ration is calculated as 

        , min exp ln ln ,1
rcan c nr ah h   

  
β β β d β d . 
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alternative are set to zero, 1,...,ik i k  b 0 , in order to identify the model. To obtain a logit 

model, the ijtl  are drawn from a Gumbel (type I extreme value) distribution, specified by 

   3
;0,3 exp ijtl

g ijtlF e





  . In each time period an individual chooses the transition that 

maximizes utility, moving from state i  in 1t   to state j  in t  if 

 1 2, ,..., .ijtl i tl i tl iktlU Max U U U  

 For the ordered logit model, the transition between states is based on a latent index 

value * *

1itl t i itlY 
 z β  consisting of a deterministic part 1t i

z β  and a random part *

itl . The 

index value is generated by drawing the elements of the (lagged) exogenous variables 1tz  

from  1,4  and the elements of the  1zn   true parameter vectors iβ  from  1,1 . 

The random errors *

itl  are iid random draws from a logistic distribution, specified by 

    
1

* *;0,2.3 1 exp 2.3l itl itlF  


   . The latent index value determines the outcome of itlY  for 

each individual in each time period according to (2).  

 Using the above sampling design a micro dataset for indn  individuals and T  time 

periods is obtained for both the multinomial logit and the ordered logit specification, and 

represents the full population of individuals under study. For the specification of the prior 

density, random samples of size 100, 500, and 1000 are drawn without replacement from 

these micro datasets. The population is transformed into macro datasets by summing up the 

number of individuals in each state in each time period.  

 In order to avoid dependency of the results on a specific set of parameters, 10truen   

true models are generated using the data generating process. For each of the truen  true models 

the process is repeated 20repn   times with the same parameters, but with new draws of the 

random errors 
ijtl  or *

itl  in each repetition. 

Performance Measures  

The influence of prior information is assessed by a comparison of measures 

characterizing features of the posterior density, including performance of the posterior mean 

of the density, representing the minimum quadratic risk estimate of  . The effect of prior 

information on the numerical stability of the sampling algorithm is also analyzed. For the 

Monte Carlo simulation a fixed burn-in period and a fixed sample size is employed for the 

MH sampler. Even though appropriate burn-in periods and sample sizes are found using 

graphical measures in trial runs for each scenario and resulted in substantially large burn-in 

periods, it still cannot be guaranteed that the MH sample will converge correctly for every 

simulation run. Therefore, Box-Whisker-Plots are employed to detect outliers among the sum 

of squared errors of the true repn n  simulations as an indication that the MH sample had not 

converged appropriately. Measures characterizing the posterior density and performance 

measures relating to the estimator are then calculated based on only those runs that were not 

designated as outliers.  

 The effect of prior information on the spread of the posterior is assessed based on 

posterior variances, and is calculated on the basis of the posterior sample outcomes. The total 
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variance of the posterior density is calculated by summing over the posterior variances of all 

zn  parameters for each run, and then the mean over all true repn n  simulation runs (outliers 

excluded) is calculated to obtain one scalar value measure of the total variance.  

 The analysis of the influence of prior information on the Bayes estimator (posterior 

mean) is based on the mean square error (MSE) criterion, calculated as the mean sum of 

squared errors between estimated and true parameter values, where the mean is calculated 

over all of the true repn n  simulation runs not detected as outliers. The MSE is further 

decomposed into variance and bias components, where the squared bias is again summed over 

all parameters. The distribution of the sum of squared errors together with the number of 

outliers detected for each scenario provides an assessment of the numerical stability of the 

MH sampler, and the effects of prior information on that numerical stability.  

Results of the Monte Carlo Simulation 

The results of the Monte Carlo Simulations for the multinomial logit model are presented 

in Fig. 1. Results show that incorporating prior information in the form of a micro sample 

decreases the total variance of the posterior density, and more so the larger the micro sample. 

The variance reduction effect of prior information becomes even more pronounced the greater 

the number of Markov states being considered. Similarly, prior information decreases the 

MSE of the estimator, and a greater number of Markov states accentuate this effect. 

