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and apply a methodology for estimating compensating variation, relying on Monte Carlo
integration to derive expected welfare changes.
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l. INTRODUCTION

Traditional econometric methods for modeling consumer demand rely upon the
specification of an indirect utility function, Roy’s Identity, and the assumption of an
interior solution to the consumer’s utility maximization problem in order to derive an
estimable system of demand equations. There are many applications, however, in which
the assumption of an interior solution is unrealistic and, instead, corner solutions prevail.
For example, in modeling recreation demand, it is typical to find that most households
visit only a small subset of the available sites, setting their demand for the remaining sites
to zero® Similar corner solutions emerge in studies of both labor supply (e.g., Ransom
(19874, b), Lacroix and Fortin (1992), and Fortin and Lacroix (1994)) and food demand
(e.g., Wales and Woodland (1983) and Yen and Roe (1989}hese situations, it is
well known that failure to allow for the possibility of zero expenditure on one or more
goods can lead to inconsistent estimates of consumer preferences.

Two broad strategies have emerged in the literature to deal with corner solutions.
The first strategy, labeled the Amemiya-Tobin model by Wales and Woodland (1983),
proceeds by initially deriving systems of demand equations without regard to non-
negativity restrictions. The model then enforces these restrictions by employing an
extension of Tobin’s (1958) limited dependent variable model for single equations, later
generalized by Amemiya (1974) for systems of equations. In particular, a truncated
distribution for the random disturbances is used to ensure non-negative expenditure
shares, while allowing for a non-trivial proportion of the sample to have zero expenditure
on one or more goods. Applications of the Amemiya-Tobin model have been

implemented for a variety of goods. A sampling includes Wales and Woodland’s (1983)
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analysis of meat demand and Heien and Wessells’ (1990) study of general food
consumption.

This approach has dominated the recreation demand literature. Single demand
models or systems of demands for recreation have been estimated using a variety of
estimators, including the tobit, Heckman, and Cragg models (Bockstael, Strand,
McConnell, and Arsanjani (1990), Ozuna and Gomez (1994), Smith (1988), and Shaw
(1988)), and a variety of count data models (Smith (1988), and Englin and Shonkwiler
(1995)). Morey (1984) estimates a system of share equations that adopts a density
function assuring strictly positive shares. The strand of this literature that has focused on
multiple recreation sites has taken the Amemiya-Tobin model one step further. A two-
stage budgeting argument has been used to separately analyze the total number of trips
and the allocation of those trips among the available recreatior $hesfirst stage site
selection models use a discrete choice random utility framework. Corner solutions are
then explicitly controlled for in the second stage model of the total number of trips using
estimators that correct for censoring alone (Bockstael, Hanemann, and Kling (1989);
Morey, Waldman, Assane, and Shaw (1990); and Morey, Shaw, and Rowe (1991)) or in
combination with count models (Creel and Loomis (1990); Feather, Hellerstein, and
Tomasi (1995); Hausman, Leonard, and McFadden (1995); and Yen and Adamowicz
(1994)). Although representing a range of estimation approaches, these models all share
the Amemiya-Tobin reliance on statistical adjustments to represent corner solutions.

The second strategy for dealing with corner solutions takes a more direct approach
to the problem beginning with the consumer’s maximization problem. Dubbed the Kuhn-

Tucker model by Wales and Woodland (1983), it assumes that individual preferences are
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randomly distributed over the population. The standard Kuhn-Tucker conditions
characterizing individual utility maximization are then also randomly distributed,
providing the basis for probabilistic statements regarding when corner conditions will
occur and for constructing the likelihood function used in estimation. Initially developed
by Wales and Woodland (1983) and Hanemann (1978) starting with the direct utility
function, the approach has subsequently been extended to a dual form starting with the
specification of the indirect utility function (Lee and Pitt (1986a) and Bockstagel,
Hanemann, and Strand (1986)).

The appeal of the Kuhn-Tucker strategy lies in the unified and internally
consistent framework it provides for characterizing the occurrence of corner solutions.
Since it begins explicitly with a utility function, all of the restrictions of utility theory are
automatically satisfied. In addition, the behavioral implications of corner solutions are
automatically incorporated.* However, due to the complexity of the model, there have
been few applications (e.g., Wales and Woodland (1983), Lee and Pitt (1986b),
Srinivasan and Winer (1994), and Ransom (1987a)) and none in the area of recreation
demand.® Furthermore, little attention has been paid to the problem of welfare analysis
within the Kuhn-Tucker framework. Due to the non-linearity of the model, closed form
solutions for compensating or equivalent variation will typically not be available,
requiring instead the use of Monte Carlo integration techniques.

The purpose of this paper istwo-fold. First, we provide an empirical application
of the Kuhn-Tucker model to the problem of recreation demand and site selection,
modeling the demand for fishing in the Wisconsin Great Lakes region. Federal and state

agencies are actively involved in management of the local fish populations and
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environmental conditionsin this region. Understanding the demand for the resulting
recreation opportunities will allow regulators to better evaluate existing programs and the
impact of potential policy changes. Second, we develop and apply a methodology for
estimating compensating variation in the context of the Kuhn-Tucker model, relying on
Monte Carlo integration to derive the expected welfare effects of several hypothetical

policy changes in the Great Lakes region.

