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ABSTRACT

The value of soil-test information in planning fertilizer application levels is
determined by using agricultural field-plot data to estimate the posterior
distribution of mean soil-nitrate concentrations at a given location. Optimal
decisions concerning fertilizer application levels are made with respect to
this posterior distribution. Average reductions in fertilizer application rates
range from 15 to 41 percent, depending on the form of prior information that
is available. These reductions are achieved by increasing the varnability of
application rates over time. Disregarding the uncertainty that remains after
soil testing significantly overstates the expected benefits of soil testing.

Keywords: Bavesian methods, fertilizer rates, posterior distributions. soil
tests.



1. Introduction

Growing concern over agriculture’s impact on the environment has in-
creased the call for methods that reduce application rates of chemical inputs.
For example, the Committee on Long-Range Soil and Water Conservation
(1993, p.57), recently concluded that “Increasing the efficiency with which
nutrients, pesticides, and irrigation water are used in farming systems should
be a fundamental objective of policies to improve water quality.” I[ncreasing
efficiency often requires acquisition of information that decreases uncertainty
about the productivity of individual input applications. Such knowledge ai-
lows farmers to better match an application’s value with its cost. [For exam-
ple, Integrated Pest Management technologies typically include a scouting
program that determines when pest numbers are large enough to justify a
pesticide application (Carlson and Wetzstein, 1993). Soil tests are used to
determine when fertilizer should be applied and at what rate (Blackmer et
al., 1992). Environmental benefits can occur if resolution of uuncertamty
about an input’s productivity decreases the incentive for producers to apply
“insurance” amounts of inputs, thereby decreasing average application rates.
Such a reduction can however be obtained only by increasing the variabil-
ity of application rates. That is, increased information leads to increased
variability in optimal application rates. The resulting application plans are
variable-rate plans.

The evaluation of a test or measurement that provides the mformation
making variable-rate plans possible is difficult because there can remain ap-
preciable uncertainty about the relevant state of nature after the information
is obtained. The residual uncertainty may be due to measurement error, or
to the fact that information is obtained from a random sample of the rele-
vant population (sampling error). [u either case, if producer utility depends
nonlinearly on the true state of nature. then decisions that account for the
residual uncertainty will differ from decisions that treat the mformation as
absolute truth (DeGroot, 1969). Thus. to conduct an evaluation of infor-
mation requires explicit consideration of how uncertainty affects utility, the
extent to which the uncertainty is resolved by a test or measurement. and

the amount and form of prior information.

Babcock and Blackmer (1992) determined that the potential benefits from



adoption by producers of a late-spring soil nitrate test in dry-land corn pro-
duction are large. Public (environmental) benefits would accrue from a po-
tential reduction In nitrogen fertilizer rates of up to 40 percent. Private
benefits consist of economically significant cost-savings and smaller yvield in-
creases. Babcock and Blackmer (1992) presented their results as potential
benefits because they treated the soil test as providing perfect information
about the true nutrient concentration in the soil. This paper relaxes the as-
sumption of perfect information and uses Bayesian methods to demonstrate
the extent to which residual risk after soil is tested reduces the benefits of
the test.

We examine the value of the information provided bv a soil nitrate test
used in non-irrigated corn grown in a continuous corn rotation. I[n Section
2, we discuss the problem of estimating the production function that relates
crop yield to available nitrogen. The optimal level of available nitrogen and
the corresponding crop yield are then used to determine the maximum profit
that a producer should expect, both ignoring and considering the information
provided by the soil test (Subsections 2.1 and 2.2, respectively). [t is shown
that, to maximize expected profit, either the unconditional {when soil tests
are ignored) or the conditional (given the soil test) distribution of available
nitrogen must be determined. Two data sets obtained from experimental
plots are described in Section 3. These data are used to estimate the prior
distribution of soil nitrate levels and the sampling distribution {likelithood
function) of the soil-test measurement. The resulting estimated distributions
of nitrate levels (either with or without the soil test) are used to calculate
the distribution of expected profit-maximizing nitrogen fertilizer application
levels; the distribution is then used to determine the value of soil testing.
To demonstrate the importance of accounting for residual uncertainty, re-
sults using the Bavesian decision rules are compared in Section 4 to results
obtained by assuming that the soil-test information is perfect. Section 5

