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Abstract

A method for fitting regression models to data that exhibit spatial corvela-
tion and heteroskedasticity is proposed. A combination of parametric and
nonparametric regression techniques is used to iteratively estimate the var-
ions components of the model. The approach is demonstrated on a large
dataset of predicted nitrogen runoff from agricultural lands in the Midwest
and Northern Plains regions of the U.S. For this dataset. the model is com-
prised of three main components: (1) the mean function which imcludes farm-
ing practice variables, local soil and climate characteristics and the nitrogen
application treatment, is assumed linear in the parameters and fitted by gen-
cralized least squares. (2) the variance function, which contains a local as well
as a spatial component whose shapes are left unspecified. is estimated by To-
cal linear vegression. and (3) the spatial correlation function is estimated by
fitting a parametric variogram model to the standardized residuals and after
adjusting the variogram for the presence of heteroskedasticity. The fitting
of these three components is iterated until convergence. The model provides
an nmproved fit to the data compared to a previous model that ignored the

heteroskedasticity and the spatial correlation.



1 Introduction

For many practical problems. the degree to which components of the statis-
tical model can be specified in a parametric form varies dramatically. When
the model is misspecified. the resulting model fit can be biased and the pos-
sibility for making wrong inferences exists. On the other hand. when part of
the model is amenable to parametric fitting. it 1s useful to do so i order to
have a more analvtically tractable model and be able to use traditional infer-
ence techniques. Even in the most common form of nonparametric regression
where the mean function is left unspecified. it is common to assume that the
observations are uncorrelated, which can be viewed as a “parametric” as-
sumption on the distribution of the errors. Violation of that assumption has
a serious effect on the optimal bandwidth for estimating that mean funetion
(sce Hart {(1991) and Opsomer (1996)).

[n this article. we consider an application where it appears reasonable to
accept a (roughly) linear relationship between dependent and independent
variables and the observations clearly displayv spatial dependence. but where
the spatial variance cannot be specified a priori. The proposed approach.
which blends elements of parametric and nonparametric fitting. 1s not only
applicable for this specific situation. however. One of the goal of this article
is to show that parametric and nonparametric techniques are often comple-
mentary and when used appropriately. can lead to better model specification
than either set of techniques used in isolation.

We beein by describing the application that motivated this research.
Fconomists at the Center for Agricultural and Rural Development at lowa
State University {CARDY} are developing models to evaluate the impact of
federal and state agricultural policies on the nitrogen water pollution in the
Midwest and Northern Plains of the U.S. (Wu. Lakshminaravan and Bab-
cock (1996)). In a departure from previous cconomic models. the goal of
this project is to predict the environmental impacts at both the regional and
the local level. Local prediction is achieved by using the 128591 National
Resonrces Inventory (NRIT) points in the region of interest as the basis for the
evaluation of pollution impact: in addition to providing detailed information
on most of the independent variables (sce Table 1). the NRI database pro-

vides the sampling weights allowing statistically valid arca predictions based



3 Estimation Procedure

3.1 Overview

Let Y be the nox< 1 vector containing the Y 's and Z be the v« g matnix
with (7. j)th row equal to Z{/. Let 3 be the variance-covariance matrix of
Y. Let p be a positive integer-valued tuning parameter. The role of pis to
determine the mininmuun number of replicates at an @; in order to use that
location for estimating the variance functions. The choice of p s discnssed

later.
STEP 0: (Initialization step) Set > =1

STEP 1: Obtain

3=(z's"'zy'z2Tv7 'y

2

STEP 2: Set

) . l Iy
r, =Y, — Z{I/ﬁ and T, = - Z o
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STrp 3: For cach @; such that n; > p > 1 obtain

10,
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STrEP 4: Obtain t,(x;) for all &, by local lincar smoothing of the ¢ (@;).

STEP 5: Obtain o.(@;:h) by local lincar smoothing of {o (@) 0 > py
where - (@)
\ ¢y
(-(313,’) :(7_1)2* - -
n;

Stre 6: Define b)) = toa) + o (x)/n; and let 2 = T,/f‘,,(a:jil/'“). Isti-

mate @ in the isotropic correlation model p(-: ).

STEP 7 Obtam
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where (8,000 = (@) i/ =17 = and 0 otherwise. and
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on the point predictions (Nusser and Goebel (1997)).

Nitrogen pollution occurs via two primary pathwayvs: by mtrogen rnnoff
into surface waters. and by leaching through the soil into the groundwater. [n
the current article. we will focus on the prediction of nitrogen runoff. Table
I shows the variables used in the model. They are further described m Wi
of al. (19961, \ map of the studyv regions containing the locations of the

weather stations s eiven in Figure 1.