. MODEL SPECIFICATION
A Behavioral Model
The Kuhn-Tucker model begins with the assumption that consumers preferences over
aset of M+1 commodities can be represented by arandom utility function, which they
maximize subject to a budget constraint and a set of non-negativity constraints. In particular,

each consumer solves;

Max U(x,z,q,Y,€) Q)
st.

p'’xX+z<y (2a)
and

z20,x,20,j=1...,.M (2b)

where U ()] is assumed to be a quasi-concave, increasing, and continuously differentiable
function of (x,z), x =(x,...,Xy)" isavector of goods to be analyzed, zis the numeraire
good, p =(p,,..-, Py)" isavector of commodity prices, y denotes income, and

€ =(&,,...,&,)" isavector of random disturbances capturing the variation in preferencesin
the population. The disturbance vector is assumed to be known to the individual, but
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unobservable by the analyst. The vector q = (q,,...,d,,)" represents attributes of the M

commodities.® The inclusion of commodity attributes is particularly important in recreation
demand studies since policy analysisis often interested in the welfare implications of
changing the environmental quality of asite.

The first-order necessary and sufficient Kuhn-Tucker conditions for the utility

maximization problem are then given by:

U;(x,zq,y,€) = ol (x,éz;(q,y,s) <Ap;,X; 20, xj[Uj(x,z;q,y,s)—/\pj]:O j=1...,
| (39)
U,(x,zq,Y,&) = oV (X’Z;Zq’y’s) <A, 220, 4U,(x,zq,y,e)-1]=0, (3b)
and
p'’x+z<y,A=20, (y-p'x-24 =0, (3¢)

where A denotes the marginal utility of income. For ssmplicity, we assume that the numeraire
good is anecessary good, so that equation (3b) can be replaced by
A=U,(X,z0q,Y,€). (3b")
In addition, since U (] isincreasing in x and z, the budget constraint will be binding, with
Z=y-p'x. (3c)
Substituting equations (3b") and (3c') into (3a) yields the M first-order conditions associated

with the commodities of interest:

U,(x,y=p'xq,Y,€) < pU,(X,y=p’'X;q,Y,€), X 20,xj[Uj —Uzpj]:o j=1...,M.
(3a)



Finally, we assumethat U, =0, U, /s, =00k # j,and oU, /de; >00j =1...,M , s0
that”

U6y =p'%d,y,€) =U (XY =p'X; .Y, &), | =1..., M, (49)
with &J, /de; >00j =1,...,M and

U,(x,y-p'x0,Y,€) =U,(x,y-p'x;q,y). (4b)
Let g, = g;(x,y,p;a,Y) (i=1,...M) be implicitly defined as the solution to

Jj(X,y‘p’Xiq,V,gj)—JZ(X,y—IO’X:q,V)IO,- =0. (5)
The first-order conditions in equation (Bean be then be rewritten as:

£, <9,(%Y.paY), X 20, x,[&, ~g;(x,y.p;q,¥)] =0 j=1..., M. 6)

Equation (6), along with the specification of the joint density funcfidis)for €,
provides the necessary information to construct the likelihood function for estimation.
Consider an individual who chooses to consume positive quantities for only tlke first
commodities (i.e.x; >0, j=1,...,kandx; =0, j =k +1,...,M). The complementary
slackness condition in equation (6) implies that g, (x,y,p;q,y) for the consumed
commodities (i.e.,j =1,...,k), while for the remaining commaodities (i.g=k+1,... M) we
know only thate; < g;(X,Y,p;d,Y) . Thus, this individual’s contribution to the likelihood

function is given by the probability

9+1 M

| (Y AV o N M RN )

where J, denotes the Jacobian for the transformation feom (X,..., X, &gy €)' -

There are2" possible patterns of binding non-negativity constraints for which a probability
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statement such as (7) can be constructed. The likelihood function can then be formed as the
product of the appropriate probabilities and maximum likelihood can be used to recover
estimates of the utility function’s parameters.
B. Conditional Utility Functions and the Computation of Welfare Effects

A common reason for estimating the structure of consumer preferences over a set of
commodities is to provide a basis for welfare analysis. In particular, policymakers may be
interested in the welfare implication of changing the price or quality characteristics of the
existing set of alternatives, or of reducing the number of alternatives available. Formally, let

V(p,y;q,Y,€) denote the solution to the utility maximization defined in equations (1) and (2)
above. The compensating variati@) associated with a change in the price and attribute

vectors from(p®,q°) to (p*,q") is implicitly defined by

V(p° y;d°,y,€) =V(p,y+C(p°,a°,p",a", ¥;Y,€);4", Y, €) - (8)
There are several important attributes of the compensating variation measure that are worthy
of note. First, from the analyst’s perspecti@p°®,q°,p*,q",y;y,€) is a random variable.
Policy makers will typically be interested in the average value of this measure in the
population,C(p°,q°,p*,q%, y;y). Second, the non-linearity of the utility maximization
problem will typically preclude a closed form solution @or its average. As a result,
numerical techniques will be requirkd.

