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A Monte Carlo Experiment Demonstrating Specification Bias

in Translog Cost Systems
ABSTRACT

A Monte Carlo experiment pomparing translog cost and production.
systems indicates that the cast system’s biased estimateé of returns to
scale and input substitution elasticities result from an errors in
variables problem and a disturbance with non-zero mean.  Guidelines for

when the cost or production system is more appropriate are suggested.




A Monte Carlo Experiment Demonstrating Specification Bias
in Translog Cost Systems

With the help of the translog and other flexible forms, ecqnomists
have increasingly applied dual cost and profit functions in studies of pro-
duction and factor demand anélysis. The attractiveness of the dual
approach stems from its methodological simplicity; it avoids the need to
invert the first-order conditions from the production problem in calculat-
iﬁg substitution and factor demand elasticities (Silberberg). Berndt and
Christenéen, Lau and Binswanger have argued that the dual avoids simultane-
ity problems, facilitates data collection and relies on a data matrix which
is not ill-conditioned.

These arguments are based on a priori statistical considerations and
convenience, but the relative performance of the dual system compared with
a production approach is'not well understood. Burgess, in modeling the
U.S. economy, finds that the translog production and cost systems yield
widely divergent factor demand elasticities. Humphrey and Moroney and
Lessner report similar experiences with industry and firm-level data.
These two translog models are not self-dual but if treated as approxima-
tioneg to the true functions, one would hope the implications from both are
gimilar (Theil).' Failing this, one must understand the circumstances under
which each is more suitable. This paper reports on a Monte Carlo experi-
ment comparing the performance of translog cost and production systems for
synthetic technologies with known characteristics and draws implicatiouns
for emﬁirical analysiéq
The Monte Carlo Design

The Monte Carlo experiments are similar to Guilkey et al.'s stﬁdy of

several flexible cost functions. To begin, 50 observations of three inputs




each are chosen from a log normal distribution,

0.5827] [0.066 7]
(1) In X ~ N 0.239 |, | 0.039 '0.026 , representative of
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mandfacturing and agricultural time series data (e.g. Berndt and Wood;
Brown). They are used to calculate output from a generalized CES function
(2) T, ngt = (Z 5ixit'pi)"7/9 eeyt, where Xit are inputs, Yt is output

and € is a stochastic term and is distributed N ~ (0,.0025), Output

vyt
varies across experiments as the parameters of (2) are changed to exhibit
properties ranging from linear homogeneous and separable to non-homothetic
and inseparable and different ieturus to scale,

Next, a set of prices (w) 1s derived from first-order conditions:

8y -p. =y/p-1 -pi—l e i=1,...,3;

t
3y w, - § [e  “(l+oy ) 1T 5y Xy 2y (py6,X; . Ye M oe=1,...,¢,
J

where Yo the expected value of output, excludes the disturbance ¢ A

yt-
stochastic term (e;,) reflects errors in optimizing decisions and differ-
ences between observed and expected prices (Zellner et al.).

For each experiment, the values of four production characteristics
{(marginal products, factor ghares, returns to scale and substitution elas-
ticities) are determined at each of the fifty sample points (Driscoll) and
stored for comparison with the corresponding estimates derived from parémef

ters estimated for translog cost and production systems:

(&) InY=oy+ ) o InX +1/2 (] Z.ﬁij In X5 In X5] + ¢;

]
(5) My = o; + ? Py ln Xy + ¢y forall L=-1,.. .. and
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(7) My = oy + Z i4 1n Wit Ty In Y + e; for £ = 1,...,n-1, where Y, X;,
J

and w; are as above; M,

i = ith factor share of output (cest); and C = cest.

Symmetry of the coefficients was imposed in both models,'while linear homo-
geneity was also imposed on the cost system. Variables are scaled by
dividing by the geometric means prior te taking logarithms; an iterative
Zellner (IZEE) procedure iz used to estimate both systems,

The experiment covers 28 technoclogies. Each of 50 replications far-
every technolopy differs because of the stochastic disturbances on output
and prices, Estimates of the production characteristics are averaged over
the 50 observations for 50 replications. Following Guilkey et al., the ab-
solute deviation of the characteristic’s estimate from the true character-
istic value is noted at each observation and the mean absolute deviation
(MAD) is determined as well. 1In evaluating performance, one is ideally
looking for average estimates clese to the average of actual values, with
small MAD statistics. When the average of the estimates is not clese to
the average of actual wvalues and MAD 1z close to this difference, there is
a consistent bias.

