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Abstract 

The effect of sampling error in estimation of farmers’ mean yields for crop insurance 

purposes is explored using farm-level corn yield data in Iowa from 1990 to 2000 and 

Monte Carlo simulations. We find that sampling error combined with nonlinearities in the 

insurance indemnity function will result in empirically estimated crop insurance rates that 

exceed actuarially fair values by between 2 and 16 percent, depending on the coverage 

level and the number of observations used to estimate mean yields. Accounting for the 

adverse selection caused by sampling error results in crop insurance rates that will exceed 

fair values by between 42 and 127 percent. We propose a new estimator for mean yields 

based on a common decomposition of farm yields into systemic and idiosyncratic com-

ponents. The proposed estimator reduces sampling variance by approximately 45 percent 

relative to the current estimator.  

 

Keywords: actual production history (APH), crop insurance, mean yields estimation, 

sampling error. 



 

 

USING A FARMER’S BETA FOR IMPROVED ESTIMATION OF  
ACTUAL PRODUCTION HISTORY (APH) YIELDS 

 
 

The basis for the amount of crop insurance that a U.S. farmer can purchase and the 

cost of the insurance is a producer’s Actual Production History (APH) yield. A pro-

ducer’s APH yield is used to estimate her expected yield. Producers with a high APH 

yield can buy more insurance while paying a lower insurance rate. (An insurance rate 

equals the total premium for the insurance policy divided by the total liability for the 

policy.) This type of relationship between the insurance rate and expected yield is consis-

tent with yield variability—measured by the coefficient of variation—that decreases as 

mean yield increases.  

The exact current rules for calculating APH yield are complicated.1 In their sim-

plest form, APH yields equal the simple average of past yields. A minimum of 4 years 

and a maximum of 10 years of yield data go into the calculation of the average yield. A 

common complaint about the rules is that they unduly penalize farmers in a region that 

experiences abnormally poor growing weather. For example, when drought hits, most 

farmers’ yields in the region will fall, thus decreasing their APH yields. The weight 

given to the drought yield is equal to the weight given to every other yield in calculat-

ing APH yields regardless of the likelihood of a future drought. Similarly, a bumper 

crop will increase a farmer’s APH yields and will be weighed equally with other yield 

observations, even if the conditions that led to the bumper crop are extremely unlikely 

to repeat themselves. This suggests that farmers who reside in regions that have had 

good (poor) recent growing conditions will tend to have APH yields that exceed (are 

below) their true expected yields.  

APH yields can also provide a poor estimate of a farmer’s mean yield because of in-

dividual farmer luck. Individual yield luck can take many forms. A farmer can suffer 

significant hail damage while the neighbor across the street suffers none. A farmer can 

choose to plant Bt corn in a year when a significant corn borer infestation occurs. A 
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farmer can obtain significant rainfall at a critical stage of crop growth while a neighbor-

ing farmer misses out. A farmer may miss the only suitable planting period because of a 

broken planter.  

Noisy estimates of farmers’ expected yields imply that farmers with positive average 

noise (APH yield greater than expected yield) will be undercharged for their insurance 

coverage whereas farmers with negative average noise will be overcharged. If both 

groups of farmers participate in the program, then one can hope that the overcharge will 

tend to compensate for the undercharge so that the financial soundness of the program is 

unaffected. However, for most yield distributions, actuarially fair insurance rates are 

convex with respect to coverage level (Babcock, Hart, and Hayes 2004). Thus, the 

average rate charged will tend to be less than the average of the actuarially fair rates, 

resulting in a net undercharge. A potentially larger problem is the adverse selection that 

will result when the producers who are overcharged for insurance drop out of the pro-

gram and those who are undercharged increase their participation (Just, Calvin, and 

Quiggin 1999).  

Of course, all estimators of expected yield will result in this problem, because a 

farmer’s true expected yield can never be observed. However, an estimator with a lower 

variance than the current estimator should lead to a reduction in adverse selection and 

more accurate crop insurance rates. 

The objective of this paper is to estimate the magnitude of the problem caused by 

noisy estimation of farmers’ mean yields and to propose a new estimator for use in the 

crop insurance program. The proposed estimator is based on a commonly used decompo-

sition of farm yield into systemic and idiosyncratic components. The importance of 

systemic yields depends on a farmer’s “beta,” which measures the sensitivity of farm 

yields to changes in area yields. The conditions under which the proposed estimator will 

reduce variance are determined and a combination of bootstrapping and Monte Carlo 

simulations is used to show the likely magnitude of the reduction for corn producers in 

Iowa. The potential economic impact on the Iowa corn insurance program of moving to 

the new estimator is examined. We find that sizeable improvements on the actuarial 

performance of the program can be achieved by simply switching estimators.  
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Conceptual Model 
This section adapts the conceptual model developed by Just, Calvin, and Quiggin 

(hereafter abbreviated JCQ) to the problem at hand. As previously stated, the amount of 

insurance producers can buy and the premium they have to pay for it is a function of their 

APH yield. However, the APH yield is just an estimate of farmers’ expected mean yield. 

As an estimator, the APH yield of any given producer is itself a random variable. APH 

insurance (the government’s main form of yield insurance) makes an indemnity payment 

if yields are below a yield guarantee that is the product of a producer-selected coverage 

level and the producer’s APH yield. The offered coverage levels range from 50 to 85 

percent in 5 percent increments. Producers can also choose a price guarantee level ( gp ). 

The insurance premium ( )gαω  is contingent upon these choices and the yield distribution 

( )G y  on which the program is based, which has a mean equal to the farmer’s APH yield 

( )aµ . The yield distribution captures the yield variability assigned by the Risk Manage-

ment Agency (RMA) to a farm with an observed APH yield of aµ . Adapting JCQ’s 

model to include insurance premium subsidies explicitly (Coble and Knight 2001), the 

revenue under insurance for a farmer for a given output price and yield realization is 

given by 

 ( ) ( )
( ) ( )

1 if
1 if

g a

g a g a

py s y
y

py p y s y
α α

α α

ω αµ
φ

αµ ω αµ
 − − ≥=  + − − − <

 

where α  is the selected coverage level, y  denotes yield, and sα  is the subsidy rate, which 

is contingent on the coverage level. For any realization of the APH yield estimator and 

the actual farm level yield density ( )f y , expected returns to crop insurance are  

 ( )( ) ( ) ( ) ( ) ( ) ( )
0

1a

a a g a gE y py I C p y f y dy s
αµ

α αφ µ µ αµ ω− = − = − − −∫ , (1) 

where ( )aI µ  denotes the indemnity expected by a farmer with an APH yield aµ , and 

( )aC µ  represents that farmer’s premiums. Note that ( )
2

2
2 0g a
a

I p fα αµ
µ
∂

= ≥
∂

. For any 



4 / Carriquiry, Babcock, and Hart 

 

yield distribution, expected indemnities are a convex function of the APH yield. Hence, 

Jensen’s inequality indicates that in an insurance program in which premiums are actuari-

ally fair (in expectations), farmers in aggregate expect to collect indemnities in excess of 

the premiums in the long run, which works against the insurance program’s actuarial 

soundness. This happens even when farmers choose to participate independently of their 

realized APH yield. 