The process of computir@can be clarified by considering the utility maximization
as a two-stage process, in which the individual maximizes his or her utility conditional on a
set of binding non-negativity constraints and then chooses among the resulting conditional

indirect utility functions? Formally, let



A={04L,. . {M}.{12.{13.....{12....,M}} (9)
denote the collection of all possible subsets of theindex set | ={1,...,M}. A conditional
indirect utility function V,,(p,,, y;q,Y,€) can then be defined for each « A asthe

maximum utility level the consumer can achieve when they are restricted to the commodities

indexed by « . Formally:

Vo(Po, ¥:0,Y,€) = MaxU (x,2,9,y.€) (10)
st.

J;pjxj +z<y (11a)
and

z20,x; =0, Ua, X, 20 j Ua, (11b)

where p,, = { p;:] Dw} isthe vector of commodity prices that have not been constrained to

zero. Let x,,(p,,,Y;a,Y,€) denote the conditional demand levels solving this utility

maximization problem. Notice that, since the prices associated with those commaodities that

have been forced to zero do not enter the budget constraint in (11a), V,,and x  are both
functions of p,, and not p . However, both the conditional indirect utility function and
conditional demand equations will depend on the entire vector of quality attributes, q, and
not smply q,, = {qj: ] Dw} , unless the property of weak complementarity isimposed (Maler,

1974).%°



Constraining a subset of the commaodities to have zero consumption provides, of
course, no assurance that the optimal consumption levels for the remaining commodities will
be positive. Let

A= AP.Y:0.Y.E) = {@DAX, (P, ¥:0.Y.€) >0,0j Dw} (12)
denote the collection of « ’s for which the corresponding conditional utility maximization
problem yields an interior solution. The original consumer utility maximization problem can
then be viewed as a two-stage problem in which conditional indirect utility functions are
computed for eaclx J A and then the consumer chooses\jehat maximizes his or her
utility. That is™

V(p.y:q.v.€) = Max{V,,(p,, ¥:a.Y,£)} = Max{V,,(p,,. y;a.v.€)}. (13)
The computation of the compensating variation in equation (8) then corresponds to implicitly
solving for C(p°,q°%,p*,q%, y;v,€) in

Max{V,,(p2,,y:a”,y,€)} = Max{V, (p,,, y + C(p°.a’.p". 0, yiv.€): 0"V, €) . (14)
Notice that the index collectioA may change as a result of the changing price and/or
quality attribute level&?

There are three difficulties associated with compu@{g®,q°,p*,g", y;y) in
practice. First, for any giveaandy, C(p°,q°%,p*,q",y;y,€) is an implicit function for

which no closed form solution typically exists. However, numerical procedures, such as

numerical bisection, can be readily applied to solve this problem.
Second, giverC(p°®,q°,p*,q",y;y,€) andy, C(p°,q°,p", g%, y;y) does not have a

closed form solution. However, Monte Carlo integration can be used, resampling from the



underlying distribution of €, f_(€), and averaging C(p°,q°,p*,q",y;Y,€) over the draws of

€ . For many error distribution assumptionsit is possible to resample directly from the

underlying probability density function to perform the Monte Carlo integration. ** Asis

discussed below, we assume that the € ’s are drawn from a Generalized Extreme Value

(GEV) distribution, for which it is not possible to resample directly from the density function.

However, McFadden (1995) has recently developed a Monte Carlo Markov Chain approach
that we will employ in this paper. The Markov Chain Simulator does not draw directly from a
GEV distribution, but rather constructs a sequence of variates that asymptotically exhibit the
properties of a GEV distributiot.

Third, given an algorithm for computin@(p°®,q°,p*,q%, y;y) , the analyst does not

typically have availabley , but instead must rely upon an estimator g; (e.g., the

maximum likelihood estimator of ). Thus, any computation & will itself be a random

variable, dependent upon the distributionyafWe bootstrap the data to approximate the

statistical properties of , our estimate of . Formally, the above elements are combined
into the following numerical algorithm:

* Resample with replacememi,... N) observations from the original data set. Re-
estimate the model using this pseudo data and repeat this prodetores to yield

ey i =
a total ofN  parameter vectors (i.ey,”,i =1...,N).

« For eachy® and each observation in the sampie=(...., N ), McFadden’s Monte
Carlo Markov Chain Simulator is implemented to gene¥ateectors of random

disturbance terms (i.es™, k=1,...,N,).

« Substitutingy® ande™ for y ande in equation (14), numerical bisection can
then be used to solve f@; with the result labele@€™ .
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+ Averaging C'™ over the N, draws from the disturbance distribution and the N

observationsin the sampleyields C, aMonte Carlo integration eval uation of
E.[C(p%a”.p"a iy, €)].

« Thedistribution of C?’s provides the basis for characterizing the distribution of the
mean compensating variation of intereSt)(in light of our uncertainty regarding.

The mean value of® over theN , parameter draws provides a consistent estimate

of C . The distribution of theC"’s can be used to construct standard errors for our
estimate ofC .