Empirical Results

This discussion focuses on eight of the technologies involved in the
simulation experiment. They represent a wide range in technological condi-
tions and are representative of the results across all simulations. In
table 1, the first 3 technologies exhibit constant returns to scale and
have constant elasticities of substitution among inputs. In 4, 5 and 6,
returns to scale average less than unity over the observations. In 4 and
5, the underlying cost functions are separable in two prices, while in

technologies 7 and 8, inputs 2 and 3 are complementary,




Table 1.

A

Monte Carle Estimates of Scale and Allen Partial Substitution Elasticities for
Selected Technologies

Generalized

CES Parameters Returns
=0, 0=1 to Scale 11 722 733 “12 13 23
Technology
61= 3, Jz= 3 ACTUAL 1.000 ~8,052 ~-8.103 ~4 BBO 3.030 3.030 3.030
53: 4 PROD B8YS 1.001 ~-6.071 84.289 4,713 3.087 3.023 3.097
pi=“.57, p=-.867 MAD STAT p.cns 0,242 0,798 0.304 0.280 0.216 0.478
COBT BY¥S3 1.050 -5.778 -6.1690 -3,931 2,706 3.025 1.9860
MAD BTAT 0.0B68 0.2845 1.943 0D.750 0.335 0.118 1.070
Technology
§l=.3, 62=.3 ACTUAL 1.000 -2.332 ~&.331 -1,488 0.9%8¢ 0.999 0.889
Jsﬁ.ﬁ . PROD BYS 1.001% ~2.343 -2.380 -1.531 l.pDE 1.003 1.037
py= 001, p=.001 MAD STAT 0.006 D.085 0.1849 0.085 0.067 0.0473 0.125
COST SYS 1.051 ~2.223 -1.805 -1.258 0,848 0,984 n.679
. MAD STAT 0.068 0,111 0.326 0.244 0.305 0.039 0,320
Technology
61= 3, 62=.3 AGTUAL 1.000 -1.247 ~0.348 -0.388 0.250 0.250 S 0.250
£3=.4 PROD 8YS 1.002 -1.180 -0.351 -0.380 G.244 0,238 0.255
pi=3 D, p=3.0 MAD STAT 0g.008 0.131 G.025 0,028 0.033 0.045 0D.026
COST EBYS 1.065 -0.B846 -0.255 -0.2889 0.197 0.178 0.178
MAD STAT §.081 0,827 p.o08e 0.112 0,112 0.190 0.0G81
Technology
61— 3, 62: 3 ACTUAL 0,967 -2.822 -3.813 -27 . 429 3.108 1.080 1.080
63= 4 PROD S8YS 0,859 -2.727 -4, 087 -28.701 3,243 n.851 1.473
p1=-n57, p2=”.57 MAD STAT §.008 0.285 0.494 5.878 0,357 0.774 1,274
p3=*.05, p=-.47 COST BY¥S8 1.028 -1.752 -2.,308 -14.830 1.864 2.038 -1.198
MAD STAT 0,086 0.870 1.8904 12.838 1,144 1.000 2.277
Technology .
61 .3, 62=.3 ACTUAL 0,948 -5.885 -5_ 130 -3.3188 1.5a8 G.300 0,500
63—.4 PROD S¥S8 0.950 -5.355 -6 .6838 ~B.3107 1.755 0.287 0.541
pl=.3, p2=.3 MAD STAT 0.048 1.202 2,482 0.152 1,214 0.368 0.381
pa=3 0, p=1.0 COST S8YS 1.162 126,537 100,053 -06.074& ~%.200 0.073 ~0.211
MAD BTAT 0,384 132.25% 195.187 n.1286 IG.450 0.800 0.875
Technology
61=.3, £z= 3 ACTTAL 0,997 =9, 438 -14,830 -8.361 T.742 5.161 2.581
63“.4 PROD BY¥3 G.987 -9.882 -16.058 -5.664 6.128 5.274 2,978
ry a, pz=—.B MAD STAT 0,008 1.384 2.768 0.208 1.225 1.130 1.674
£y -.7, p=-.8 COST S¥8 1.047 -6.718 -9.033 -5.,180 5,382 3.794 0.698
MAD STAT 0.089 Z.723 E.028 3.181 2.396 1.367 1.943
Technology
61=.3, 62= 3 ACTUAL 1.100 -0,382 -~19.204 -18.524 1.884 1.738 -1.240
635.4 EROD SYS 1.105 ~0,388 -21.,722 ~20.308 2.032 1.717 0.873
p1=-1.5, pzﬂ”.3 MAD STAT 0.010 0.041 3,891 3.807 0.180 0,285 3.215
Py 2, p=—.75 COST BYS8 i.148 -0.,085 -2.853 -4.683 . 0,387 D.509 -0.7586
MAD STAT 1.13% 3.286 16,352 13.841 1.587 1.227 2.011
Tachnology
61=.1, 62= 45 ACTUAL 1.007 -1.825 -8.463 -&4.711 2,157 2.427 -9.270
63=. 5 PROD BY3 1.611 -1.827 -8.6879 -4,.852 2,255 2.543 -0,268
£y 1.1, pz=—.1 MAD STAT p.011 2.628 1.893 2.390 2,110 2,445 2.104
py== 2, p=-.3 COST 8%¥S8 1.054 -0.468 -4,918 ~1.9804 B.555 0.646 1.218
HMab STAT 0.101 1.357 3.544 2.807 1.602 1.780 1.487