Adverse selection aggravates this problem. To look at the role that APH yield esti-

mation plays in adverse selection we first need to estimate how expected net returns from 

the program vary with the realization of a farmer’s APH yield. We examine the current 

rate structure for all Iowa counties. Premiums for corn are first decreasing and then 

increasing in a farmer’s APH yield. The APH yield as a proportion of the county ex-

pected yield at which the minimum premium is obtained (and its slope thereafter) varies 

by county. There is only one county (Webster) in which the minimum premium is 

obtained for an APH yield below the county mean yield (at 97 percent of the county 

expected yield). At the other extreme, the minimum premium would be paid by a farmer 

who has an APH yield that doubles the county mean yield (199.5 percent of the expected 

yield) in Clarke County. The slope of the premium schedule after the minimum is at-

tained is quite modest for all counties. The average slope of the 75 percent coverage level 

premium schedule when the APH yield increases above the county mean is 0.0121 gp  

$/acre, with a minimum of 0.0001 gp  $/acre in Clarke County and a maximum of 

0.0158 gp  $/acre in Cherokee County. In short, given that expected indemnities are 

increasing in APH yields  

( ) 0g a
a

I p Fα αµ
µ

 ∂
= > ∂ 

, 

expected returns to insurance are likely to increase with the APH yield assigned.2  

Figure 1 illustrates this point for a representative farmer who has a yield distribution with 

mean µ . Details of the methods used to generate the expected indemnities and premiums 

portrayed in the figures are presented next.  
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FIGURE 1. Expected indemnities and premiums for a representative farmer with 
mean yield µ  and a 65 percent coverage level  
 

When the realization of the APH rule is below (above) the farmer’s true mean yield, 

the farmer will find insurance overpriced (underpriced) and will expect negative  

(positive) returns from participation. The farmer will expect a zero return on crop insur-

ance participation only when her APH coincides with her true mean (assuming that the 

premium is actuarially fair on average). This is exactly the asymmetric information effect 

quantified by JCQ, where farmers with APH yields above their true mean yield will be 
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offered “fair premiums” (from the RMA’s standpoint) that are lower than their expected 

indemnities. Figure 1a shows a possible distribution of APH yields, in the case in which 

the APH rule is an unbiased estimator of the mean yield. With an unbiased rule, it can 

easily be seen that taking expectations over all farmers’ APH yields will result in ex-

pected indemnities exceeding expected premiums, even with no adverse selection. 

Because time trends in yields are not accounted for in the RMA’s APH yield deter-

mination, as JCQ and other authors (e.g., Skees and Reed 1986) correctly point out, a 

farmer’s APH yield will, on average, be lower than the expected mean yield, and the 

region of negative returns to insurance is expanded or has a higher probability of occur-

rence (see Figure 1b). JCQ found that on average, both insuring and non-insuring farmers 

expected negative returns to unsubsidized crop insurance. 

Adverse selection occurs when program participation rates are higher for farmers 

who expect a positive return on insurance. A positive return occurs when the assigned 

APH yield is higher than farmers’ true mean yield (see Figure 1). The magnitude of the 

expected return to crop insurance depends on the difference between the APH yield and 

the subjective mean yield. When a farmer’s APH yield is larger than the true mean yield, 

the effective coverage level provided is higher than the coverage level contracted. A 

farmer with mean yield µ  who chooses coverage level α  and is assigned an APH yield 

of aµ  receives an effective coverage level of ( )aα µ µ .3 In this situation, the RMA ends 

up with an adversely selected risk pool and incurs excess losses. Increases in rates to 

mitigate losses will only result in a more adversely selected risk pool, since only produc-

ers whose APH yield exceeds their mean yield by a larger amount will stay in the pro-

gram. As shown in Figure 1b, a biased APH yield reduces the proportion of farmers who 

find that insurance increases expected returns. This lowers participation in the crop 

insurance program.  

One way to improve the actuarial soundness of the program and mitigate the inci-

dence of adverse selection is to subsidize premiums. The effects of this policy are illus-

trated in Figure 2. 

Subsidizing the premium increases the probability of participation because it makes 

participation profitable for a portion of farmers with APH yields that are below their true 

mean yields. Our representative farmer will now participate as long as her realized APH  
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FIGURE 2. Expected indemnities, premiums, and subsidized premiums for a  
representative farmer  
 

yield is above aµ  in Figure 2. Because aµ <µ , the premium subsidy reduces adverse 

selection. The subsidy effect improves the prospects of the crop insurance program for all 

producers but may not be enough to overcome the asymmetric information effect for 

some producers. 

This result agrees with JCQ’s analysis. For the 65 percent coverage level, JCQ did 

not find differences between the mean subsidy effects for insuring and non-insuring 

producers of corn and soybeans.4 On average, insuring producers had a less negative 

asymmetric information effect. In our framework, that would correspond with a represen-

tative farmer who has an APH between aµ  and µ . 

The current analysis makes clear that subsidies only partially mitigate the adverse se-

lection problem. From the perspective of expected revenue incentives, the risk pool will 

be adversely selected whenever there is noise in the estimation of a farmer’s expected 

yield and the insurance is not fully subsidized.  

These problems are likely to be compounded at higher coverage levels, since both 

the slope and the curvature of the expected indemnity–APH yields schedule increase with 

the coverage level.5 Figure 3 depicts the expected indemnities and subsidized premium 

schedules for our representative farmer for two coverage levels.  
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FIGURE 3. Expected indemnities and subsidized premiums for a representative 
farmer  
 

Figure 3 indicates again that the producer will not buy the offered insurance (from an 

expected returns standpoint) if the realized APH yield is low enough. Since the break-

even APH yield for the 65 percent coverage level is lower than for the higher coverage 

levels, the producer will choose first to participate at the 65 percent coverage level as 

APH yields increase. At some point after the realized APH yield surpasses the next 

break-even point, the producer will choose to switch to the higher coverage level. The 

exact APH yield that will trigger the switch will depend on the slopes of the expected 

indemnities and premiums under both coverage levels. Figure 3 indicates that the insurer 

can expect that the losses from the adversely selected pool will increase with both the 

APH yield and the coverage level. That is, Figure 3 suggests that losses in excess of 

premiums will be greater at the 85 percent coverage level than at the 65 or 75 percent 

coverage levels. This finding is consistent with the empirical findings of Coble et al. 

(2002) that resulted in premium surcharges for 75 and 85 percent coverage levels.  

In JCQ, corn farmers who insured at the 75 percent coverage level (the highest avail-

able at that time) expected larger returns to insurance than did farmers who insured at the 

65 percent coverage level. Our framework explains that result. If the insurance parameter, 

namely the APH yield, is high enough, producers can increase returns by switching to 

higher levels of coverage.  
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The foregoing discussion reveals that in order to improve the actuarial soundness of 

the crop insurance program, it is crucial for the RMA to obtain better estimates of ex-

pected farm-level yields. Before presenting an alternative estimator and the conditions 

upon which the new estimator performs better than the APH rule, we explore the eco-

nomic magnitude of the problem for the case of Iowa corn insurance. 

 

Impact of Uncertainty in the Estimation of Expected Yields 

A Model of Yields 

Farm yields can be decomposed into systemic and idiosyncratic components 

(Miranda 1991; Mahul 1999; Vercammen 2000):  

 ( ) ( )1it c i i ct c it i c i i ct ity y yµ δ β µ ε β µ δ β ε= + + − + = − + + + , (2) 

where cµ  is the area mean yield, iδ  is the difference between the area mean yield and 

farm mean yield, cty  is the area yield in year t, and itε  is the farm-yield deviation in year 

t. Also, 

 2 20 ( ) ( , ) 0 ( )
iit it it ct ct cE Var Cov y Var yεε ε σ ε σ= = = =  

 2 2 2( )
iit i c i it i c ct cEy Var y Eyεµ µ δ β σ σ µ= = + = + = . 

This decomposition is appealing because of its simplicity and its similarity with the capital 

asset pricing model of finance, which provides clear interpretations for its main parameter 

iβ . In this model, iβ  measures the sensitivity of farm yields to the systemic factors affect-

ing area yield. Recently, Ramaswami and Roe (2004) derived this linear form from the 

aggregation of microproduction functions. They showed that linearity only attains if the 

systemic and non-systemic individual risk components of the production functions are 

additive. Additionally, to estimate the beta parameter using ordinary least squares (OLS) 

requires that the decomposition should consist of two uncorrelated risks, which requires the 

aggregation to be large (eliminating all individual risk from the area aggregate).  