Decomposing the MSE into bias and variance suggests that the MSE is primarily determined 

by the variance of the estimator. In all scenarios the share of the squared bias is only 4 to 9 % 

of total MSE.  

 The distribution of the sum of squared errors, as depicted in the Box-Whisker-Plots in 

Fig. 1, provides information about the numerical performance of the MH sampling algorithm. 

Results show that more simulation runs are detected as outliers in the no prior information 

scenario (i.e. micro sample with 0 obs.), especially when considering 4k   or 5k   Markov 

states. This observation indicates problems relating to the numerical stability of the MH 

sampler, in the sense that the algorithm does not converge correctly for some simulation runs. 

When considering a micro sample as prior information, substantially fewer simulation runs 

are detected as outliers, indicating that the use of prior information improves the numerical 

stability of MH sampler. 

 Comparable results are obtained for the ordered logit model as depicted in Fig. 2. 

Similar to the multinomial logit simulation, results indicate that prior information reduces the 

variance of the posterior density, and more so the larger the micro sample considered. The 

same can be observed for the MSE, which decreases with increasing micro sample size. If 

prior information is considered the MSE is mainly determined by the variance of the estimator 

such that the share of the squared bias is only 4 to 6 % of total MSE in all scenarios. For the 

no prior information scenarios, however, the bias share is substantially larger, being between 

23 and 28 %.  
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 Number of Markov states: k=3 
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Sample: 250,000;   Burn-In: 500,000;   Blocks: 2;    
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a Calculated without simulation runs detected as outliers. 

b 
Note that due to the illustration the number of outliers cannot be derived from the 

figures directly. Source: estimated 

Figure 1. Results for the multinomial logit model of a Monte Carlo simulation to analyze the 

influence of prior information, in the form of a micro sample, on the posterior and the posterior mean 

estimator. 
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Number of Markov states: k=3 
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a Calculated without simulation runs detected as outliers. 

b 
Note that due to the illustration the number of outliers cannot be derived from the 

figures directly. Source: estimated. 

Figure. 2. Results for the ordered logit model of a Monte Carlo simulation to analyze the influence of 

prior information, in the form of a micro sample, on the posterior and the posterior mean estimator.  
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The number of outliers detected by the Box-Whisker-Plots is used again to assess the 

numerical stability of the MH sampler. The results are consistent with the findings in the 

multinomial logit case, where performance of the MH sampler improves the larger the micro 

sample size considered as prior information. It is worth noting that the numerical problems in 

cases without prior information persist in the ordered logit model compared to the 

multinomial logit model even though substantially fewer coefficients need to be estimated 

(e.g. 25 compared to 120 for 5k  ).  

Overall the results suggest that without prior information, alternative individualized 

sampling strategies or extensions of the simple MH sampler (e.g. Parallel Tempering (Liu 

2008) or Multiple Try Method (Liu et al. 2000)) should be considered for successful sampling 

from the posterior, which could not be automated for the Monte Carlo simulations. This 

suggests that through prior information, the computational demands with respect to the 

sampling algorithm are reduced and that more precise estimation can be achieved with the 

simple MH sampler in both the multinomial and the ordered logit model with a moderately 

sized micro sample. Given the fact that micro data leads to an improvement of the 

performance of the estimator the Monte Carlo results also indicate that for cases where the 

size of the micro data is relatively small compared to the macro data the large sample 

approximation (8) can also be used for the conditional macro data based likelihood (6). 

4. Empirical Application: Structural Change in German Farming  

The Bayesian estimation framework developed in section 2 is used to combine micro and 

macro data from two different data sources in an empirical analysis of structural change in 

German farming. The application demonstrates how the approach facilitates estimation of 

non-stationary TPs in a situation in which estimation with either macro or micro data alone 

would be substantially debilitated. Further, it illustrates how asynchronous data, in this case 

consisting of yearly micro data and macro data available only every two to three years, can be 

consistently combined in estimation. The application provides an alternative inferential 

approach to Zimmermann and Heckelei (2012a) mentioned in section 1, who were the first to 

consider using the same data sources to analyze farm structural change, using a generalized 

cross entropy approach to estimation.  