contains concluding remarks.
2. The Decision Model

Kanwar and Baker (1992) reported that. in lowa alone, more than $300
million worth of nitrogen fertilizer (approximately one million tons avoirdupois
of nitrogen) was applied to corn in 1990. The discussion that follows refers



to a single site. L.e., we consider an individual farmer and estimate the yield
function at a single location. The production decision analyzed is the per-
acre amount of nitrogen fertilizer to apply in the late spring. All other input
decisions are assumed to have been made before fertilizer is applied. Fol-
lowing Babcock and Blackmer (1992), mean vield y is assumed here to be a
function solely of the mean concentration of available nitrates u (measured
in ppm) in the top 12-inch layer of soil at the time of rapid plant uptake. The
resulting vield response function represents expected yield at this site at the
time the fertilizer decision is made, conditional on other factors being fixed
(by the design of the experiment) at levels that are not limiting to yield.

A producer can alter u by applying an amount of nitrogen fertilizer, A,
measured in Ibs/ac. A linear relationship between y and A is assumed, so
that u + Ak is the nitrogen concentration after applying the fertilizer where
k is a multiplicative constant that transforms Ibs/ac to ppm. [k = 1/7.62 for
the calculations in the paper.]

If initial nitrate levels and the yield response function f{yx) were known.
then the decision problem would have a straightforward solution: fertilizer
should be applied to bring nitrate levels from the initial level to the level that
maximizes profits. In any given year, however, the starting level of nitrate
in the soil is unknown. Yearly changes in the level ave expected because of
weather-dependent losses from leaching and denitrification. and gains from
the fixation of atmospheric and organic nitrogen sources (Hanley, 1990). This
paper assesses the value of a soil test for reducing uncertainty about initial
nitrate levels. Field conditions are assumed to be such that a producer
can always apply nitrogen fertilizer after the soil test is taken. Feinerman
et al. (1990) and Babcock and Blackmer (1992) examined the effects on
optimal decisions of alternate assumptions concerning the probability that
late fertilizer cannot be applied. Their results indicate that increasing the
probability that late spring fertilizer cannot be applied increases preplanting
fertilizer rates and decreases expected late applied rates.

Let E(ylp) = f(u) represent the production relation. the mean yield for
a given soil nitrate concentration. Previous analyses of yield response data
of the type used in this study support the existence of a vield plateau and
an approximately linear response to soil nitrates when nitrates are limiting.



(See, for example, Figures 2 and 3 in Binford et al., 1992). This linear
response and plateau (LRP) model can be written as a change point linear
regression model (e.g., Carlin et al., 1992),

E(ylp) = flu) = yp = 80" = )l ucun (1)

where y, is the plateau yield, 3 is an unknown fixed regression coefficient, u~
is the unknown value of p at which the plateau begins, and [ is an indicator
variable that takes the value 1.if p < g and takes the value 0 otherwise.
We further assume that the distribution of yield given the LRP parameters
is Gaussian with mean f{u) and variance o°.

2.1 Optimal fertilizer level with no soil-test information

Let the density function go(g) represent a producer’s prior information
about the nitrate level, g, at a particular location before fertilizer application
and let g4(p) represent the deterministic rightward shift of go{p) that results
from applying fertilizer at level A,

galp) = golpe — Ak), > Ak.