C. Empirical Specification
In our application below, we employ the empirical specification suggested by
Bockstael, Hanemann, and Strand (1986). In particular, we assume that the consumer’s direct

utility function is a variant of the linear expenditure system, with

U(x,z;q,y,s):%wj(qj,sj)ln(xj+Q)+|n(z) (15)
and
wj(qj’gj):exp(iqujk-'-gjj j=1....M (16)

where) =(¢,Q) andq,, denotes th&" quality attribute associated with commoditirhe
W,’s can be thought of as quality indices associated with each'yood.
One advantage of the above utility function is that the implicit equations far, the

in equation (4) that result from the Kuhn-Tucker conditions can be explicitly solved, yielding

the following equivalent first-order conditions:
£;<g,(xY.Pa.Y), X 20, x[&, =9, (% Y,p;a,y)]=0 j=1... M, (17)

where
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P (X +Q) | & :
g;(X,y,p;a,y) =In — _Zékqjk 1=1...,M. (18)

y
y=> pix |
JZI 17
Specifying ajoint distribution for the random disturbances (i.e., f,(€)) completes

the empirical model. As mentioned above, we assume that the € ’s are drawn from a
generalized extreme value (or GEV) distribution. An important feature of this
specification is that it allows for correlation among the alternative sites, while still
yielding closed form equations for the probabilities in the likelihood function. The sites
are grouped into “nests” of alternatives that are assumed to have correlated error terms,
with §j) denoting the nest to which alternatjvie assigned anfidenoting the total

number of nest¥ Given the specification of a nesting structure, the cdf associated with

€ is given by:
S - .
F(&,...,&;5)=exp —Z exp(lu—’) (19)

whereu is a scale parameter determining a common variance for the error terms and the
6,'s are the dissimilarity coefficients measuring the degree of correlation between the
errors in a given nest.The log-likelihood function is then obtained by forming choice

probabilities for each consumption pattern (i.e., ea¢hA ), integrating the

corresponding pdf foe as indicated by equation (7) abdfe.
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(1. DATA

Our empirical application of the Kuhn-Tucker model focuses on angling in the
Wisconsin Great Lakes region. The data are drawn primarily from two mail surveys of
angling behavior conducted in 1990 by Richard Bishop and Audrey Lyke at the
University of Wisconsin-Madison.™ The surveys provide detailed information on the
1989 angling behavior of Wisconsin fishing license holders, including the number and
destination of fishing trips to the Wisconsin Great Lakes region, the distances to each
destination, the type of angling preferred, and the socio-demographic characteristics of
the survey respondents. A total of 509 completed surveys were available for analysis,
including 266 individuals who had fished the Wisconsin Great Lakes region for |ake trout
or salmon and 247 who fished only inland waters of Wisconsin (i.e., non-users from the
perspective of the Great Lakes region). While the surveys provide data on 22 distinct
Great Lake fishing destinations, we have combined these destinations into four aggregate
“sites”™

e Site 1: Lake Superior

« Site 2: South Lake Michigan

« Site 3: North Lake Michigan, and

« Site 4: Green Bay.
This aggregation divides the Wisconsin portion of the Great Lakes into distinct
geographical zones consistent with the Wisconsin Department of Natural Resources’
classification of the lake regidf.

The price of a single trip to each of the four fishing sites consists of two

components: the cost of getting to the site (i.e., direct travel cost) and the opportunity cost
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of the travel time. Round trip direct travel costs were computed for each destination and
each individual by multiplying the number of round trip miles for a given individual-
destination combination by the cost per mile for the vehicle class driven, as provided by

the American Automobile Association. The cost of the travel time was constructed using
one-third of the individual’'s wage rate as a measure of the hourly opportunity cost of
recreation time and assuming an average travel speed of forty-five miles per hour to

compute travel timé& The price of visiting a destinatiop, is then the sum of the direct

travel cost and the cost of the travel time. Total annual income was collected and used for
the income variable in estimation.

Two types of quality attributes (i.eq,,'s) are used to characterize the recreation

sites: fishing catch rates and toxin levels. Catch rates are clearly important site
characteristics since the anticipated success of fishing is likely to be a major determinant
in the recreation decision. Furthermore, state and federal agencies currently spend large
amounts of time and money to influence catch rates in the region through stocking
programs and regulations. The inclusion of catch rates as a quality attribute in the model
will allow it to be used to conduct welfare analyses of existing and/or alternative fishery
management programs.

In constructing the catch rate variables, we focus our attention on the catch rates
for the four aggressively managed salmonoid species: lake trout, rainbow (or steelhead)
trout, Coho salmon, and Chinook salmon. Creel surveys by the Wisconsin Department of
Natural Resources provide 1989 catch rates for each of these species at each of the 22
disaggregate destinations used in the angling surveys. Furthermore, these catch rates are

broken down by angling method, including private boat, charter fishing, and pier/shore

14



angling. Data from the Wisconsin angling survey were used to match the mode-specific
catch rates to each individual anglers based upon their most frequent mode of fishing.

We include toxin levels as an additional quality attribute of each site since the
presence of environmental contaminantsis likely to influence the recreation decision and
they provide a proxy for the overall level of water quality at the site (De Vault et al.
(1996)). Toxins are found in varying levelsin fish, water, and sediments throughout the
Great Lakes and are routinely responsible for health warningsin the regions. De Vault et
al.(1989) provide a study of toxin levelsin lake trout during the relevant time period,
with samples taken from locations throughout the Great Lakes. We use the average toxin
levels (ng/kg-fish) from this study, matched on the basis of proximity to our four

aggregate sites, to form abasic toxin measure T, (j =1,...,4) for each site.” However,

toxin levels are likely to influence visitation decisions only if the consumer perceives that
the toxins create a safety issue. The Wisconsin angling survey asked respondentsiif the
toxin levelsin fish were of concern to them. We use thisinformation to form an