 Both the multinomial logit and the ordered logit model of the TPs are applied to 

provide two different perspectives on the evolution of structural change. The multinomial 

logit model is applied in an analysis of changes in farm specialization (for example, the 

transition from a crop producing to a milk producing farm). In this case the states constitute 

five different farm types as well as an entry/exit class (see Table 1). The entry/exit class is 

used to represent farms that enter or quit farming. The six states are mutually exclusive, and 

with the entry/exit class included, are also exhaustive. Since no clear order can be assumed 

for the farm types, the multinomial logit model is the appropriate specification. The second 

analysis perspective concerns the transition of farms between an entry/exit class and three 

classes representing different sizes of operation. Here an ordering (entry/exit, small, medium, 

large) of the states can be assumed such that the ordered logit model can be applied. The four 

states are again mutually exclusive and exhaustive.  



  

 

 

16 

 

Table 1. Definition of farm types and size classes* 

 State Description 

Farm types 

considered in the 

multinomial logit 

model 

E/E Entry/Exit class 

COP crops Specialist Cereals, Oilseed And Protein Crops; Specialist Granivores 

Other crops Specialist other field crops; Mixed crops 

Milk Specialist milk 

Other livestock Specialist sheep and goats; Specialist cattle 

Mix Mixed livestock; Mixed crops and livestock 

Size classes 

considered in the 

ordered logit 

model 

E/E Entry/Exit class 

Small 16 -< 40 Economic Size Units (ESU) 

Medium 40 -< 100 Economic Size Units (ESU) 

Large >100 Economic Size Units (ESU) 

* In the FSS and the FADN farm are classified by type of farming and size classes based on the concept of Standard 

Gross Margin and Economic Size Units (ESU) (Commission Decision 85/377/ECC and following amendments)  

Sources for Micro and Macro Data  

Two different data sources, namely the Farm Structural Survey (FSS) and the Farm 

Accountancy Data Network (FADN), provide the macro and micro data, respectively. The 

FSS is a census of all agricultural holdings (above a specific size limit) conducted every two 

to three years. The available FSS data do not allow tracking an individual farm over time so 

that only macro data can be derived from the survey. The FADN provides detailed farm level 

information from a sample of farm holdings on a yearly basis. Using information associated 

with farms that remained in the sample over several years, micro data on transitions between 

predefined states can be derived. The advantage of FADN is that it provides more detailed 

information with a higher temporal resolution compared to the FSS  

Table 2. Available FADN and FSS years 

Year FADN 

years 

( t ) 

FSS 

years 

( ) 

 Year FADN 

years 

( t ) 

FSS 

years 

( ) 

1989 0 

 

 1999 10  

1990 1 0  2000 11 4 

1991 2 

 

 2001 12  

1992 3 

 

 2002 13  

1993 4 1  2003 14 5 

1994 5 

 

 2004 15  

1995 6 2  2005 16 6 

1996 7 

 

 2006 17  

1997 8 3  2007 18 7 

1998 9 

 

 2008 19  

 

The stratified sampling plan applied in FADN aims to obtain a sample of farms that 

encompass different farm types and size classes. However, the sample is not necessarily fully 

representative of the transitions between these farm types and classes. While the macro data 

derived from the FSS is less detailed and available only every two to three years, the 

information that it contains is representative of the entire population. An additional limitation 

of the micro data derived from the FADN is that no information about entry or exit of farms 
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to or from the sector can be derived. The reason is that no distinction is made between farms 

that quit farming and farms that are simply not selected by the sampling scheme (the same 

applies for entry). In contrast, in the FSS data, because the total number of farms in the 

population is assessed, information about entry and exit can be derived. This is commonly 

accounted for in Markov-type models by adding a catch-all entry/exit category. The number 

of farms in this entry/exit class
11

, which is unobservable, is defined as a residual between an 

assumed maximum number of farms (e.g. 20% more than the maximum number of farms 

observed in any year during the estimation period
12

) and the observed number of farms in the 

particular year.  

Both datasets are available at a regional level for the entire EU 27. However, the specific 

example is restricted to 7 West German Laender
13

 for which a relatively long time period is 

available. Here, FADN data is available from 1989 to 2008 on a yearly base while the FSS 

data is available from 1990 to 2007 for every two or three years (see Table 2).  