Figure 1 illustrates the LRP production function of a representative pro-
ducer with the prior distribution go{y) Hlustrated at bottom left. In this
illustration, when 4 = 0 (i.e., at go(y¢)) the probability that © > u=, l.e., that
nitrogen levels are above the plateau threshold. is approximately zero. Thar
is, nitrogen 1s certainly a himiting input. At .4 = 100, the probability that
nitrogen is limiting decreases to approximately 0.5 under the prior shifted to
account for A, and at A = 200 the probability that g > p” is essentially 1
and nitrogen is definitely not a hmiting input. The level of A that maximzes
expected profits equalizes the probability-weighted cost of being caught short
of nitrates with the unit cost P of 4 (Babcock, 1992). When P is inexpensive
relative to its value in production. then the optimal A will lie between 100
and 200 Ibs/ac. That is, in this example, the optimal probability of being
caught short of nitrogen is between one-half and zero.

More formally. for known y,, 7. and ;™. the optimal level of nitrogen 4 1s
defined as the level that maximizes expected profit £(x), which is given by
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Figure 1: The linear response and plateau yield function (left vertical axis)
and distribution of nitrate level under three assumptions concerning fertilizer

application (A =0, A =100. 4 = 200).
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E(x) = [ [Puf(w) = Palgalu)ds
= P, /Ak (a4 Bulgalp)du + P, /u* Ypgalp)dy — PA, (2)

where 7 is profits per acre, £, is the price of output, and o = y, — 3u~. The
necessary condition (assumed here to be sufficient) for maximizing profits is

“ 0g94(p) , \ o Jgalp) P
o+ Ju)——"du — (o + AR kg4 (Ak) + / = —. (3)
Ak (et Bp) oA ( Ak)kg4(Ak) Pl Toa TR 3
The solution A* to ( 3) is the level of nitrogen fertilizer that maximizes
expected profit without use of the soil test. Maximum expected profit is
found by substituting A* into ( 2) and then subtracting application costs.

The maximization problem does not account for fertilizer carryover from
vear to vear. Experiments that tracked '®N-labeled fertilizer one and two
vears after application founda that an average of two percent of nitrogen used
by corn 1n lowa was recovered from previous years” application (Binford and
Blackmer, 1991). This indicates that errors made from maximizing cnrrent
expected profits rather than a discounted stream of expected profits are small.

2.2 Optimal fertilizer level with a soil tesi

A soil test yields an estimate NV of the current level of . Let p(pulV) be
the posterior distribution of x given the soil test result. Formally,

PNy o gol ) (V]| ), (4)
where A(Nlg) is the sampling distribution of soil test results. After observing
NV, the farmer determines the level A of fertilizer that maxiinizes profits
conditional on N. The expected profit given NV is given by an expression like
(3) with ga(u) replaced by pa(u|N), where py(u|N) = p(p~ Ak|N). Denote
the fertilizer application level that maximizes expected profits for a given N
as A*(NV). If N is sufficiently large, then A~(V) may be zero.

Conditional maximum expected profits (neglecting application costs and
the cost of testing) are



EIN) = [ 1P f(n) = P (V) ool )i (5)
A*(N)k

which can be expanded to show separately the effect of the linear portion of
the production relation and the plateau as in { 3).

Unconditional or ex ante expected profits are found by integrating { 3)
over the range of V:

E(fr)=//ﬂw)k[1>of(p)—P.,r(./\f)}pmv)wN)/z(:\ryaﬁm;\n (6)

where A(N) is the marginal distribution of soil test results,

—

h(N) :/h(z\fmgo(ﬂ)dﬂ, (7

3. Data and Estimation Results

The three functions needed to implement the preceding model and esti-
mate the value of soil testing are 1) the crop production function f{u), 2)
the prior density function of nitrates go(p). and ) the sampline distribution
(N} of soil test results. The posterior distribution of soil nitrate level is
obtained in the usual manner (see expression [ 4)) by combining the prior
distribution and the likelihood function. The production function and the
prior density of nitrates are estimated from data obtained in two sets of ex-
periments conducted in lowa between 1985 and 1991. Recall that we take
the position of a single producer and therefore do not address site-to-site

variability 1n estimating the production function.
3.1 Estimating the Production Function

Data collected from a set of experiments designed to determine the re-
lationships between corn yields and fertilizer applications were divided into
two subsets. One subset was used to estimate the production function { 1)
and the other was used to estimate the parameters of one of the two prior
distributions used in this study.