A variant of this model was used to rate Income Protection (Atwood, Baquet, and 

Watts 1996). This rating method uses equation (2) with a slight modification in order to 
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obtain estimates of the residuals. These residuals are then used to construct simulated 

farm yields.6 While recognizing that premiums are affected by the precision involved in 

the estimation of a farmer’s expected yields, Atwood, Baquet, and Watts do not elaborate 

further on this point and do not investigate the implications of using this widely em-

ployed model for obtaining better estimators than the simple averages of farm-level yield 

history. Other authors (Miller, Kahl, and Rathwell 2000a,b), rating insurance products for 

peaches in Georgia and South Carolina, have restricted beta to be one. Miranda (1991) 

showed that the area-weighted average of the betas of all farmers in the relevant region 

must equal one. However, there is no reason why beta should equal one for all farmers, 

and empirical estimates seem to indicate that farmers’ beta values in an area are symmet-

rically distributed around one. 

How Severe Is the Problem? 

We use the model of farm-level yields in equation (2) to quantify the magnitude of 

the problem resulting from the current rating practices for corn insurance for the nine 

crop reporting districts (CRD) in Iowa. Hence, the relevant area for a given farmer is her 

CRD. We obtained farm-level yield data for farmers in each CRD of Iowa from 1990 to 

2000. The farm-level yield data were made available to us by the RMA. For each CRD, 

we obtained 49 years (1956-2004) of corn yield data from the National Agricultural 

Statistics Service. All yields, whether at the farm or CRD level, are multiplicatively 

detrended to a base year (2004).  

Equation (2) was estimated using OLS. We assume that the variance of the idiosyn-

cratic shock is equal for all farmers within a CRD. The regression residuals were used to 

estimate this variance as a (degrees of freedom) weighted average of the error variance 

estimated for each farmer. That is, the variance of the idiosyncratic shock in district k is 

( )( )
( )

2

, ,1 12
,

1

ˆ ˆ ˆ1
ˆ

2

jJ T
it k i c i i ct kj t

k J
jj

y y

T
ε

β µ δ β
σ = =

=

− − − −
=

−

∑ ∑
∑

, 

where jT  denotes the number of yield observations available for farmer j , and J  is the 
total number of farmers in the CRD. As in Atwood, Baquet, and Watts, only data from 
farmers with at least eight yield observations were used in the analysis. Note that this 



Improved Estimation of Actual Production History (APH) Yields / 11 

 

variance would increase if the model were estimated using field-level rather than farm-
level data. 

Expected indemnities and pure premiums were estimated based on yield simulations 

(based on equation (2)) for the average farmer in the pool. The average farmer in the pool 

has 1β =  (see Miranda 1991) and 0iδ = . For each CRD, 10,000 yield samples of size 10 

were constructed by bootstrapping from the set of detrended yields for that CRD. Sets of 

farm-level yields were obtained by adding an error term independently drawn from a 

normal distribution with zero mean and variance 2
,ˆ kεσ  to each area yield sampled. We 

constructed APH yields by averaging over 4 through 10 observations on each sample, 

obtaining 7 different APH yield distributions by CRD. By construction, APH distribu-

tions based on fewer observations are mean-preserving spreads of the distributions that 

average more years of data; hence, we can compare the benefits of obtaining more 

precise estimators of a farmer’s expected yield.  

For each distribution of APH yields in each CRD, a lattice is constructed by obtain-

ing the empirical quantiles in 1 percent increments. Each point in the lattice is a possible 

realization of the farmer’s APH yield and is what the insurer (RMA) observes and uses in 

the inference about the farmer’s levels of risk. From the insurer’s perspective, a farmer’s 

expected yield deviates from the area yield by a a cδ µ µ= − . The farmer is assumed to 

know her yield distribution.7 We construct 200,000 farm-level yields for each sampled 

point in each APH yield distribution from both the farmer’s perspective, through equation 

(2) by bootstrapping area yields and adding a draw from the error distribution, and the 

insurer’s perspective, by replacing 0iδ =  with a a cδ µ µ= −  for each realization of the 

APH yield. Hence, we can estimate the expected indemnity for the farmer and the actu-

arially fair premium from the insurer’s perspective for each realized aµ  of each distribu-

tion. The exercise is repeated for three coverage levels, namely 65 percent, 75 percent, 

and 85 percent, and the nine CRDs in Iowa. What we are trying to accomplish with these 

simulations is the measurement of the impacts of random APH yields on the ratio of 

indemnities that will be paid out under random APH yields to the indemnities that one 

expects to be paid out if the farmer’s true mean yield were known. Results, for a price 

guarantee gp  normalized to one, are presented in Tables 1-5. 
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TABLE 1. Ratio of the average value of expected indemnities across all APH yields to 
expected indemnities calculated at the true mean yield by Iowa crop reporting district 
 APH Distribution Based On 
 4 Observations 10 Observations 
Coverage 65% 75% 85% 65% 75% 85% 

CRD Participate independently of realized APH yield 
10 1.198 1.210 1.205 1.079 1.087 1.088 
20 1.111 1.203 1.221 1.036 1.073 1.083 
30 1.135 1.177 1.189 1.052 1.074 1.077 
40 1.175 1.173 1.158 1.074 1.080 1.070 
50 1.119 1.140 1.171 1.051 1.063 1.075 
60 1.134 1.165 1.193 1.052 1.057 1.073 
70 1.163 1.169 1.166 1.067 1.068 1.071 
80 1.126 1.151 1.158 1.050 1.064 1.067 
90 1.114 1.145 1.163 1.046 1.059 1.070 
 Participate only when expected indemnity > premium 

10 1.724 1.737 1.729 1.399 1.406 1.409 
20 1.491 1.707 1.793 1.265 1.371 1.432 
30 1.568 1.665 1.709 1.315 1.366 1.394 
40 1.733 1.713 1.680 1.415 1.411 1.391 
50 1.559 1.576 1.647 1.329 1.333 1.368 
60 1.512 1.603 1.680 1.279 1.320 1.368 
70 1.670 1.684 1.680 1.381 1.386 1.390 
80 1.559 1.620 1.644 1.310 1.346 1.363 
90 1.499 1.573 1.626 1.289 1.327 1.363 

 

Table 1 presents the ratio of the expected value of indemnities under random APH 

yields to the expected indemnities that would result if the true mean yield ( 0iδ = ) was 

known. The top half of Table 1 assumes that all farmers participate in the program 

regardless of the level of their APH yield. The bottom half of Table 1 assumes that 

farmers only participate if their APH yield is greater than their mean yield. The average 

value of the expected indemnities are taken with respect to the APH yield distributions 

that would result from 4 or 10 farm-level yield observations in a district. As a conse-

quence of the convexity of the expected indemnities curve with respect to assigned APH 

yields (analyzed in the previous section), all ratios in the table exceed one, with the 

magnitude contingent on the underlying yield distribution. This has a discouraging 

implication. It indicates that the farmer expects to obtain positive returns (hence the 

insurer expects losses) from insurance that is fairly priced when the farmer’s APH yield 
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equals her true mean yield. The results also show that as the level of uncertainty in the 

estimation of the APH yield decreases (as more yield observations are used in its calcula-

tion), so does the ratio, indicating an expected indemnity closer to that when the true 

mean yield is known. For example, a representative farmer in CRD 50 would expect to 

collect indemnities 14 percent higher (if she participates regardless of her APH yield) 

than the fair premium calculated at the true mean yield for a coverage level of 75 percent 

and an APH yield based on four observations. If farmers have 10 observations, they then 

expect indemnities to exceed fair premiums by 6.3 percent.  
This problem is aggravated if adverse selection is present (bottom half of the table). 

If the farmer decides to buy insurance (again at 75 percent coverage) only when she 

knows that the realized APH yield exceeds her expected yield, she will expect to receive 

57.6 percent more in indemnities for an APH yield rule based on four observations than 

what she would have expected if her true mean yield was known by the insurer. The 

expected excess payout drops to 33 percent when 10 yield observations are used to 

construct APH yields. 

Table 1 provides some insight into why crop insurance rate making is so difficult. 