Implementation 

Estimation of TPs would in principle be possible with either micro or macro data alone. 

However, each approach would have substantial limitations. If only macro data were used one 

would need to address the problem that FSS data is only available every two or three years. If 

only FADN micro data were used no information about entry and exit of farms can be 

obtained. Only information about transitions between states, conditional on the farm being 

active and remaining active, can be derived. This is particularly problematic given that the 

rapid decline of farm numbers is the most obvious pattern of structural change observed in the 

last decades and hence of central interest. The combination of micro and macro data allows 

exploiting the advantages of each data source while mitigating their disadvantages. Using the 

framework delineated in section 2, it is straightforward to analyze both macro data available 

only every two or three years and yearly micro data in a consistent way. Moreover, it is 

possible to exploit the information in the macro data concerning entry and exit while using a 

non-informative prior for the entry/exit transitions.  

 In consideration of macro data being available only every two to three years, the large 

sample likelihood function (8) can be adjusted to apply to the available data as  

 

 

     
 

1* * * *

1 1

0

,

0.5 log ,

aL 

       






 

 

  

 
      

 


β n

Γ n Π n Γ n Π n
 (10) 

                                                 
11 One might also categorize this class as the number of farms that are inactive or that are idle.  
12 The assumed maximum number of farms was chosen ad hoc. Note that this value can be chosen arbitrarily without its 

value impacting the main results of principal interest. It only influences the absolute size of the TPs in the row of the 

entry/exit state that are defined in combination with the number of farms in the entry/exit state. The choice of the “20% more 

than the maximum observed number of farms” could be motivated from a Bayesian perspective by viewing the choice of the 

maximum number of farms in a hierarchical Bayesian formulation. A uniform prior density between 0 and 40% could be 

defined to represent prior beliefs about the number of individuals thought to be idle or potential farming entrants. In this 

instance, since no information about the true maximum number of farms is available in the data the optimal Bayesian 

estimation under squared error loss would be 20%, equivalent to the mean of the posterior density. 
13 Baden-Württemberg, Bavaria, Hesse, Lower Saxony, North Rhine-Westphalia, Rhineland-Palatinate, Schleswig-Holstein 



  

 

 

18 

 

where n  denotes the observed macro data in the FSS years   with   being a set of 

all FSS years for which a pair of sequential observations are available such that n and 1n

are both observed, 0   begins the first of the FSS years, and 1   refers to the FSS year 

previous to  (see Table 2). Further, Π  represents the TPs between FSS years which are 

calculated by multiplying the yearly TPs, represented by tP , accordingly. For example the 

first TP matrix between FSS years (1990 to 1993) is calculated as 1 2 3 4Π P P P  and the second 

(1993 to 1995) is defined by 2 5 6Π P P . The remaining years follow accordingly based on 

the mapping of FSS and FADN years given in Table 2. As we had done previously, *

n  

represent n  without the last row and *

Π  represent Π  without the last column. The 

definition of Γ  follows from (7) where FADN years ( t ) are replaced by FSS years ( ) and 

*

tP  by *

Π . A non-informative prior distribution with respect to the entry/exit class, defined 

as the first state ( 1k  ), is obtained by adjusting (9) to (note the difference for the index ,i j ) 

    , 1

1 2 2

! / !ijt

T k k
n

i t ijt ijt

t i j

p n n

  

 
  

 
 β P . (11) 

 For the multinomial and the ordered logit model two different model specifications are 

chosen. For the multinomial logit model the observations are pooled across different regions. 