Data collected from a single site over a six vear period [1936-1991) were

used to estimate the unknown parameters in the production function f{).



The experiments involved three replications of 10 rates of preplant nitro-
gen fertilizer each year. The experimental site containing the 30 plots was
selected for uniform growing conditions. Each year, all other inputs were
applied at constant levels thought to be non limiting to crop yields at all
ten fertilizer rates. Data consisted of T = 180 nitrate test results obtained
from the 30 experimental plots on each of six years. The estimation of the
production function is complicated by a measurement error problem. The
LRP production function is assumed to relate vield to actual soil nitrate
concentrations. However, only soil-test-based estimates of nitrate concen-
trations are available. To minimize this problem in the current study we
average the three test results for each rate of fertilizer use. which vields a
data set for analysis consisting of n = 60 observations. The LRP function
was estimated using LSQ, a nonlinear least squares procedure in the soltware
package TSP (see references). This procedure estimates the parameters in
a nonlinear function with a finite number of non differentiable points. The
resulting estimated regression equation was

Estimated standard errors for g,, 7, and 4* were, respectively, 4.17. 0.39.

and 2.06, (on 45 error degrees of {reedom) .
3.2 Choice of a prior density

The prior distribution represents the tarner’s prior information about the
amount of nitrogen present in the soil before obtaining any soil-test mtor-
mation. To demonstrate the effects of prior information on the evaluation of
soil testing, the analysis 1s conducted for two different prior distributions, a
non informative uniform prior and a three-parameter gamma distribution.

The uniform prior distribution, x ~ Ufa, b), specifies an uterval (a.b)
that is believed to contain g and further specifies that a priori, p is equally
likelv to take any value in the interval. The random variable p has a distri-
bution with density

golpla. b) = 1/(b — a),
and with first two moments given by £{ula,b) = (a+0)/2 and Var(ula, b) =
(b—a)*/12. A uniform prior distribution is appropriate when the only infor-



mation the producer has is the range of likely nitrate concentrations. [u this
study, information about the values of « and b was obtained from the data
set described in the next paragraph. Based on this empirical evidence, it was
established that @ = 3 ppm and 0 = 30 ppm, so that under the uniform prior
distribution g has mean 16.5 ppm and standard deviation 7.8 ppm. Nitrate
concentrations less than 3 ppm are possible buc do not seem realistic for the
site of interest — 1 general, a prior distribution with some small probability
mass allocated to values near zero would be appropriate.

The informative prior distribution that we use is based on an analysis of
nitrate concentrations at four sites (not including the site used to estimate
the production function). The data actually represent soil-test results rather
than actual ground concentrations but we ignore the measurement error issue
in constructing the prior distribution. Data from four sites collected over a
number of years (five in all, 1987-Y1) were selected to represent the type
of variation to be expected in nitrate levels on a homogeneous field. The
relevant observations for gathering prior information are those correspounding
to zero fertilizer application (other observations corresponding to nonzero
fertilizer applications are ignored here). Pooling the data from the four sites
to estimate a representative prior distribution of nitrate levels across the field
is appropriate only if the sites are homogeneous with respect to the forces
that generate nitrate levels. If the four sites are not homogeneous. then the
pooled data might overstate the amount of variability relative to what would
be expected on a single producer’s fleld. For this analysis we used classical
methods to determine if pooling of observations from different sites (and
different yvears) can be justified. We fitted a linear model with site, year. site
x year, and replication as fixed effects. and then tested the null hypotheses
of a constant mean nitrate over sites. The hyvpothesis of equal means could
not be rejected at the 0.05 level so the full set of 60 observations was pooled

to gather information about .