“effective toxin level” variableE; =T,D (j =1,...,4) , whereD = 1 indicates that the

respondent was concerned about the toxin levels in fisDan@ otherwise.
With both catch rates and toxins included as quality variables, the quality index

terms from equation (16) become
W;(a).¢)) = exp[Jy + 6, Ry + TRar + OoRen + FRs; +OcE; ], ] =1...4,(20)
where R ; denotes the catch rate for speéiesd sitg, with k=1k for lake troutch for

Chinook salmonco for Coho salmon, and for rainbow trout.
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Tables 1 and 2 provide summary statistics for the data. Table 1 focuses on the
mean and standard deviation of the usage, price, and quality characteristics for the four
sitesused in our analysis. Table 2 characterizes the trip usage patterns (i.e., w) found in
the Wisconsin angling survey data. Note that, while many (72%) of the visitorsto the
Great Lakes sites visit only one of the sites, a substantial percentage (28%) visit more
than one site. Thus, neither an extreme corner solution (Hanemann (1984)) nor an interior
solution model could accurately depict this group of consumers’ choices.

Finally, to implement the model using the GEV distribution (19), we must choose
the nesting structure (implicitly specifying which set of sites exhibit correlated behavior).
There are several plausible possibilities for nesting structures. For example, we may
expect that Green Bay and North Lake Michigan would be correlated, since they are
geographically close. Similarly, it may be reasonable to include North Lake Michigan and
South Lake Michigan in a nest, since they exhibit similar physical characteristics. One
could also include Lake Superior and Green Bay in a nest, since they are the more remote
sites with respect to the population centers in southern Wisconsin. Combinations of these
can be specified using multiple nests. In fact, we estimated the model with many
combinations of nesting patterns and report results for the model that yielded the best fit
of the data (based on the likelihood dominance critéti)e final nesting structure used
places North Lake Michigan and Green Bay in one nest and South Lake Michigan and
Green Bay in a second nest. We estimate separate dissimilarity coefficients for each nest

to allow the degree of correlation between the alternatives within a nest to differ.
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IV. RESULTS

A Model Estimation

Two Kuhn-Tucker models of Wisconsin Great Lakes angling were estimated
using maximum likelihood, yielding the parameter estimates provided in Table 3.2 In the
first model, the dissimilarity coefficientsin the GEV distribution are constrained to equal
one, yielding a simple extreme value distribution and implying independence among the
aternative site choices. All of the parameters have the expected signs and, with the
exception of the coefficient on lake trout catch rates, are statistically different from zero
at a5% critical level or less. For example, one would expect, and we find, that higher

toxins reduce the perceived quality of asite (i.e.,¢ <0). On the other hand, higher catch
rates should enhance site quality (i.e., ¢, >0). Thisisthe case for each of the fish species

considered. Furthermore, the small and statistically insignificant coefficient on lake trout
is not unexpected, since among anglers lake trout are typically considered aless desirable
species. The other salmon species have a “trophy” status not shared by lake trout. In
addition, the eating quality of lake trout is generally considered inferior to that of other

species. Finally, the paramefeiis estimated to be 1.76 and is significantly different

from 1.00, indicating that weak complementarity (Maler) can be rejected.

The second model reported in Table 3 allows for correlation among the alternative
sites by employing a GEV specification for the distribution of the error terms. Separate
dissimilarity coefficients are estimated for the {North Lake Michigan, Green Bay} nest
(6") and the {South Lake Michigan, Lake Superior} n&st)(* Indeed, a simple
likelihood ratio test indicates that the GEV model provides a significantly better fit to the

data. However, the resulting coefficient estimates are generally of the same magnitude as
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the estimates from the extreme value model. Again, the parameters are estimated to be of
the expected sign and generally significant except for the parameter of Lake Trout which
is negative, but insignificant.
B. Welfare Analysis
One of the motivations for estimating models of recreation demand is to provide
policy makers with estimates of the welfare implications of changing environmental
quality or site availability. A primary advantage of the Kuhn-Tucker model isthat it
permits the construction of these welfare estimates in an internally consistent and utility-
theoretic framework. The model simultaneously predicts changes to the sites visited and
the total number of trips taken, which in turn determines changes in consumer utility. In
this subsection, we use the estimated Kuhn-Tucker modelsin Table 3, along with the
numerical procedures developed above, to evaluate a series of policy scenarios for the
Wisconsin Great Lakes region.
The Great Lakes region provides many opportunities for policy-relevant welfare
experiments as the lakes are heavily managed. The fishery itself is, in many ways,
artificially created and maintained. Of the major species included in the model, only lake
trout are native to both Lake Superior and Lake Michigan. Rainbow trout were introduced
around the turn of the century, while the salmon species were not present until the 1950’s.
These species now reproduce naturally in the lakes, but are heavily augmented with
stocking programs. The lakes have also been invaded by exotic species, including the sea
lamprey. A parasite accidentally introduced in the 1930’s, the sea lamprey decimated lake
trout populations in the lakes. Efforts to reintroduce naturally reproducing lake trout to