As reported by Driscoll, beth translog systems produced good factor
share estimates. For seven technologies, the MAD errors for the cost and.
production systems' estimates of factor shares were less than 3% of the
true values. For technology 5, the MAD errors avérage about 15% and 7% for
the cost and production systems, respectively,

For marginal products, MAD errors of thé production system estimates
never exceed 7% and usually average between 1 and 2% of the actual values,
The MAD error in the marginal products from one cost system is in excess of
50%; an upward bias of from 10 to 20% exists for most of the 28 technolo-
gies. This is not unexpected. In the production system, marginal products
are simple functions of production elasticities (left-hand sides of share
equations) which are estimated accurately, while in the cost system,
marginal products are more complicated expressions in output, cost and the
term for returns to scale (Driscell, p. 136}.

Table 1 reports average values for returns to scale and Allen_parﬁial
elasticities of substitution (aij) for the eight technologies with their
corresponding cost and production system estimates. MAD errors appear
below the estimates. Direct and cross Allen partial elasticity terms are
of interest in that they could be derived for both the production and cost
systems and they are related to factor demand elasticities (Ferguson, p.
152). (Direct comparison of factor demand elasticities was not possible.
Closed form solutions to factor demands were unobtainable for some
technologies.) It is evident that the cost system’s estimates of scale and
Allen partial elasticities are relatively more biased and exhibit larger
MAD errors than tﬁe corresponding production system's estimates. Returns

to scale from the cost system are biased upward by at least 5% for every




technology. Cost side estimates of the Allen own partials are biased
ypward; since

(8) Z Mj oij = 0 for all i (Allen, p. 504),
J

at least one and usually both cross partials are biased downward.

The sources of the consistent biases are examined by comparing the
coefficient estimates of the cost function under different disturbance
assumptions (table 2). First, ﬁhe models were esfimated by setting all
price and output disturbances to zero, leaving only the error involving
truncation of higher-order terms in the translog approximations. Wifh 1o
disturbances, the cost system estimates of gll production characteristics
are unbiased with much smaller MAD error as long as the technologies are
not too complex (Driscoll, tables €.1-C.28). These same translog coeffi-
clent estimates, which may be interpreted as first and second-order log
derivatives, were found to approximate the mean of the corresponding log
derivatives (evaluated at all sampie peoints) of the undeflying production
function (across all 28 technologies)'and the cost function {(for 7 CES
technologies where a dual form exists). For complex technologies, large
variances in the log derivatives across sample points account for rela-
tiﬁely poorer quality estimates of boLh systems (Driscoll, tables 5,3-5.7).
Thus, for all technologies, except possibly those involving complementari-
ties, these coefficient estimates based on the undisturbed data are a good
base for comparison.

Focusing first on thé returns to scale

(9) 1 =1/(6y + 6yy In Y + } 75y 1n wy),

yy i
one can begin to identify the sources of bias. The data are scaled around

their geometric means; at the means ln Y and ln w; are zero at this point.



Table 2. Coefficient Estimates of the Translog Cost System Under Different

Disturbance Regimes

Distur- .
bances 6o 5y ayy Tiy T2y 81 ) 711 Y12 Y22

Technology 1

N 0004 1.00 005 ,00001 -.0001 .334 272 -.449 184 -.401
W,y -.004 .931 .1%0 .004 -.016 L334 272 - ,401 (122 -.252
W L0000 1.00 .211 -.006 -.007 .337 .268 -.388 .121 -.323

Technology 2
N 000 1.00 -.002 .000 .000  .300 .300 .000 .000 .000
W,y -.004 .931 .189 .004  -.0ls .300  .299  .0le -.02 .050