Kernel estimates (Silverman. 1936, Chapter 3) of the distribution of the
60 test results from the zero application rate plots indicated that a skewed
(to the right) distribution might be a reasonable choice for an informative
prior for p. Therefore, a three-parameter gamma distribution was chosen
to represent the prior information about the value of g. The density of the

three-parameter gamma 1s



— &) exp[— (g — &)/ ]
golul9, 2, 6) = B8 /f;ff({g)(“ QI g aesopuse  (9)

The first two moments of a three-parameter gamma random variable are
given by E(ulf. A &) = & + A0 and var(ul0,A. &) = A%6. The location pa-
rameter ¢ was fixed, in this study, to be equal to 3 for reasons described in
discussing the uniform prior. The remaining prior parameters # and A were
estimated from the set of 60 observations using a maximum lkelihood pro-
cedure in TSP. Parameter estimates were 0 = 2.094 and A = 3.191. implying
that under the three-parameter gamma distribution the variable p has mean
9.7 ppm and standard deviation 4.6 ppm. Unde: the gamma distribution the
probability assigned to values greater than 30 ppm is < 0.003. The range of
values of ¢ under both the uniform and gamma priors is approximately the
same, but the mean and variance of the uniform prior density are noticeably

larger.
3.3 Estimation of the Sampling Distribution

The experimental dataset described in Section 3.2 (four sites for five
vears) includes three replications of each of ten fertilizer application lev-
els. Each of the 600 observations in the experiment is the soil-test result for
a single replication of a single fertilizer level at given site in a given vear.
Sixty of the observations are used to construct a plausible prior distribution
go(p). The remaining 540 observations (corresponding to nonzero fertilizer
application levels) are used to explore the shape of the soil-test sampling

distribution A(N|u).

Means and standard deviations over the three replicates at a given level of
fertilizer are plotted in Figure 2 (180 points in all). The standard deviation
of test results seems to be approximately proportional to the mean nitrate
concentration. and, conditional on mean concentration, the data do not ap-
pear skewed. A normal distribution with mean equal to 4 and variance equal
to v2u? (for unknown ~) was chosen to represent the sampling distribution of
soil test results for a given true concentration . 2(N[p). This distribution
will be a reasonable approximation as long as v is small, for otherwise some
probability would be assigned to negative soil test results. In this discus-

10



sion we implicitly assume that the nitrogen level of the soil prior to fertilizer
application is the same for all three replicates at a given fertilizer level.

Although this dataset suggests the functional form of the sampling dis-
tribution, it may not be appropriate for estimating v, which defines the
distribution of soil tests on a single homogeneous plot, because the 540 ob-
servations reflect the results on four different plots over five years. Instead.
a third set of data in which multiple soil tests were conducted on the same
plots each year for three years was used to estimate 7. Data for this study
were obtained without applications of nitrogen fertilizer. For each plot, sam-
ple means and variances were calculated. Following Cochran (1977, Chapter
6) the parameter v was estimated using the ratio estimator

SR S"Z
2,2 Loi=1 Yy
7= PR (10)
i NP = =5

where n is the number of plots, »; is the number of soil tests conducted on

2

the ¢-th plot, and V; and 57 are the mean and variance of soil test results in

the i-th plot. With "% 7 = 105, the estimate of the scale parameter was
4% = 0.01507, with a standard error of 0.005.

. A g . . . . . . . . .
Given 4 (ignoring uncertainty in this estimate ), the posterior distribution
of 1 can now be obtained. For the unitorm prior density,

pr(uiN) = {h“(i\’)]"(?ﬁ)—%(7/#)—1 exp{=0.5(vu) 4N = u)? 3277,
3 < <30, ‘ (1)

where

30 , 1 V=1 ¢ - ) . R
RN = / — (277 ()T exp{ =050y ) TN — ) g
3
<N <o (12)

is the normalizing constant and the superscript u denotes the use of the

uniform prior distribution.
When the prior distribution is the three parameter gamma distribution,

then the posterior distribution of ;2 has the form

11
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Figure 2: Soil test variability and mean nitrate concentration for 180 sample
plots with varying fertilizer application rates. Each point is the mean of three

replicates.



exp{=0.5(vu) 3N — u)*}  exp{—=A"'p—3)}
= — X - —— < <o
() (1 = 3)7 = DATL(0)
(13)
with