Lake Superior have been successful, while in Lake Michigan the population is completely
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maintained through stocking. Expensive sea lamprey control efforts continue to this day.
Finally, there are ongoing efforts throughout the Great Lakes region to improve the
fisheries by reducing the level of toxins entering the food chain from commercia and
industrial sources. For each of these forms of intervention, the natural policy question
arises as to whether the benefits of these programs are sufficient to offset the
corresponding costs. Our Kuhn-Tucker models can be used to assess program benefits.
Asan illustration of this capability, we estimate welfare loss under three policy scenarios:
e Scenario A: Loss of Lake Michigan Lake Trout. Under thisfirst policy scenario,
state and local effortsto artificialy stock lake trout in Lake Michigan and Green

Bay would be eliminated. It is assumed that this would drive lake trout catch rates
(Ry;) tozerofor sites 2, 3, and 4, since the speciesiis only naturally reproducing

in Lake Superior (site 1).%°

e Scenario B: Loss of Lake Michigan Coho Salmon. Under this policy scenario,
state and local effortsto artificialy stock Coho salmon in Lake Michigan and
Green Bay would be suspended. Again, it is assumed that the corresponding Coho
catchrates (R,, ;) would be driven to zero for sites 2, 3, and 4.

e Scenario C: Reduced Toxin Levels. Under the final policy scenario, we consider
the welfare implications of atwenty percent reduction in toxin levels (i.e.,
E,, 1=1234).

Of particular interest from a policy perspective is Scenario A, given the intense ongoing
effortsto rehabilitate the lake trout population in Lake Michigan. Without these efforts
and the continuing sealamprey control programs, catch rates for lake trout at the three
sites would be zero, as analyzed in the scenario. Although the elimination of Coho
salmon stocking programs would not reduce the catch rates to zero due to natural
reproduction in the fishery, we nonethel ess use this assumption in Scenario B for

comparison purposes. Finaly, we include Scenario C to demonstrate the ability of the
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model to measure the benefits of improvementsin general environmental quality, given

that toxins in fish flesh can act as a proxy for many other types of pollution.

For each of these scenarios, mean compensating variation (C ) was estimated

using GAUSS and the procedures outlined in Section 11B above. In particular,

* Atotal of N, =200 parameter vectors (i.e, y*,i=1,...,N ) were generated from
bootstrapping the original data as described above.

« For each y® and each observation in the sample (n=1,...,509), atotal of
N, = 2000 vectors of random disturbance terms (i.e., €™, k =1,...,N,) were

formed via the Monte Carlo Markov Chain Simulator.”” Specifically, at iteration

ink, a pseudo-random number generator is used to draw 5 independent (0,1)
uniform random variables, '™ (j =1...,4)andn"™) . Four extreme value

random variates (one for each site) are then formed using the transformation

gink) Iog( Iog(( (ink) )) . Finally, the following Markov chain is used to

J

construct:

(ink) o f( mk)/g( mk)

it <
It n f( (ink— 1)/9( mk—l)) (21)

otherwise

wheref(-) andg(-) denote the GEV and EV probability density functions, respectively.

 Substitutingy® ande™ for y ande in equation (14), numerical bisection was
then used to solve f@, with the result labele@™™

+ AveragingC"™ over theN, draws from the disturbance distribution andithe

observations in the sample yields an estimé@@ Y of the mean compensating
variation for the'] draw from the estimated parameter distribution.
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The distribution of the C’s provides the basis for characterizing the distribution of the
mean compensating variation of intereSt)(in light of our uncertainty regarding the
parameter estimates in Table 3. The mean value o thever the 200 parameter draws
provides a consistent estimate®fand is reported in column two of Table 4 for each
scenario and model, with the corresponding standard deviations reported in paréhtheses.
The compensating variations in Table 4 have the expected signs and relative
magnitudes, given the parameter estimates in Tabl&8expected, the loss of Coho
salmon (Scenario B) has a greater impact on consumer welfare than the loss of lake trout
(Scenario A). Focusing on the GEV results, an average of $310 per angler per season would
be required to compensate for the loss of Coho salmon in the Lake Michigan and Green Bay
sites, whereas the loss of lake trout would actually yield benefits of about $58 per season. It is
important to note however, that these lake trout values are not statistically different from zero
using any reasonable confidence level. The lake trout results are particularly interesting from
a policy perspective, since so much effort has gone into rehabilitating the lake trout fishery
during the past three decades.
Turning to Scenario C, we find that a twenty-percent reduction in toxin levels would
have a substantial and statistically significant impact on angler welfare. Based on the GEV

model, anglers would be willing to pay, on average, $111 per season for such a reduction.

V. SUMMARY AND CONCLUSIONS
In this study, we have provided an empirical application of the Kuhn-Tucker
model to the problem of recreation demand, estimating the demand for fishing in the

Wisconsin Great Lakes region. We have developed a methodology for estimating
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compensating variation within the context of the model and have applied this
methodology to measure the welfare effects associated with changes in site catch rates
and toxin levels. Although the Kuhn-Tucker model is not new, there have been few
applications due to the computational complexity. We have demonstrated that with the
availability of faster and cheaper computing power, the model can now be applied to
guestions of policy interest. Thisis of particular importance in recreation demand
modeling, since the Kuhn-Tucker model is appealing in that it deals with the abundance
of general corner solutions in recreation datain an internally consistent and utility
theoretic framework. The same model drives both the site selection choice and the total
number of trips taken by recreationists. This feature is particularly important to the task of
assessing welfare changes.