Rates are typically based on loss experience so that all farmers with an APH yield equal 

to, say, 150 bu/ac are grouped together, and their historical losses are averaged to come 

up with a premium rate. The results in Table 1 suggest that the resulting premiums will 

be significantly greater than the expected indemnities that a farmer who has a true mean 

yield of 150 bu/ac will expect to receive from the program. This then discourages farmers 

from joining the program. Of course, the rate-making problem is magnified under adverse 

selection because it is more likely that those farmers who have true mean yields less than 

150 bu/ac will be in the program. 

Table 1 does not account for changes in premiums that will be charged as the APH 

yield changes. That is, we assume that all farmers are charged the actuarially fair pre-

mium for the true mean yield. Of course, the true mean yield is unobservable, so it is 

useful to calculate the premium for each APH yield draw that is viewed as being actuari-

ally fair from the perspective of the insurer, who believes that the farmer’s true mean 

yield equals the farmer’s APH yield. Table 2 reports the ratio of the average of expected 

indemnities to the expected premium charged, with the average taken with respect to the 
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TABLE 2. Ratio of the average value of expected indemnities to expected actuarially 
fair premiums by Iowa crop reporting district 

 APH Distribution Based On 
 4 Observations 10 Observations 

Coverage 65% 75% 85% 65% 75% 85% 
CRD Participate independently of realized APH yield 

10 1.133 1.170 1.184 1.051 1.063 1.071 
20 1.075 1.173 1.215 1.023 1.063 1.083 
30 1.085 1.146 1.177 1.035 1.060 1.073 
40 1.109 1.140 1.150 1.058 1.067 1.070 
50 1.078 1.113 1.160 1.036 1.049 1.070 
60 1.089 1.150 1.185 1.026 1.051 1.066 
70 1.109 1.149 1.162 1.053 1.066 1.072 
80 1.102 1.137 1.154 1.039 1.053 1.062 
90 1.080 1.126 1.157 1.030 1.049 1.065 
 Participate only when expected indemnity > premium 

10 2.219 2.010 1.862 1.633 1.534 1.468 
20 1.785 1.968 1.973 1.419 1.505 1.527 
30 1.932 1.910 1.852 1.502 1.489 1.469 
40 2.276 2.006 1.832 1.696 1.562 1.474 
50 1.956 1.789 1.770 1.542 1.444 1.434 
60 1.788 1.833 1.817 1.417 1.436 1.435 
70 2.151 1.978 1.835 1.631 1.545 1.475 
80 1.919 1.848 1.771 1.493 1.459 1.425 
90 1.812 1.784 1.753 1.459 1.440 1.429 

  

distribution of APH yields. Whether this ratio is greater or less than one depends cru-

cially on the relative curvature of the expected indemnities and premium schedules with 

respect to APH yields. 

The entries in the upper half of Table 2 are greater than one, indicating that the ex-

pected indemnities schedule is more convex than the premium schedule. Comparing the 

upper halves of Tables 1 and 2, it is easy to see that the ratios are larger in Table 1, which 

indicates that the premium schedule is also convex. This is in agreement with the curva-

ture of premium schedules (with respect to APH yields) for corn currently in use in all 

Iowa counties. The small magnitude of the difference (which averages 3.7 percent and 

2.2 percent for 4 and 10 observations respectively) indicates that the premium schedule 

with respect to the APH yield departs slightly from linearity.8 
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Comparing the results in the bottom halves of Tables 1 and 2 confirms that the ex-

pected fair premium for APH yields that are greater than the true mean yield are less than 

the premium at the true mean yield. Hence, if our average farmer in CRD 50 buys insur-

ance only when expected indemnities exceed premiums, then expected returns are 78.9 

percent and 44.4 percent greater than expected premiums for APH distributions based on 

4 and 10 observations, respectively, and a 75 percent coverage level.  

Table 3 presents the expected returns to unsubsidized crop insurance (i.e., equation 

(1) with 0sα =  for all coverage levels) for a price guarantee normalized to one. The table 

includes both the situation in which farmers buy insurance regardless of the realized APH 

yields and in which farmers participate only for APH yields that result in expected 

indemnities that exceed the actuarially fair premium (from the insurer’s perspective) 

based on that APH yield. As expected after the analysis of Table 2, all entries in Table 3 

are positive, indicating again that, on average, farmers will obtain positive returns to 

insurance for all contracts considered, even if the decision to purchase does not depend 

on the realized APH yield.9 This differs from the results of JCQ, who estimated negative 

expected returns to unsubsidized crop insurance. But this difference in results should be 

expected because JCQ, in accordance with the rules used to compute APH yields, did not 

detrend the farm-level yield series. 

We observe again that the expected returns to crop insurance decrease when the 

precision with which expected yields are estimated increases. This can be seen by 

comparing expected returns by district and coverage level for the estimators based on 4 

and 10 observations. In the same line, the correlations (not shown) between the vari-

ance of yields of the average farmer (in each CRD) and expected returns under the “buy 

always” rule range from 0.93 (at 65 percent coverage and an APH yield based on 10 

observations) to 0.98 (65 and 75 percent coverage levels and an APH yield based on 4 

observations). The correlations are even higher for the other participation rule. This is 

expected since larger farm level-variances will result ceteris paribus in a less precise 

estimator under the current APH rule. The current discussion highlights the importance, 

at least from an actuarial sustainability standpoint, of obtaining better estimators of the 

farmer’s expected yield.  
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TABLE 3. Expected returns (bu/ac) from unsubsidized corn insurance to the average 
farmer by Iowa crop reporting district  

  APH Distribution Based On 
  4 Observations 10 Observations 

Coverage  65% 75% 85% 65% 75% 85% 
CRD Yield Variance Participate independently of realized APH yield 

10 907.9 0.111 0.338 0.786 0.041 0.124 0.302 
20 783.8 0.051 0.250 0.711 0.015 0.089 0.272 
30 939.8 0.090 0.321 0.788 0.037 0.129 0.324 
40 964.0 0.115 0.336 0.734 0.058 0.157 0.339 
50 898.8 0.076 0.239 0.674 0.035 0.103 0.295 
60 1044.9 0.123 0.391 0.908 0.036 0.132 0.325 
70 1035.3 0.149 0.415 0.864 0.069 0.182 0.382 
80 1550.7 0.339 0.727 1.274 0.126 0.283 0.510 
90 1236.2 0.174 0.473 0.998 0.064 0.183 0.409 
  Participate only when expected indemnity > premium 

10  0.748 1.674 3.364 0.428 0.939 1.886 
20  0.434 1.180 2.910 0.247 0.647 1.626 
30  0.772 1.698 3.465 0.449 0.960 1.960 
40  0.967 2.001 3.699 0.578 1.181 2.168 
50  0.720 1.437 2.988 0.441 0.847 1.727 
60  0.891 1.872 3.684 0.503 1.029 2.023 
70  1.158 2.284 4.070 0.692 1.341 2.384 
80  2.421 3.896 5.907 1.402 2.219 3.354 
90  1.421 2.552 4.406 0.858 1.499 2.579 

 

It is also clear from Table 3 that expected returns can be increased in the presence of 

uncertainty in the estimate of APH yields by the average farmer in each district by simply 

increasing the coverage level. This confirms the analysis of the previous section.  