Technology 3
N -,020 1.00 -.206 -.002 .001 L1730 427 .108 -,055 .181
W,y -.027 L9300 -.04 -.001 .020 174 423 7113 -,058 .193

Techneology & _
N .005 1.03 .183 .048 -.032 .529 432 -.420 (392 - .359
W,y -.006 .952 488 .053 -.044 .530  .431 -.206 .192 -.168

Technology 5
N -.078 1.06 .716 .256 -.201 129 147 .055 -.041 .179
W,y -.066 1.04 1.44 -.079 .132 L1320 L Y44 .080¢ -.007 .115

Technology 6
N .000  1.060 -.058 .221 -.061 402 L2867 -.127 713 - 847
W,y .000 .932 000 .162 -.069 402 267 -.82  .399 - 400

Technology 7 .
N .007 917 -.566 .158  -.087 .837 .086 .001 .006 -.019
W,y -.012 .854 118 .118 -.066 .837  .085 .035 -.021 .032

Technology 8 ‘
N .065 1.00 -.78 .353 -.104 .574 ,138  -.128 .018 -.013
W,y -.005 .928 .052 .161 -.060 574 (138 .073 -.031 .024

Note: N = no disturbances; w,y = prices and output disbhurbed; w = prices
disturbed. Because of the adding up conditions to impose linear homogeneity, the
remaining parameters 73y, Y13 123 and 733 are calculated as residuals.



An upward bias in r requires an underestimate of Sy‘ This parameter is

important at other points because In Y and 1ln w,

4 are positive and negative

when above and below the mean. Thus, one would not expect any bias in Syy
or Tiy to affect r in the same direction at each point.

To understand why the coefficient of In Y in the translog cost func-
tion is underestimated, recall that minimum cost prices from (3) are based
on expected output (y), a reasonable assumption for many biological produc-
tion processes (Zellner et al.). However, in general, only actual output
data (yeey, not y) are available 1n empirical work. By specifying the cost
equation in terms of expected cutput, equation (6) can be written (for § =

0 from (2))

.—E. HE
2 .
10) InC =8 + 6 1n(Ye 7)) + 6§ (In(¥e Y1)+ Y §.1n w.+ §..ln w, 1ln w,
(10) o y ( ) yy( { ) § 1 i § § 1 nw, ln WJ

=€
¥ - 2 ‘
+ % Tiy In(Ye 7)in w, + ¢ 5+ 5y In Y + syy (In Y)° + % §; Inw,
+ % ? Eij In w, In wj'+ % Tiy Iny ln w,

+ S92 InYe +6 -8 -V v, 1nw,
Leg ¥y y ¥ oyyley) y &y "L 7y In icyl

where y is the unobserved expected output

€ -€
(11) Y=ye”  ory=1Ye 7.

Following the literature on errors in variables, this results in a cost
equation whose disturbance (in brackets) is a function of observed output
(1ln Y) and €y and bias results. Although estimates of all parameters in
will be particularly so, given the second

¥

component of the error. If the squared logarithm of output is removed from

(10) will be inconsistent, §

the cost equation, bias to Sy will be reduced but not eliminated, If €y =

- 0, the errors in variable bias disappears. Thils latter proposition was

tested by removing the output and price disturbances from technology 1.



When both disturbances were eliminatea, the cost system produced nearly
perfect estimates of returns to scale. This was alsc the case when the
output disturbance was removed,.in spite of the remaining price distur-
bances (Driscell). One may compare the coefficient estimates for technol-
ogy 1 under three different disturbance regimes to see which coefficients
are affected by the output disturbance (table 2). The results indicate

that only output disturbances affect the estimate of § that price distur-

y?

bances affect § and 1 coefficients, and that outpﬁt disturbances

yy' iy
can further distort estimates of the Viy and 7ij coefficients. Similar
conclusions are evident from the results of the two disturbance regimes
reported for the remaining seven technologies.