In our application to the Great Lakes region, we estimate the lost value to anglers
of eliminating lake trout from Lake Michigan and Green Bay, the loss of Coho Salmon
from Lake Michigan and Green Bay, and the welfare improvements associated with
reduced toxin levelsin the lakes. In addition to providing point estimates of these welfare
measures, we provide information on the reliability of the estimates in the form of
standard errors.

There are two areas where improvements to the model estimated here could be
made. First, it would be desirable to explore alternative functional formsin the
specification of individual utility. The trade-off here, of course, isin identifying forms
that are both flexible and yet yield Kuhn-Tucker conditions that generate closed-form

probabilities for the likelihood function. Second, it would be desirable to experiment with
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error distributions other than the Generalized Extreme Value to investigate the robustness

of the results to the assumed error structure.
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Table 1. — Average Site Characteristics (Standard Deviations in Parentheses)

North Lake  South Lake
Lake Michigan Michigan Green Bay
Superior
1989 Fishing Trips ( ;) 2.75 1.56 2.35 0.65
(13.33) (6.32) (8.92) (3.07)
Price ( p; ) 177.84 123.70 85.88 129.11
(172.59) (172.92) (139.62) (173.54)
Lake Trout Catch Rate .046 .022 .029 .001
(R j ) (.059) (.030) (.045) (.002)
Chinook Salmon Catch .010 .048 .027 .036
Rate (R, j ) (.014) (.030) (.024) (.032)
Coho Salmon Catch Rate .028 .005 .040 .005
(R, j ) (.021) (.005) (.053) (.008)
Rainbow Trout Catch Rate .001 .018 .012 .001
(Ry, J- ) (.001) (.026) (.013) (.002)
Effective Toxin Level 597 2.270 3.464 2.270
(E j ) (.491) (1.866) (2.847) (1.866)

Notes: Catch rates are measured in terms of fish per person-hour of effort.
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Table 2. — Distribution of Trips

Number of
Sites Visited Observations

All four sites, w={1,2,3,4} 3
Lake Superior, North and South Lake Michigan, w={1,2,3} 1
Lake Superior, North Lake Michigan, and Green Bay, 7
w={1,2,4}

Lake Superior, South Lake Michigan, and Green Bay, 0
w={1,3,4}

North and South Lake Michigan and Green Bay, w={2,3,4} 13
Lake Superior and North Lake Michigan, w={1,2} 10
Lake Superior and South Lake Michigan, w={1,3} 8
Lake Superior and Green Bay, w={1,4} 2
North and South Lake Michigan, w={ 2,3} 13
North Lake Michigan and Green Bay, w={ 2,4} 19
South Lake Michigan and Green Bay, w={ 3,4} 4
Lake Superior, w={ 1} 49
North Lake Michigan, w={2} 46
South Lake Michigan, w={ 3} 85
Green Bay, w={4} 11

No sites visited, w=0 243
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Table 3. — Parameter Estimates

Extreme Value Generalized Extreme Value

Parameter Estimate P-Vaue Estimate P-Valuer
¢, (Intercept) -8.53 <.001 -8.43 <.001
¢, (Lake Trout) 0.10 953 -0.70 667
¢, (Chinook Salmon) 13.39 <.001 11.11 <.001
¢, (Coho Salmon) 3.12 023 3.71 .007
¢, (Rainbow Trout) 8.61 035 13.96 <.001
¢ . (Effective Toxin Level) -0.06 .018 -0.07 .007
Q 1.76 <.001 1.82 <.001
6" (North Lake Michigan Not

and Green Bay) 1.00 estimated 0.57 <.001

S . .

6" (South LakeMichigan 4 g Not 0.92 <.001

and Lake Superior) estimated
H 1.29 <.001 131 <.001
Log Likelihood -1935.8 -1890.2

2 The P-values associated with 8" and 8° correspond, respectively, to tests of the hypotheses
H,:6" =1 and H_;:6° =1.If both of these hypotheses are imposed, then the extreme value model! resuilts.
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Table 4. — Welfare Estimates (Standard Errorsin Parentheses)

Mean Compensating Variation (C)

Policy Scenario EV Model GEV Model
Scenario A: Loss of Lake Trout 15.97 -37.10
Species at Sites 2, 3and 4 (269.19) (272.78)
Scenario B: Loss of Coho 274.18 304.82
Salmon at Sites 2, 3and 4 (123.18) (192.20)
Scenario C: A 20% Reduction -89.35 -108.13
in Toxins at all Sites (54.37) (51.73)

30



VII. ENDNOTES

! See Bockstael, Hanemann, and Strand (1986) and Morey, et al. (1995) for general discussions of
non-participation and corner solution problemsin the context of recreation demand.

%Corner solutions can aso emerge for producers, both due to non-negativity constraints (e.g., Lee
and Pitt (1987) and to upper bounds externally imposed by quotas (e.g., Fulginiti and Perrin (1993)).

3 See, for example, Bockstael, Hanemann, and Kling (1987), Hausman, Leonard, and McFadden
(1995), Parsons and Kealy (1995), and Feather, Hellerstein, and Tomasi (1995).

* However, as areviewer noted, there may be instances when a sequential or dynamic random
utility model may be more suitable such as when exogenous variables change within a season.