Table 4 presents the expected returns to insurance (equation (1)) for the average 

farmer for the case in which premiums are subsidized at the current program rates (59, 

55, and 38 percent for coverage levels 65, 75, and 85 percent, respectively). Obviously, 

each entry in Table 4 is larger than its analogous entry in Table 3, and the patterns with 

regard to yield variability are maintained. Our results are consistent with those reported 

by JCQ. These authors reported expected returns of $0.95/acre and $3.93/acre for corn 

farmers choosing 65 and 75 percent coverage levels, respectively, for a price guarantee of 

$2.00/bu. The averages of the expected returns for the 75 percent coverage level across 

districts when farmers will only purchase if they expect positive returns are 2.32 bu/acre 

and 1.76 bu/acre for the APH rules based on 4 and 10 observations, respectively. Given  
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TABLE 4. Expected returns from subsidized corn insurance to the average farmer 
by Iowa crop reporting district 

 APH Distribution Based On 
 4 Observations 10 Observations 

Coverage 65% 75% 85% 65% 75% 85% 
CRD Participate independently of realized APH yield 

10 0.603 1.428 2.411 0.520 1.202 1.925 
20 0.455 1.043 1.968 0.411 0.870 1.523 
30 0.721 1.531 2.479 0.649 1.322 2.004 
40 0.738 1.654 2.590 0.655 1.454 2.182 
50 0.655 1.404 2.274 0.600 1.255 1.888 
60 0.945 1.821 2.775 0.844 1.552 2.190 
70 0.950 1.951 2.895 0.845 1.694 2.403 
80 2.292 3.646 4.419 2.061 3.195 3.661 
90 1.461 2.539 3.407 1.331 2.234 2.818 
 Participate only when expected indemnity > subsidized premium 

10 0.789 1.816 3.579 0.577 1.317 2.390 
20 0.519 1.247 2.917 0.428 0.927 1.952 
30 0.884 1.888 3.681 0.692 1.411 2.484 
40 0.989 2.176 4.013 0.738 1.612 2.714 
50 0.820 1.688 3.246 0.651 1.340 2.265 
60 1.089 2.149 3.964 0.878 1.634 2.673 
70 1.228 2.492 4.405 0.928 1.857 2.994 
80 2.779 4.470 6.447 2.171 3.402 4.405 
90 1.731 3.036 4.881 1.404 2.357 3.387 

 

that the price is normalized to one in our analysis, the bu/acre figures also represent 

$/acre figures. The same statistics are 1.89 bu/acre and 1.64 bu/acre if farmers buy the 

insurance regardless of the realized APH yield.  

Table 5 presents an alternative way of visualizing the importance of obtaining more 

precise estimators of farm-level expected yields. Table 5 reports the elasticity of expected 

returns to corn insurance in Iowa with respect to the variance with which the expected 

farm-level mean yield is estimated for the average farmer. The table provides information 

about the relative changes in expected returns and hence the impacts on the sustainability 

or cost reductions of the program that can be achieved through better estimators of a 

farmer’s expected yield. The impacts are highest when the farmer’s participation decision 

is independent of the APH yield assigned and the insurance is unsubsidized. In that 

situation, a 1 percent reduction in the variance of the estimator results in about the same 
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TABLE 5. Elasticities of expected returns to insurance with respect to the variance of 
the estimator of the expected yield by Iowa crop reporting district 

 
Participate Independently  

of APH 
 Participate Only If 

E(Indemnity)>Premium 
Coverage 65% 75% 85%  65% 75% 85% 

CRD Unsubsidized insurance 
10 1.07 1.08 1.04 0.63 0.66 0.66 
20 1.27 1.10 1.04 0.64 0.68 0.66 
30 0.99 0.99 0.97 0.62 0.65 0.65 
40 0.77 0.85 0.86 0.59 0.60 0.61 
50 0.88 0.93 0.91 0.56 0.60 0.62 
60 1.28 1.16 1.10 0.65 0.68 0.68 
70 0.85 0.91 0.90 0.59 0.61 0.61 
80 1.06 1.03 1.00 0.62 0.64 0.64 
90 1.09 1.03 0.98 0.58 0.61 0.61 

Average 1.03 1.01 0.98 0.61 0.64 0.64 
 Subsidized insurance 

10 0.17 0.20 0.26  0.36 0.37 0.46 
20 0.12 0.21 0.30  0.22 0.34 0.46 
30 0.12 0.17 0.25  0.28 0.34 0.45 
40 0.14 0.15 0.20  0.34 0.35 0.45 
50 0.10 0.13 0.22  0.27 0.27 0.42 
60 0.13 0.19 0.27  0.25 0.32 0.45 
70 0.14 0.16 0.22  0.32 0.34 0.45 
80 0.12 0.15 0.22  0.29 0.32 0.44 
90 0.11 0.15 0.22  0.24 0.29 0.42 

Average 0.13 0.17 0.24  0.29 0.33 0.45 
Note: Elasticities are calculated through the midpoint formula. 

 

percent reduction in expected returns to insurance. The other extreme is the situation in 

which participation is still independent of the APH yield but the crop insurance is subsi-

dized. In this case, a 1 percent reduction in the variance of the estimator decreases 

expected returns to insurance from 0.1 to 0.3 percent. However, the absolute reduction is 

similar for both cases. When a farmer’s participation is contingent on the APH yield 

realized, the same elasticities are between 0.56 and 0.68 for the unsubsidized insurance 

and between 0.22 and 0.46 if insurance is subsidized.  

Increasing the number of observations that enter the calculation of APH yields from 

4 to 10 leads to a 60 percent reduction in the variance with which the expected yields are 

estimated10 and therefore to a reduction in expected returns (losses) for the average 
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farmer (insurer) that ranges from 8.4 to 69.6 percent depending on the CRD, coverage 

level, and participation strategy followed. If one believes that farmers will only purchase 

insurance when expected returns are non-negative, the reduction averages 42 and 26 

percent for the unsubsidized and subsidized insurance, respectively. 

 

An Alternative Estimator 
Equation (2) gives a justification for current APH rules. In any given year, a farmer’s 

APH yield is simply the average of yields in the preceding T  years:  

( )( ) ( )11 t
it c i i ck c ik c i i ct c itk t T

y T y yµ δ β µ ε µ δ β µ ε−−
= −

= + + − + = + + − +∑ .11 

If farm luck ( )itε  and area luck ( )ct cy µ−  are both zero, then the average of past yields 

exactly equals the mean farm yield. Justification for assuming that both sources of luck 

are zero is that the expected value of luck is zero, and the standard deviation of luck 

decreases with the square root of the number of observations. 

However, the probability that luck is exactly zero is zero. Furthermore, the maximum 

number of observations that can go into calculating APH yields is 10, so the standard 

errors of area and farm-yield deviations are reduced by no more than a factor of about 

three. In addition, we have not yet accounted for possible yield trends. If we assume that 

area yields may be changing over time, and if the goal is to estimate the current expected 

yield for insurance purposes for a farmer, the average of past yields is a downward-biased 

estimator. The magnitude of the bias increases with the number of periods considered.  

Equation (2) allows us to identify the factors (other than the time trend) that make a 

farmer’s APH yield different from her expected yield. Based on T  observations of farm- 

and area-level yields, the difference between a farmer’s APH yield and expected yield is 

( )( )it it i ct ct ity E y yβ µ ε− = − + . Thus, if an area has had good (bad) luck and iβ  is 

positive, then the farmer’s APH yield will tend to be greater (less) than her expected 

yield. If the farmer has a iβ  of zero, then area luck will have no influence on her APH 

yield. The last term shows the effect of “on-farm luck” in the difference between the 

APH yield and expected yield. 
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The decomposition presented in equation (2) suggests an alternative to the current 

APH rule for calculating a farmer’s expected yield, taking advantage of the information 

embedded in the area yield data. Equation (2) can be rewritten as 

 ( )1it c i i i ct it i i ct ity y yµ β δ β ε α β ε= − + + + = + + ; (3) 

hence, ( )i i i cE y α β µ= + . Assuming that the aggregation in the area yield is large 

enough, and after detrending farm and area level yields to a common base year, the 

regression parameters ( ),i iα β  can be estimated applying OLS to equation (3).12 By the 

law of iterated expectations, and assuming that ˆcµ  is unbiased for the area expected 

yield, an unbiased estimator of farmer i ‘s expected yield is given by ˆˆ ˆ ˆi i i cy α β µ= + .13  

To compare yield estimators, we use the mean square error (MSE) criterion. The 

MSE of the APH yield estimator is given by  

 ( ) ( ) ( )( )22
APH it i it it iMSE E y Var y E yµ µ= − = + − . 

The APH yield estimator is biased downwards whenever yields are increasing over time. 