For the ordered logit model, which requires fewer parameters, a fixed effects panel model is 

estimated by including regional indicator variables for all (except one) regions. Policy 

indicator variables are used as explanatory variables in both cases to model the effects of 

major shifts in EU agricultural policy on structural change. Specifically, these variables 

include an indicator for the Mac Sherry Reform in 1993 (zero before 1993, one otherwise), an 

indicator for the Agenda 2000 in 2000 and an indicator for the Mid Term Review in 2003
14

 in 

addition to a constant and, in the ordered logit model, the regional indicator variables.
15

 

Results 

Table 3 provides the estimated TP matrix (averaged over all regions and time periods) 

between the five farm types and the E/E class obtained from the multinomial logit model. The 

TP matrix displays a reasonable pattern of magnitudes. As expected we obtain relatively high 

diagonal elements for the TP matrix, indicating that most farms remain in their current farm 

type. TPs between the substantially different farm types of crop (COP crop and Other crop) 

and livestock (Milk and Other livestock) enterprises are near zero while higher TPs are 

obtained for transitions between the two relatively similar crop farm types and the two 

livestock farm types. Further we observer relatively high TPs between all farm types and the 

Mix farm type which represents farms without one major specialization such that movement 

to or from any other class is likely if one branch of a farm gains importance. Comparisons 

with TP matrices calculated from the FADN micro data illustrates how prior information is 

                                                 
14 We chose 2003 from the Mid Term Review where it was agreed; even so the final implementation was in 2005/06. The 

decision is based on the reasoning that farmers might already start to adapt to the agreed changes as some as they are decided.  
15 The mean posterior estimator is calculated based on a sample of 100,000 draws from the posterior, after a burn-in-period of 

200,000 iterations. The variance of the multivariate normal proposal density is  1 350I  and  1 400I  which resulted in 

an acceptance rate of 0.26 and 0.24 for the multinomial logit model and the ordered logit model, respectively. 
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updated using the macro data information (upper part of Table 3). Although the two TP 

matrices are not directly comparable
16

, the general pattern described above is already 

contained in the calculated TP matrix, which is then updated by the information in the FSS 

macro data. In addition to the results on the TPs, a comparison between the observed numbers 

of farms in the FSS years with the yearly fitted values suggests that the combination of FSS 

data with yearly FADN data is well suited to recover the observed farm numbers and to 

provide yearly estimates for the number of farms between FSS years (see Fig. A1 in the 

supplementary data).  

Table 3. Comparison of transition probabilities (TPs) between farm types and between size classes 

calculated from FADN micro data and estimated TPs using FADN micro and FSS macro data 

(averaged over all regions and time periods).  
 

Calculated TP from the FADN micro data 

 

Estimated TP using FADN micro and FSS macro 

data 

Transition probabilities for transition between farm types 

 

E/E 

COP 

Crop 

Other 

Crop Milk 

Other 

Livest. Mix 

  

E/E 

COP 

Crop 

Other 

Crop Milk 

Other 

Livest. Mix 

E/E  ---   ---   ---   ---   ---   ---  

 

E/E 91 2 2 2 2 1 

COP Crop  ---  84 5 0 0 11 

 

COP Crop 13 74 4 0 0 9 

Other Crop  ---  6 87 0 0 7 

 

Other Crop 5 3 85 0 0 6 

Milk  ---  0 0 96 2 2 

 

Milk 4 1 0 92 2 2 

Other Livest.  ---  0 0 14 72 14 

 

Other Livest. 9 0 0 14 60 17 

Mix  ---  6 4 3 2 85 

 

Mix 4 4 4 3 3 83 

               

 

Transition probabilities for transition between size classes 

 

E/E Small Medium Large 

  

E/E Small Medium Large 

E/E  ---   ---   ---   ---  

 

E/E 90 4 6 0 

Small  ---  90 10 0 

 

Small 11 85 5 0 

Medium  ---  5 91 4 

 

Medium 0 7 86 7 

Large  ---  0 9 91 

 

Large 15 0 5 79 

  

 Table 3 (lower part) provides a TP matrix for the three size classes and the entry/exit 

class estimated using the ordered logit Markov approach in comparison to a TP matrix for the 

three size classes calculated from the FADN micro data (both averaged over all regions and 

time periods). Again the estimated TPs depict reasonable patterns and indicate how prior 

information is updated using FSS macro data. As expected, farms are most likely to remain in 

their current size class or transit to the immediate neighboring one. Farm entry is most likely 

to happen in the small or medium class and only very rarely in the large size class. Only with 

respect to farm exit results do not match the intuitive expectation. Naturally one would expect 

that farm exit rates are highest for small farms and decline for the medium and large class. 