® Morey, Waldman, Assane, and Shaw (1995) describe the Kuhn-Tucker model in the context of
recreation demand, suggesting that it is the preferred approach, Bockstael, Hanemann, and Strand (1986)
provide specifications appropriate for recreation demand, and Kling (1986) employs a form of the model to
generate simulated data. However, none of these authors estimate the model or suggest how such a model
could be used to compute welfare estimates.

® In general, a vector of attributes may characterize each commodity. However, we have used a
scalar attribute here to simplify notation.

"Wales and Woodland (1983) accomplish this by assuming that the errors enter the utility function
suchthat U, (x,z0q,y,€) =U;(x,zq,y) +&; j=1...,M. SeeBockstael, Hanemann, and Strand

(1986) and Morey et al. (1995) for more general treatments of the error term.

8 This problem is similar to the one encountered in nonlinear site selection models and recently
addressed by McFadden (1995) and Herriges and Kling (1997).

° Hanemann (1984) originally detailed this argument in the case of extreme corner solutions (i.e.,
when only one of the commodities is consumed). Bockstael, Hanemann, and Strand (1986) extend the
argument for the general case.

19 |mposing weak complementarity implies that there is only “use value” associated with the

commodities. In the absence of weak complementarity, individuals may also assign “non-use” value to a
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commodity (i.e., theindividual perceives utility from the availability of a good without actually consuming
it). Here, we adopt Freeman’s (1993) definitions of use, non-use, and existence values and note, as an aside,

that models based on observed behavior cannot elicit information on existence value.

" The second equality follows from the fact that forcall] ﬂ, the associated conditional utility

maximization problem yields a binding non-negativity constraint for spime. . The solution is,
therefore, redundant, being equivalent to another utility maximization problem (defined by

a Oawith @ DZ\) where that good has been constrained to a@roori.

12 policy changes may also involve the elimination of initially available sites. Such changes can be

reflected in the make-up of the index collectifn

13 See Geweke (1996) for a useful review of Monte Carlo integration.

¥ Furthermore, McFadden’s (1995) Theorem 3 states that the GEV simulator can be used to
construct a consistent estimator of any real-valued function that is integrable with respect to the distribution
of the € ’s. See Herriges and Kling (1997) for a recent application.

> As noted by one reviewer, a limitation of this LES system is that the resulting function is convex
in the quality attributes of the sites. Further research is needed to develop more flexible functional forms
that relax such restrictions while remaining manageable from an estimation perspective.

!¢ One limitation of the GEV specification is that it requires the analyst to specify the nesting
structure a priori. In our empirical application below, while a variety of nesting structures were investigated,
we only report the results from that nesting structure that best fit the data on basis of a likelihood dominance

criterion.
Y The 6 's are required to lie within the unit interval in order to satisfy consistency with
McFadden's (1981) random utility maximization hypotheses. The degree of correlation among alternatives

within nestr increases a¢, diminishes towards zero, whereas the alternatives become independent if
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18 Details of the log-likelihood function for the four site model presented in the empirical section

below, along with the associated Jacobian transformations J_,, while not difficult, are algebraically tedious

and relegated to an Appendix available from the authors upon request.

9 Details of the sampling procedures and survey design are provided in Lyke (1993).

2 For papers that consider issues related to aggregation in recreation demand, see Feather (1994),
Parsons and Needelman (1992), and Kaoru, Smith, and Liu (1995).

% Thereis an extensive debate on appropriate measure of the opportunity cost of travel time. Since
it is not a purpose of this study to enter into this debate, we have chosen this relatively simple means of
accounting for the travel time cost, drawing on research results of McConnell and Strand (1981).

2 \While there are a variety of toxins reported in the De Vault et al.(1989) study, we use the levels
of toxins 2,3,7, 8-TCDD, which are generally responsible for the fish consumption advisories issued by
statesin the region.

% The results for the alternative nesting structures are available from the authors upon request.

% Since it was not known whether or not the likelihood function is globally concave, numerous
starting values were tried and the maximum likelihood routine always resulted in the reported parameter

estimates.

% The dissi milarity coefficients (i.e., the 8" ’s) were constrained to lie in the unit interval in order
to insure consistency with McFadden’s (1981) random utility maximization hypothesis.

% Under this scenario, it is assumed that the catch rate for lake trout in Lake Superior is
unchanged, either because of ongoing stocking programs or the natural replenishment capabilities of the
fishery.

% The choice of N, = 2000 was selected on the basis of a Monte Carlo experiment in which the
process of estimating C for scenario B using N, iterations and the maximum likelihood parameters was
repeated 100 times. This exercise was conducted using various choices of N, . The simulation results

indicated that the standard deviation of C was reduced to $10 once N, = 2000. Thus, the standard
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deviation associated with the GEV simulator is roughly five percent of the standard deviation reported in
Table 4 (192.20).

% Some caution should be exercised in using the standard deviations to construct confidence
intervals, The C" s are unlikely to be symmetrically distributed and, hence, two-standard deviation

confidence intervals will be inappropriate. While the construction of asymmetric confidence intervals is

conceptually straightforward, a substantially Iar@éyr would be needed to precisely construct the

necessary tail statistics (See, e.g., Efron and Tibshirani (1993)).

? Since our estimates 6f are significantly different from 1.00, consumers value quality changes
even when they do not engage in fishing. Thus, these welfare estimates can be said to encompass both “use”
and “non-use” values. However, these values are quite distinct from “existence” value that cannot be

estimated from revealed preference data.