This problem with the APH rule was already reported by Skees and Reed (1986) and by 

JCQ.14  

Assuming that farm-level yields follow a linear trend (the form fitted by Skees and 

Reed, and by Sherrick et al. 2004) of the form 0 1ity tγ γ= + , the bias is given by 

( )1 1 2Tγ− + .15 Thus, the severity of the bias depends, as expected, on the rate at which 

yields grow over time and on the number of periods of history considered. Since the 

current APH rules make no attempt to correct for the time trends, it is not clear whether 

farmers with longer histories will have an APH yield more in line with their expected 

yields than farmers with fewer (but more recent) yield records.  

Since, as previously argued, the proposed estimator is unbiased, its MSE equals its 

variance, given by ˆ( )NEW itMSE Var y= , and the proposed estimator is an improvement 

over the APH rule whenever NEW APHMSE MSE< , or, equivalently, whenever  

 ( ) ( )( )2ˆ( )it iTt iTt iVar y Var y E y µ< + − , (4) 
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where T  highlights the number of observations used. 

The variance of the APH rule can be derived from equation (3) as 

 ( )1 1 1 2 2 2( ) ( ) ( )iTt it i i ct it i cVar y T Var y T Var y T εα β ε β σ σ− − −= = + + = +  

and its MSE is 

 ( ) ( )( )
1

21 2 2 2 2 1 2APH i cMSE T Tεβ σ σ γ−= + + + . 

We are now in a position to derive the variance of the proposed estimator. We first derive 

the variance under the assumption that we know the expected value of the area yield. The 

effects of relaxing this assumption are discussed in the Appendix. 

When cµ  is known, equation (2) is rewritten as * *
it i i ct ity yδ β ε= + + , where 

*
it it cy y µ= −  and *

ct ct cy y µ= − , and the parameters iδ  and iβ  are estimated by OLS. Let 

*
cNY  denote the (detrended) sample of area yields, where N denotes the number of obser-

vations in the sample. The regression parameters are estimated using the iT  observations 

for which paired data ( )* *,it cty y  for farmer i  are available. For any arbitrary choice of the 

area yield *'
cy  the estimate of farmer i ’s expected yield is *' * *'ˆ ˆˆ ,

ii c cT c i i cy y Y yµ δ β= + + , and 

the variance of the estimator is given by  

 ( ) ( ) ( )
( )

2'
*' * *' *' * 2

2

1

1ˆ ˆˆ , , i

i i i

i

c cT
i c cT c i i c c cT T

i cj cTj

y y
Var y y Y Var y y Y

T y y
εµ δ β σ

=

 − = + + = +  − ∑
, 

which is just the variance of the regression line at *'
c cy y= . Now we need to acknowledge 

that the regressors are stochastic. As is well known, the OLS estimates are still the 

minimum variance linear unbiased estimators for iδ  and iβ  (Greene 1999, p. 246). By 

the conditional variance identity (see Casella and Berger 2001, p. 167), 

 ( ) ( )
( )

2'
*' 2

2

1

1ˆ i

c i

i

c cT
i c y T

i cj cTj

y y
Var y y E

T y y
εσ

=

  −  = +   −   ∑
. 
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Hence, the estimator for farmer i ’s expected yield is ˆˆi c iµ µ δ= +  (i.e., the regression 

equation evaluated at *' 0cy = ), which has an associated variance of 

 ( ) ( )
( )

2

*' 2
2

1

1ˆ 0 i

c i

i

c cT
i c y T

i cj cTj

y
Var y y E

T y y
ε

µ
σ

=

  −  = = +   −   ∑
. (5) 

We are now ready to compare the MSE of both estimators for farmer i ’s expected 

yield. In this case, the proposed estimator results in a lower MSE whenever 

 
( )
( )

( ) ( )( )
1

2

22 1 2 2 2 2
2

1

1 1 2i

c i

i

c cT
y i i c iT

i cj cTj

y
E T T

T y y
ε ε

µ
σ β σ σ γ−

=

  −  + < + + +   −   ∑
, (6) 

or, equivalently, whenever 

 
( )
( )

( ) ( )( )
1

2

22 1 2 2 2
2

1

1 2i

c i

i

c cT
y i i c iT

cj cTj

y
E T T

y y
ε

µ
σ β σ γ−

=

 −  < + +  − ∑
. (7) 

Equations (6) and (7) allow us to identify conditions under which the proposed estima-

tor will perform better than the APH rule in the sense of MSE. From equation (7), increas-

ing the number of periods used to compute the APH rule without detrending the yield 

observations will likely increase APHMSE  and decrease NEWMSE .16 Hence, the proposed 

rule will likely perform better than the current APH rule, and even more so when the 

idiosyncratic risk ( 2
εσ ) is small. Equation (7) also indicates that the APH rule has a greater 

chance of outperforming the proposed estimator when iβ  is close to zero, and/or it cannot 

be estimated precisely. This makes sense because we are likely to introduce noise in trying 

to estimate iβ ’s (and control for a systemic component) that have little effect on the farm-

level yield. The introduced sampling variability may outweigh the risk we are trying to 

remove. Also, the proposed estimator will perform better than the current APH rule when 

the variance of the area yield increases for a given mean area yield. To see this, note that 

the left-hand side of equation (6) can be rewritten as 
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( )

( )
( )

( )

2*2 *2
1 2

2 *2* *
1

1
1

i

c ci
c

T
cj cj

NEW y yT
i i i ycj cj

y y
MSE E E

T T T sy y
ε

ε
σ σ=

=

   
   = = +   − −   

∑
∑

, 

which is non-increasing in the variance of the area yield, whereas the right-hand side of 

equation (6) increases in the same variable.  

From this point on, we will compare the proposed estimator against an “improved” 

APH rule applied on detrended farm-level yields. After correcting for the bias of the APH 

rule, equation (7) becomes 

 
( )
( )

2
2 2

2
2

1

i

c i

i

c cT i c
y T

icj cTj

y
E

Ty y
ε

µ β σσ
=

 −  <  − ∑
, (8) 

or 

 ( )
2

2 2 2 1
i

c

c

c cT i
y i c

y i

y T
E

s Tε

µ
σ β σ

 − −
<  

 
, 

or 

 ( )
2

2 2 2 1i

c

c

c cT
y i c i

y i

y
E T

s Tε

µ
σ β σ

 −
  < −
 
 

, (9) 

which makes the previous discussion more transparent.17 

Figures 4-6 help to illustrate when we can expect the proposed estimator to outper-

form the “improved” APH rule. Since both estimators are now unbiased, only their 

variances are compared. To save space, only figures for Iowa CRD 50 are presented. 

Other districts yielded the same general patterns. 

The farm-level yields used to compute the variance of the estimators were con-

structed using the same procedures detailed in the previous section. For every case, δ  

was fixed at zero. Farm-level yields and pairs of farm- and area-level yields were simu-

lated and used to compute the bootstrapped variances for both estimators. 
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Figure 4 provides a comparison of the variance of the two estimators as the number 

of observations available per farm changes. Increasing the number of observations 

increases the precision for both estimators. When 0.5iβ =  (Panel a), the proposed 

estimator performs worse than the “improved” APH rule when few farm yield observa-

tions are available; however, this difference disappears (or reverses marginally) as the 

amount of available information increases. The relatively poor performance of the 

proposed estimator in this situation was expected. Equation (8) indicates that the pro-

posed estimator will perform worse than the “improved” APH rule when iβ  is low and 

there are few observations (for any given 2
εσ  and 2

cσ ). It may well happen that the short 

series of area yields used in the estimation of iβ  has low variability (in the sense of 

having several similar observations), preventing a precise estimation of the regression 

parameters. This problem will be mitigated when a longer time series of area level yield 

data becomes available.  

Panels (b) and (c) of Figure 4 show that the proposed estimator has a uniformly lower 

variance than the “improved” APH rule when iβ  increases, except perhaps when 4iT = , 

when, as just mentioned, the proposed estimator may exhibit erratic behavior. Note that an 

increase in iβ  increases the systemic component of variance; hence, the total farm-yield 

variance increases also because we are holding constant the idiosyncratic component of 

variance. The change in the relative performance is because the “improved” APH rule 

performs worse and worse as the variance of the farm-level yield increases.  