Estimated exit TP, however, are largest for the large size class followed by the small and the 

medium size class. This might indicate that results overestimated the true exit rate from the 

large class while the exit rate from the medium class is underestimated. Nevertheless, the 

comparison between observed number of farms in the FSS years and the fitted values based 

on the estimated TPs shows that total exits rates are well matched (see Fig. A2 in the 

supplementary data).  

                                                 
16 As noted above no information about entry and exit is provided in FADN such that the calculated TP matrix gives the 

probability that a farm moves to another state conditional on the farm being active before and remaining active. 
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5. Conclusion 

We propose a Bayesian framework for analyzing non-stationary Markov models that 

allows micro and macro data to be combined in estimation. In contrast to earlier approaches 

for combining micro and macro data offered in the literature, the Bayesian framework offers a 

general full posterior information approach for combining micro and macro data-based 

information on TPs and allows the estimation of functional relationships that link TPs with 

their determinants. Our Monte Carlo simulations show how prior information, in the form of a 

micro sample of data, can improve the accuracy of posterior information on the parameters of 

interest as well as the numerical stability of the estimation approach. 

  An application of the approach in the context of farm structural change underscored 

the advantages of the approach in an empirical setting. The combination of micro and macro 

data based on the proposed framework allows one to take advantage of information in each 

data set while mitigating the respective disadvantages of using either data set in isolation. 

Moreover, it was shown that the approach allows combining two dataset with different 

temporal resolution (yearly FADN micro data in combination with FSS macro data available 

only every two or three years). In this respect the proposed framework could also be useful 

for deriving TPs for shorter time intervals (e.g., months) from TPs for longer intervals (e.g., 

years). Such problems arise in several areas of inquiry such as network theory (Estrada 2009), 

land use change (Takada et al. 2010), chronic disease analysis (Charitos et al. 2008) or the 

analysis of credit risk (Jarrow 1997) (see Higham and Lin (2011) for a general discussion of 

the problem).  

 The general findings and the proposed approach are subject to some limitations. First, 

the likelihood specification presented here is applicable for aggregated data observed for the 

entire population. For other situations alternative likelihood specifications, such as MacRae’s 

(1977) limited information likelihood specification, need to be considered for use in the 

proposed Bayesian framework. Secondly, the number of model parameters increases with the 

number of Markov states, often limiting the number of states that can be feasibly considered 

in empirical applications. The proposed ordered logit approach moderated this problem 

significantly, but other model specifications based on continuous Markov chains, such Piet 

(2010), could provide further improvement in this respect.  

 Overall, this paper contributes to the existing literature by providing an analysis 

framework that allows for combining micro and macro data information relating to non-

stationary Markov models in a way that is consistent with the established tenets of the 

probability calculus and leads to a minimum loss estimator that is based on full posterior 

information. The approach is relevant for a broad range of empirical applications in which 

macro data is available at the population level while micro data is only available for a 

subsample and one is interested in quantifying the effect of factors that cause individuals to 

switch between predefined states. 
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7. Appendix 

Appendix A1: Number of farms (in 1000) observed in the FSS dataset and fitted values of the Markov 

multinomial logit model. Results aggregated over all considered regions and differentiated between the five 

different farm types and the total number of farms.  

  

  

  
  

1990 1995 2000 2005
0

5

10

15

20

25
 FSS
 Fitted

COP Crop

1990 1995 2000 2005
0

10

20

30

Other Crop

1990 1995 2000 2005
0

20

40

60

80

100
Milk

1990 1995 2000 2005
0

2

4

6

8

10

12

14

16 Other Livestock

1990 1995 2000 2005
0

10

20

30

40

50

60

70 Mix

1990 1995 2000 2005
0

50

100

150

200

Total Number of Farms



  

 

 

24 

 

Appendix A2: Number of farms (in 1000) observed in the FSS dataset and fitted values of the Markov ordered 

logit model. Results aggregated over all considered regions and differentiated between the three different size 

classes and the total number of farms. The figures illustrate that fitted values follow closely the observed FSS 

macro data available every 2-3 years. Additionally to approach provides a direct prediction of macro data for 

years between FSS years. 
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