Nitrogen runoff’ from non-point sources such as agricultural practices is
tvpically unobservable, especially at the scale of interest in this studyv. The
Water Quality and Erosion Productivity Impact Caleulator (EPTC-WQ. see
Sharpleyv and Williams (1990)), a widely used (deterministic) biogeophyvsical
process model, provides. at least conceptually. a convenient tool for predict-
ing the nitrogen runoff at the NRI points. both for the current situation as
well as for scenarios in which agricultural policies change one or several of the
variables in Table 1. Unfortunatelyv. running the model for all NRT points
wonld be prohibitively computer-intensive even for establishing a baseline
nitrogen runoff level. let alone for evaluating alternative scenarios in which
a significant number of points might have changes in their covariate valies.
It was therefore decided to estimate a statistical “metamodel”™ on a repre-
sentative subset of 11.403 data points. and use this metamodel in place of
EPTIC-WQ to predict nitrogen runoff at the remaining observation points.
as well as for scenario evaluation.  Another advantage of this approach is
the estimation of coefficients and accompanving confidence intervals for the
covariate offects. providing additional insights in the nature of the effect of
agricultinal practices (vepresented by NRAT E and the dummy variables in
Table 1) on nitrogen pollution.

The original approach of Wu ¢f al. (1996) was to fit the metamodel by
OLS after transforming the dependent variable and adding a limited number

ol interaction terms. The model was:

(YN0 = o 4 Z\B. + NRATE*Z,8. + X3, +iiderrors, (1]



where Z, contains the values for the covariates from Table | except the
weather station location. Z, the same as Z; except for the removal of the
covariale NREATE. and X = (LAT.LONCG) the location of the nearest
weather station. We will let Z = [Z| NRATE « Z, X| and for simplicity
vefer to Z as the covariates for this model. and let 8 = 8! 37 g’
The location and interaction terms were included to improve the fit of the
model. and the transformation was selected to remove some of the observed
departures from the usual assumptions that the errors are homoscedastic
and normally distributed.  Nevertheless. the residuals <till exhibited both
severe heteroskedasticity, as well as spatial correlation. As noted in Carroll
and Ruppert (193%). transformations of the dependent variable only remove
heteroskedasticity when it depends on the mean. Thev are therefore not
appropriate in cases where spatial location appears to cause most of the
variance cffects.

In the current paper. we demonstrate how a combination of universal
kriging and nonparametric variance function estimation can be used to de-
velop an improved regression model for this problem. while maintaining the
interpretability of the mean function model (1). The choice of kriging 1s mo-
tivated by the fact that one of primary uses of this model s the prediction
of YN03 at the large number of points not included in the regression obser
vations. a situation for which kriging has well-known optimality properties
(Cressie (1993)). Since the residuals of the OLS fit of model (1) exhibited
sienificant hieteroskedasticity as well, the explicit inclusion of a spatial vari
ance function is expected to further improve the fit of both the mean and the
correlation function. Because the specific shape of this function was not of
particular interest to the CARD rescarchers, a generalization of the nonpara-
metric variance estimation approach of Ruppert. Wand. Holst and Hossjer
(19971 is used. This has the advantage of avolding to introduce bias in the
estimation due to inappropriate choice of a parametric form for the varance
lunction.

Section 2 proposes a model that explicitly accounts for the heteroskedas-
ticity and spatial correlation in the data. and Section 3 provides a description
of the approach used in estimating its various components. In Section 1. the
model estimates are discussed. Section 5 briefly discusses the use of universal

kriging for predicting the nitrogen runoff values at the remaining NR1 points



not inchided in the metamoded.

2 The Model

The data consist of n; scalar response measurements Y, (the Y VO3 measure-
ments from Section 1) and covariates Z,; recorded at .V distinet geographic
sites &, (the weather stations from Section ). and the total number of oh-
servations ix denoted by n = Y00 0.

The model is

for j = 1..... niot o= 1.....N. Here 8 is a ¢ x 1 vector of parameters. e
and r, are bivariate variance lunctions, the errors w«,, are independent and
identicallv distributed with E(w,;) = 0. var(u;;) = I and the z; are such
that F{z;) = 0. var(z,) = L and cov(s;.20) = pllle; — 2 ||:0). where p(-:0)
represents a parametric family of stationary. isotropic correlation functions
indexed by the (possibly multi-dimensional) parameter 8. The {u;;} ave
independent of the {=}.

This model is casily adapted to apply to other situations. The mean
function Z,I/ﬁ can be replaced by any other parametric model. ncluding
Z/,B = s if ordinary kriging is nsed. Similarly. if there are no replicates at

the geographic sites @; (i.e. n, = 1 for all 7). the term l‘u(w,)l/zuw can be

subsumed info rofx;) /22,

As mentioned above. many points share the same “location™ @;, with n,
ranging from | 1o 221 for the N = 329 weather stations in our dataset. There
is also an important computational reason for working with these approxi-
matce locations instead of the actual point locations: only this reduction in
the true dimension of the spatial variance-covariance matrix allows us to use
~off-the-shelf™ statistical packages to perform the estimation and prediction
computations for this problem. The remaining crrors u,; at a given weather
station location &, were assumed to be independent. since the correlation is
taken to be spatial. In the kriging context. the variance function associated
with the w;; is referred to as the nugget cffect. 1f no replicates are available.
the nugget effect would have to be estimated directly from the spatial error

;
)

process @)/ :
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STEP 8: Repeat Steps |7 Ry times.