Figure 5 shows the relationship between a farmer’s beta and the variance of the esti-

mators of the expected farm-level yield for different sample sizes. It makes clear that the 

total farm-level variability does not affect the variance of the proposed estimator. We 

believe this is an important advantage of the proposed estimator, since the “improved” 

APH rule will be likely to miss the target by more for producers with larger risk. The 

vertical distance between the two curves in any given panel of Figure 5 measures the 

difference in the variance of the two estimators considered. For example, switching to the 

proposed estimator will result in a reduction of 65.5, 58.6, and 39.4 (bu/acre)2 in the 

variance with which the expected yield for the average farmer (those with 1iβ = ) based 

on 5, 8, and 10 observations, respectively, is estimated. It is worth noting that for low 
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FIGURE 4. Relationship between the variance of an unbiased APH rule and the 
proposed estimator  
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FIGURE 5. Variance of the unbiased APH rule and proposed estimator for different 
values of beta and number of observations 
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values of beta the “improved” APH rule performs marginally better than the proposed 

estimator, whereas the latter greatly outperforms the former for larger betas.  

The analysis presented up to this point indicates that the proposed estimator will per-

form better than an improved APH rule when the contribution of the systemic risk to the 

farm-level yield risk is large and when the parameters of the hypothesized relationship 

can be estimated precisely. This reveals that in any given area, the variance with which 

expected farm-level yields are estimated will decrease with the proposed estimator for 

some farmers, whereas it is likely to increase for other farmers. Therefore, the next 

question is, Will we obtain aggregate variance reductions in a region by switching to the 

proposed estimator? The answer hinges on the distribution of betas within the region.  

To obtain insight into the magnitude of the variance change that one could expect in 

aggregate by switching to the proposed estimator, we estimated the expected variance 

change for all Iowa CRDs when the estimators are based on 4 to 20 yield observations. The 

results are presented in Table 6 and Figure 6. Figure 6 presents the expected variances for 

both estimators as a function of the number of observations available for CRD 50.  

As just mentioned, a distribution for the betas in each region is required for this task. 

Betas for individual farmers in a region were estimated by applying OLS to equation (2) 

for each farm in our data set for which we had at least eight yield observations. The 

average beta for each CRD was close to one, as expected, and the standard deviations 

were approximately 0.4 for all districts. As in Miranda (1991), the distribution of betas 

was centered at the mean, possessing no discernable skewness. Tests for normality failed 

to reject the null hypothesis (at a 5 percent confidence level) for all CRDs, and hence that 

distribution was used to obtain the distribution of betas by region.18  

Figure 6 shows that the expected variance of both estimators decreases as the number 

of observations increases. More interestingly, Figure 6 shows that the expected variance of 

the proposed estimator is lower than the variance of the APH rule, except when there are 

just four observations available. The performance of both estimators improves at a decreas-

ing rate as the number of observations used increases. Table 6, which presents the percent 

changes that would result from switching to the new estimator, indicates that this pattern is 

shared by all CRDs. Table 6 also reveals the erratic behavior, previously discussed, of the 

proposed estimator when only four observations are available for the current data set. 
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FIGURE 6. Expected variance of the estimators considered as a function of the 
number of observations available for Iowa crop reporting district 50 
 

 
The main conclusion from Table 6 is that significant reductions in expected vari-

ances can be obtained by switching to the proposed estimator. This is especially true for 

farmers for which a large number of observations are available. This points out that gains 

in variance reduction beyond those resulting from increasing the number of observations 

can be achieved by switching estimators. 

 

TABLE 6. Percent change in the expected variance as a result of moving from the 
current APH rule to the proposed estimator of expected yields for all CRDs in Iowa 
 Number of Observations in the Estimator 

 4 5 6 7 8 9 10 20 
CRD (percent change in variance) 

10 289.0 -23.1 -34.9 -40.5 -43.5 -45.4 -47.0 -52.3 
20 125.8 -15.1 -32.3 -37.3 -41.4 -42.2 -44.6 -48.8 
30 20.5 -17.3 -30.4 -35.3 -40.2 -42.6 -44.0 -49.1 
40 2.2 -26.9 -39.6 -43.9 -47.7 -50.0 -51.7 -56.5 
50 4.7 -31.0 -40.3 -42.0 -45.6 -48.0 -49.2 -53.8 
60 17.7 -18.2 -28.5 -33.1 -38.0 -39.6 -41.9 -47.9 
70 143.2 -27.0 -36.9 -40.9 -44.2 -46.2 -47.3 -51.5 
80 149.0 2.6 -21.0 -28.7 -33.1 -35.3 -37.1 -43.1 
90 4.9 -39.9 -47.4 -51.0 -54.0 -55.2 -56.8 -60.5 
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Our analysis suggests that the best use of the estimator may be as a complement to 

the current APH yield estimator. In that line, it may be best to combine both estimators 

by using the current rule when there are few observations (four in our analysis), and 

switch to the new estimator after that. Of course, the current APH rule should be revised 

to account for yield trends.  

The estimates of the elasticities of expected returns to crop insurance to the variance 

of the estimator of expected yields presented in the previous section indicate that sizeable 

improvements to the actuarial soundness of the Iowa corn insurance program are feasible 

by using the proposed estimator for expected yields for farmers with more than four years 

of validated yield registries.  

An estimate of the economic importance of the reduction in variance shown in Ta-

ble 6 can be obtained by multiplying the estimated elasticities of net profit from insur-

ance with respect to variance by this change in variance. Table 7 reports the resulting 

estimates of the percent change in expected net profit from adoption of the proposed 

estimator. 

Table 7 shows that a reduction in the variance of the estimator of expected yields will 

significantly reduce the expected net profit from insurance. This reduction would lead to 

improved rate making because premium rates would be better matched with expected 

yields and there would be a reduction in the problems caused by adverse selection because 

of a reduction in the deviations between true mean yields and APH yields. 

 

Conclusions 
This paper studies the impact of uncertainty in the estimation of farm-level expected 

yields on the actuarial soundness of the U.S crop insurance program. Reducing uncer-

tainty about farm-level expected yields has the potential to significantly improve the 

actuarial performance of U.S. crop insurance and reduce problems associated with 

asymmetric information, such as adverse selection. 

A conceptual model of insurance is presented and used to obtain insights about the 

magnitude of the impact and the potential for improvement. The framework is put to 

work using corn yield data from all CRDs in Iowa. The analysis suggests that significant 

gains from an actuarial perspective can be achieved by obtaining more precise estimators 
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TABLE 7. Expected percent change in producer returns to crop insurance at the 75 
percent coverage level from moving to the proposed estimator 

 
Participate for  
All APH Yields 

Participate Only When Expected 
Indemnity > Premium 

 Unsubsidized Subsidized Unsubsidized Subsidized 
Number of  

observationsa 5 10 5 10 5 10 5 10 
CRD         

10 -24.9 -50.7 -4.6 -9.4 -15.2 -30.8 -8.6 -17.5 
20 -16.7 -49.1 -3.2 -9.4 -10.3 -30.3 -5.2 -15.3 
30 -17.2 -43.7 -3.0 -7.5 -11.2 -28.5 -5.8 -14.9 
40 -22.8 -43.8 -4.0 -7.8 -16.2 -31.1 -9.4 -18.0 
50 -28.7 -45.5 -4.0 -6.4 -18.7 -29.6 -8.3 -13.2 
60 -21.1 -48.5 -3.4 -7.8 -12.3 -28.4 -5.8 -13.3 
70 -24.5 -43.0 -4.4 -7.8 -16.4 -28.7 -9.2 -16.1 
80 2.7 -38.1 0.4 -5.7 1.7 -23.7 0.8 -11.7 
90 -41.2 -58.6 -6.0 -8.5 -24.2 -34.5 -11.7 -16.7 

Average -21.6 -46.8 -3.6 -7.8 -13.6 -29.5 -7.0 -15.2 
a Number of farm-level yield observations in the estimator. 