PV = [T exp (=050 Y ~ %)

(p =3 Pexp{=A""{u - 3]}
X VT0) dyr. (14)

In some Bayesian analyses we can summarize the posterior distribution
using simulations from the posterior distribution and do not need to calcu-
late the normalizing constant. In this application. however, the posterior
distribution (either ( 11) or ( 13)) will be integrated with respect to the
marginal densities of N (either { 12) or ( 14)) to obtain the expected profit,
the expected nitrogen application. and expected vield. Graphs of A*(V) and
RY(N) are shown in Figure 3. These densities were calculated using 20-poimnt
Gauss-Legendre quadrature. The errors that were made in this study using
Gauss-Legendre quadrature were approximately equal to 0.001. With the
gamma prior, the marginal density of N takes on the gamma shape. When
the prior is the uniform density, the marginal distribution of NV is flat for
the most part except near the tails where some values of .V are less likely to
occur because the most relevant values of g have zero probability under the
prior. The upper tail contains more probability than the lower tail, because
the variance of test results are proportional to p.

Graphs of the two posterior density functions p“(u|N) and p?(u|N], for
three outcomes of the soil test IV are shown in Figure 4. Because the varnance
of soil test results increases as u increases. both posterior densities are posi-
tively skewed for all V. The mode of p*(p|N) equals NV, as long as .V is in the
range supported by the prior distribution, becanse the sampling distribution
of test results dominates the posterior density when the prior distribution is
non informative. When the prior is the three parameter gamma distribution,
the posterior density gets shifted to the left reflecting the prior information
favoring small values of . This effect is most extreme for large values of V.

13
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Uniform Prior ” Gamma Prior

Optimal Solution without Soil Test

152.6 lbs
(y}  139.5 bu
E{=} $324.3

E{A} 82.71bs || E{A} 127.7 Ibs
E{y} 139.2bu || £{y} 139.3 bu
E{r} $334.2 || E{=} $327.2

Table 1: Optimal yields, quantities, and profits for two prior distributions
for u. We assume $0.15/1b for fertilizer, 32.50/bu for corn. and $1.50/ac for

application costs.

4, Results

The value of soil testing is estimated for a corn price of $2.50/bu and
a nitrogen fertilizer price of $0.15/1b. Application costs are 31.50/ac. The
producer who does not use the soil test maximizes expected profits with
respect to the unconditional (or prior) distribution of g, as in expression
( 6). The upper part of Table I presents the results obtained with no soil
test.

Optimal levels of fertilizer. expected vields, and expected returns over
fertilizer and application costs are provided for each of the two prior densities
considered in this paper. Expected yields and profits under the two priors
are similar, even though optimal fertilizer use is about eight percent smaller
with the uniform prior. The reason for the smaller average optimal fertilizer
application rate with the uniform prior is the greater prior probability that
soil nutrient concentrations are above the critical level of 25.52 ppm.

L6



The bottom part of Table 1 presents expected nitrogen applications.
vields, and profits for the soil-test user with the two priors. The reduction
in expected optimal fertilizer applications from use of the soil test is muct
greater with the uniform prior than with the gamma prior. This difference
arises because the uniform prior has greater variance than does the gamma
prior. In addition, the probability of receiving low test values (less than 10
ppm) is much greater for the gamma prior than for the uniform prior. Thus,
fertilizer applications with the samma prior remain large in most vears, and
the soil test does not have as great an impact as it does with the uniform
prior. This differential impact is reflected in the change in expected returns
due to adoption of the soil test. Without considering the per-acre cost of
the soil test, expected profits increase by $10.03 with the nnmiform prior and
by $2.93 with the samma prior. This difference illustrates the sensitivity of
the increase in expected profits to the form and amount of prior information
about nitrate concentrations. Producers with less specific prior information
who counsequently face considerable uncertainty about soil nitrate levels will
be more likely to adopt the soil test than those with strong prior information.