The effects of these distortions are transmitted to the Allen partial
estimates as well. Notice that production system estimates are relatively
unbiased and generally exhibit less than half the MAD error of their cost
system counterparts .(table 1). The cost system overestimates all Allen own
partials across all eight technologies. Because of the adding up restric-
tions given in (8) the Allen cross partials are usually underestimated (o4
in technology & and o,4 in technologies 7 an& 8 are exceptions). The
source of the cost system bias may be traced by examining expressions for

the Allen partials from the cost system

2
(125 B Tii + Mi - Mi _ Yi' + MiM‘
i1 T 2 o 74 T MM,
Mi i

These elasticities are affected by errors or biases in estimated factor
shares (M;) and v's. They are particularly sensitive to small shares.
Generally M;'s are estimated quite accurately; bias of the magnitude seen

in a4y and Uij must be in large measure due to bias in Yii and Wij‘
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Notice that the +v's exhibit bias under the price, output disturbance
regimé and that this bias does not disappear if the output disturbance is
removed (see technology 1, table 2). Remaining price disturbances here
mimic imperfect price foresight or ignorance of the true production tech-
nology, but in either.case, the resulting price-input combinations are sel-
dom minimum cost combinations of producing the specified output (Varian, p,
39). However, it is only this minimum cost surface that is dual to the
production surface. Given this disturbance regime, a cost surface is
generated which lies gn_or above the minimum cost surface and the error
structure (¢,) associated with the translog cost function {(10) has a posi-
tive réther than a zero expected value. For E[eo] > 0 the bias in the vec-

tor of parameters of the cost function (8) is given by

A

(13) EB) - =T renxn (@t e 1) Ele,].
Although it is not evident from this expression which parameters reflect
bias, the emﬁirical results indicate a persistent upward bias to the Eyy
and 7y;; coefficients (compare the estimates of the undisturbed and dis-
turbed scenarios in table 2).

Concentrating on the transleg cost egquation, this appears reasonable.
To raise éost estimates up to the cost surface genersted under producer
erroxr, some coefficients in equation {6} must adjust. The intercept is a
candidate, but at the mean of the data, 6, should be close to zero since
the dependent and all indepéndent varlables are zerc at that point. The
coefficient Sd doges remain close to zero. With the exception of technolo-
gies 5 and 8, the Tiy coefficients exhibit no appreciabie bias and essen-

tially, no bias accrues to parameters §_, and §; as a result of the erro-

y!

neous assumption on cost error structure.
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The remaining candidates are the coefficients é., and y;;. Because

¥y
the data are scaled by the geometric mean, the squared terms assoclated
with these ccefficients are the only ones that ére uniquely signed at all
observations. An upward bias to these coefficients ig the only way to
raise cost estimates consistently. It appears that only very high positive
(negative) correlations among output and prices will upset this generaliza-
tion, in that under these conditions, the two logarithmic variables of the
cross product terms would have the same (oppcsite} slgn and their product

would be positive (negative). In such caSes, it is difficult te say how

the 6yy’ Tiq

and V1j coefficients are affected.

Because linear homogeneity inm prices is imposed on the cost system,
the expected poéitive bias in the vy; terms leads to a compensating bias in
1] in the opposite direction. 1In a three-input technology, if a dispro-
portionate amount of the bias falls on any pair of vy, coefficients, say
v11 and vj,, adding up restrictions are most sasily satisfied through nega-
tive bias to T12- This phenomenon occasionally produces a real outlier in
the estimate of the Allen cross partial; sometimes, as in technologies 4

and 5, a complementary input pair is identified when none exists,

Implications for Empirical Research

Through a careful examination of the results from a Monte Carlo ex-
periment across 28 technolegies (eight of which are reported here), differ-
ences in the performance of the translog production and cost systems are
shown to be attributable to two important specification errors in the cost
system, bne associated with an errors in variable problem and the other
with a positive expectation on thé cost function'’s error term. The direc-
tion of the bias is predictable, suggesting that estimates of returns to

scale and direct partial elasticities of substitution estimated from cost
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functions should be interpreted as upper bounds, whereas estimates of cross
partial elasticities are probably lower bounds. Thus, in empirical situa-
tions where output disturbances and producer decision errors are expected
to be large, a translog production system may well outperform the cost sys-
tem in estimating important characteristics of production technology and
factor demands. Where- these errors are not expected to be large, the
choice of system may well depend on the availability of and the relative
dispersion in.input and input price data (Driscoll).

In drawing these conclusions, it must be kept in mind that they are
based on averages acrocss 50 replicationé for each separate synthetic tech-
nclogy. One can legitimately ask whether these results will be sustained
for any given sample of actual empirical data. Too few comparisons of
these two approaches to measuring imput substitution exist to provide a
definitive answer to this question and more work is needed, However, two of
the important empirical comparisons to date (e.g. Burgess and Humphrej and
Moroney) cffer substantial support for these propositions. In Burgess, for
example, the estimates of the direct Allen partials from the cost system
were consistently higher than for the production system for all three in-
puts; the cross partials were lower between capital and labor and capitél
and imports and higher between labor and imports. The production system
indicates easy substitution between capital and imports, while the cost

system identifies a weak complementarity.
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