 

of a farmer’s expected yield. Additionally, better estimates of the farm-level yield would 

allow insurers to rate the products more accurately.  

We propose a new estimator to replace or complement the current APH yield estima-

tor of farm-level expected yields in the U.S. crop insurance program. The conditions 

upon which the proposed estimator is an improvement over the current APH rule are 

identified. Our findings suggest that significant improvements are feasible by moving to 

the new estimator for producers who have several years of yield records. Region-specific 

analyses are warranted to determine the number of observations needed to obtain the 

touted improvement for other crops and regions of the country. 



 

 

Endnotes 

1. See http://www.rma.usda.gov/FTP/Publications/directives/18000/pdf/05_18010.pdf 
for a complete description of APH rules. 

2.  A sufficient condition for returns to insurance to be non-decreasing in APH is 

0g

a

αω
µ

∂
≤

∂
. If we let 

ag g ap rα αµω αµ= , where, as in JCQ, 
a

rαµ  is the pure premium 

rate, the previous condition translates into , 1
ar µε ≤ − . The elasticity of the premium 

rate with respect to the APH yield is , ar µε . The necessary condition is 

( ) ( ),1
a aa rF rαµ µαµ ε≥ +  for all aµ . From the analysis of Iowa premium schedules for 

corn just presented, the last inequality is very likely to hold for most farmers in every 
county of Iowa. 

3.  Clearly, the intended and actual coverage levels will coincide only when the APH 
yield and true mean yield coincide, which of course has a zero probability of occur-
rence. 

4.  They did find differences at the 75 percent level.  

5.  Note that ( ) ( )( )
2

0g a a a
a

I p F fαµ αµ αµ
µ α
∂

= + ≥
∂ ∂

, and  

( ) ( )3

2 2 0a
g a a

a

fI p f
y
αµ

α αµ αµ
µ α

∂ ∂
= + ≥ ∂ ∂ ∂ 

. 

 The latter inequality will be violated only by highly unlikely combinations of α  and 
aµ  for which the second term is sufficiently negative (which implies a negative 

slope for the probability density function). Considering that the maximum coverage 
level is 85 percent and there is widespread agreement that yield distributions are 
negatively skewed (assuming unimodality), the APH yield would have to be at least 
18 percent (1/0.85) higher than the true mean for the second term to be negative.  

6.  The formula used in rating Income Protection simulates farm yield j for farmer f in 
year q as ( ), ,

ˆˆf f f f f
q j q q j qy y u e C C= + + . The variables with a “tilda” are proportions of 

the county trend yield. The term within parentheses combines an estimate of the 
farm-level average proportion ( fy ) yield, a deviation explained by the county pro-
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portional variation ( ( )1 2
ˆ ˆˆ f f f f f

q qu b b C C= + − ), and a residual term ( ,
f

q je ) obtained 
from a regression of farm yield on county yield and represents uncorrelated variabil-
ity. The terms outside the parentheses convert the resulting proportions into actual 
yields.  

7.  Since the realized APH yield ( aµ ) is an estimate of the farmer’s expected yield 
( c iµ δ+ ), after observing the APH yield the insurer updates his beliefs about the 
farmer’s expected yield by setting a a cδ µ µ= − .  

8.  Note that the percentage difference between elements in the upper halves of Tables 
1 and 2 is just the ratio of expected premiums to premiums at the true mean yield.  

9.  Note additionally that the values reported in Tables 3 and 4 are expected returns for a 
given contract. In reality, farmers can change from one coverage level to another in 
successive periods, a choice that makes them at least as well off as when the cover-
age level is fixed. 

10.  Note that this is constant across districts since  

( ) /10 ( ) / 4% *100 60%
( ) / 4

Var y Var yVariance
Var y

−
∆ = = − . 

11.  We keep the time subscript on the deviations because they will vary by year. 

12.  We detrend to take care of the time-varying expected yields.  

13.  ( ) ( ) ( )ˆˆ ˆ ˆ ˆ ˆ
c ci i i c c i i c i i cE y E E Eµ µα β µ µ α β µ α β µ= + = + = + . 

14.  These authors identified this bias as a reason for participation problems.  

15. Bias = ( ) ( )( )1
, ,1

T
i t k i tk

E T y E y−
−=

−∑  

  ( )( )( ) ( )1 1
0 1 0 1 11 1

T T

k k
T t k t T kγ γ γ γ γ− −

= =
= + − − − = −∑ ∑ . 

16.  Note that the current APH rule considers only values of Ti greater than 3. For an area 
yield variance of 500 (bu/acre)2 (the variance of corn yields for the nine CRDs of 
Iowa was estimated to be between 360 and 780), a iβ  of 1, and a trend slope of 2 
bu/acre/year, the minimum APHMSE  is attained when 6iT ≈ . 

17.  As the sample size increases, the central limit and Slutsky’s theorems indicate that 
equation (9) reduces to ( )2 2 2 1i c iTεσ β σ< − , since  
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( ) ( )0,1i c

c c

i c cT y

y y

T y
N

s

µ σ
σ

−
→ . 

 Also, if one can argue that the average of farm-level yields (based on few observ-
tions) is approximately normally distributed, equation (9) reduces to 

( )2 2 2 3c Tεσ β σ≤ − . These formulas point to the same conclusion: the proposed esti-
mator will be an improvement over the current rule when the idiosyncratic risk is 
small compared with the systemic risk, when the correlation between farm- and area-
level yields is strong, and when the number of observations is large.  

18.  Analysis based on the empirical distributions of beta for different CRDs yielded 
similar results. 

 



 

 

Appendix 

Expected Area Yield Is Unknown 
If we recognize that even with the amount of information available about area-level 

yields our estimate of its mean is still imperfect, we need to use the model described by 

equation (3). Note that this problem becomes less and less relevant as time goes by and 

more information is available. At some point, the expected area yield can be estimated 

with negligible variance. 

In this case, the unconditional variance (applying again the conditional variance 

identity and assuming that our estimator for the expected area yield is independent of the 

observations used to estimate the parameters of the model) is given by 

 ( ) ( )
( )

( )
2

2 2
ˆ 2

1

ˆ1ˆ ˆi

c c i

i

c cT
i y i cT

i cj cTj

y
Var y E E Var

T y y
ε µ

µ
σ β µ

=

  −  = + +   −   ∑
. (A.10) 

Note that if we can estimate the expected area yield with enough precision, equations 

(5) and (A.10) will yield similar results. 

We are now ready to compare the MSE of both estimators for farmer i ‘s expected 

yield. In its full generality, the proposed estimator results in a lower MSE whenever 

 
( )
( )

( ) ( ) ( )( )
1

2

22 2 1 2 2 2 2
ˆ 21

1

ˆ1 ˆ 1 2i

c c i

i

c cT
y i c i cT

cj cTj

y
E E Var T T T

T y y
ε µ ε

µ
σ β µ β σ σ γ−

−

=

  −  + + < + + +   −   ∑
 

or, after replacing for the “improved” APH rule, 

 
( )
( )

( )
2

2 2
2 2

ˆ 2

1

ˆ
ˆi

c c i

i

c cT i c
y i cT

icj cTj

y
E E Var

Ty y
ε µ

µ β σσ β µ
=

  −   + <   −   ∑
. (A.11) 
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Rearranging equation (A.11) further, and if N observations in the area yield are used 

to estimate its expected yield through a sample average, we obtain 

 
( )
( )

( )
2

2
2 2 2 2

ˆ 2

1

ˆ 1 1ˆi

c c i

i

c cT c
y i c i cT

i icj cTj

y
E E Var

T T Ny y
ε µ

µ σσ β µ β σ
=

  −       < − = −          −   ∑
. (A.12) 

Again, as the variance of the estimate of the area expected yield becomes smaller 

(for example as N goes to infinity) equation (A.12) becomes 

( )
( )

2
2 2

2
2

1

ˆ
i

c i

i

c cT i c
y T

icj cTj

y
E

Ty y
ε

µ β σσ
=

 −  <  − ∑
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