It is important to emphasize that although average behavior varies under
the two priors, individual decisions concerning fertilizer application do not
depend on the prior very much. Figure 5 shows the optimal application level
for different soil test results. Notice that the optimal application level 13
not very sensitive to the form of the prior distribntion used. There is little
difference over the range for which we expect to see N most often. The largest
differences occur for large soil test results. In that case, the information from
the soil test does not agree with the gamma prior. Consequently, under that
prior, we discount the test and apply about 23 Ibs/ac.. more than would be
needed under the uniform prior. Over the range for which we expect to see
N most often, there is little difference.

The results in Table | indicate that adoption of the soil test can greatly re-
duce fertilizer applications. particularly when producers are uncertain about
soil nitrate levels. The soil test reduces optimal fertilizer applications hy 41
percent with the uniform prior. and by 15 percent with the gamma prior.
These reductions are obtained with little change in expected yields. That is.

adoption of the late spring test can lead to increases in the efficiency with

17
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which nitrogen fertilizer is used.

The reductions in average fertilizer rates ~hown in Table | can only be
achieved by increasing the variability with which nitrogen fertilizer is ap-
plied across one’s field and over time. As can be seen in Figure 5, optimal
rates vary from no fertilizer being applied to a maximum of 172 Ibs/ac. One
implication of Figure 5 is that regulations that limit maximum fertilizer appli-
cation rates would decrease the incentive for voluntary adoption of the soil
test because they would limit a producer’s ability to apply large amounts
of fertilizer when soil nutrients are low. A regulation that would be more
consistent with variable rate fertilizer plans would be one that limits average
applications of fertilizer rather than maximum rates. Limits on average rates

would encourage adoption of variable rate plans because farmers would have
an increased incentive to use their fertilizer efficiently.

The importance of accounting flor vesidual risk with the soil test can be
determined by comparing the results in Table 1 with results obtaimed under
the assumption that the soil test reveals actual soil nitrate concentrations
with no error. Under the assumption of perfect information. average appli-
cation rates are 73.2 Ibs/ac with the uniform prior and 1214 [bs/ac with the
gamma prior. The change in expected profits frorm adoption of the soil test s
$13.61/ac with the uniform prior, and $6.34/ac with the gamma prior. Thus.
not accounting for residual risk vesnlts in large overestimates of the changes
that would result from adoption of the soil test. The chauge in average ap-
plication rates would be overestimated by 16 percent with the uniform prior
and by 36 percent with the gamma prior. The change in expected profits
from adoption would be overstated by 36 percent for the uniform prior and
by 116 percent for the zamma prior. The magnitude of these overestimates il-
lustrate the importance of carefully determining the extent to which residual

uncertainty remains after the adoption of uncertainty-reducing technologies.
5. Concluding Remarks

New production methods. like variable-rate fertilizer application. that
involve increased acquisition of information and application of management
skills. and decreased applications of chemical inputs are being promoted as
one way of reducing pollution from agriculture. The degree to which this
promise will be met voluntarily by producers depends on the profitability
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and costs of the new approaches. Here we have considered one example, the
late spring soil nitrate test used in dry-land corn production in the upper
Midwest. The test involves minimal out-of-pocket investment, but requires
farmers to make vearly adjustments in their fertilizer application rates. This
paper uses Bayesian methods to interpret the soil test results and thereby
determine optimal fertilizer application rates. The estimated value of the soil
test is quite sensitive to prior information about soil nitrate levels and the
accuracy of the soil test. Reductions in average nitrogen fertilizer application
rates of between 15 and 40 percent are likely to result from adoption of the
test for a continuous corn rotation. Whether the resuiting cost savings are
large enough to defray the costs of testing will determine the extent to which

the test is adopted.

To take full advantage of the soil test requires that farmers vary their
application rates from zero to 172 Ibs/ac. Thus, any restriction on maximum
allowable application rates will serve as a disincentive for farmers with respect
to adopting the variable-rate approach. A restriction that places a ceiling on
average application rates, however, would provide an incentive for farmers to
determine the level of available soil nitrogen before application of fertilizer.
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