Of course. the local lincar smoothing in Steps 1 and 5 conld be replaced
by more higher degree local polynomial regression. After the estimation steps

have been completed. predictions can be made as discussed in Section 5.

3.2 Details on the Implementation

3.2.1 Generalized Least Squares

In step L. computations involving the inverse of the 11,103 ~ 1,103 matrix

3 = cov(Y) are avoided by noting that. because of the assumed model (2.
Y¥=3%,+K'V.K.
where X, is a diagonal matrix with repeating “blocks™ of length n,:
Y, =diag{v(x,). j=1,..onpo0=1...... Vi

V.isthe N x N covariance matrix of the =, and K is an .V x n matrix with

!

(2.7) entry equal to | for /" =1 4+ Zi‘;ll Ly S, i and zero otherwise.

The inverse of X is therefore equal to
vlex!' 'K\ VII+K%'K') 'Ky,

(ITorn and Johnson (1985)). which can be rapidly computed since the largest

non-diagonal matrix to invert is only N x V.

3.2.2 Variance Function Estimation by Local Polynomial Regres-
sion

[f we assnme normality ol the errors. the o,(@®;) in Step 4 are indepen-
dently distributed. heteroskedastic random variables. with variance equal
to 2e,ix,)?/{n; — 1), so that the theory developed by Ruppert of al. (1997)
is directly applicable here. While p = 2 observations are sufficient for com-

puting ©,(x;) at a location. there is clearly much more information about ¢

T

at the locations with more observations. Since n = 11.403 and N = 329
we have 7. = 35 and it might make sense to use only locations where ;s
“not too small.” We experimented with p = 2.3.1 and found that p = 3

vave the best estimates. in terms of speed of convergence of the algorithm.

6



fack of boundary problems as well as avoiding negative variance estunates
isee helow ], The number of locations where with n; > 3 is 290, The special
structure between the estimator and its variance is used in the bandwidth
<clection of the EBBS algorithm (Ruppert (1997)). NMore specifically. let
foah) be the local linear estimator of o, (x;). EBBS separately estimates
the squared bias and variance of ,(@,). These quantities arc added together
and their sum is minimized over a grid of fi-values to produce the EBBS
handwidth at @;. The bias estimate is exactly as in Ruppert (1997). The

estimate of var(c,(@;: h)) uses the relation
var(r, (@i h)) = s(ax;: /i )Iv(liag{\'ar( c @) sla .

where s(x,: h) is the N by | local polvnomial “smoother vector™ such that

Gl by = (). .ot ey s(a, k). EBBS estimates var(e,(@:h)) by
Gt (s b)) = s(e: ) diag {200, (20 (ng — 1) st ).

In Step 5. we obtain &, by smoothine {2.(x) : n; > 1} again using [BBS
I B . [an} = o o

to select the bandwidth. We will ignore the error in 3 so that

(/2 /2
rio=vA® ) G F o)) / ;.

and therefore

- 12 /2
ro=esa) o+ ey / ;.
Then o (@;) is unbiased for v, (@;). and therefore

o (@) = I = M = v.(®;).
r;

Therefore. when we smooth the {o(@;)} there is no bias term involving
v, and EBBS will properly estimate the bias of our final estimate of v.. One
mieht consider estimating . by smoothing the {7} and then subtracting
off an estimate of v, (@;)/n;: however. in this case. the bandwidth optimal
for smoothing the {7} will not be optimal for the linal estimate of .. The
I-BBS bandwidth for smoothing &.{@;) requires an estimate of var(v.(®;: h)).
Fostimation of this variance is based upon the following results.

Let H = Z(Z"S7'Z)7'Z"S7" represent the “hat” matrix from the

estimation of the mean. Let & be the N x n matrix with (¢.7) entry equal
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Our estimate of . does not use locations where n; < p. but these are
focations where there is relatively little information about e.. Since the e.(x;)
stnoothed in Step 5 are possibly negative. there is a positive probability that
folx ) is negative. As g incrcases. the probability that co(2;) is negative
decreases. While negative values for o.(@;j are in principle not a problem. it
is highly undesireable to have negative variance estimates ¢, since thev would
result in a negative definite covariance matrix V.. Tor p = 3. only 9 locations
had negative variance estimates. and all were located at the hboundary of the
estimation region (see Figure 2). making it likely that they are the resalt of
“houndary effects.” a common nuisance in nonparametric regression similar
to extrapolation problems in parametric regression. We therefore decided to
add a local averaging step at cach iteration of the algorithm to “correct™ any
negative estimates. Note that this step only changes the negative estimates

and leaves all the other ones unchanged.

3.2.3 Estimation of the Correlation Function by Variogram Fit-
ting
[n Step 6. the correlation function is estimated parametrically by variogram
fitting. Because heteroskedasticity is known fo cause spurious patterns in
variograms. it is important to remove that effect before estimating the cor
relation function.  Hence, the spatial residuals 7, have to be normalized.
[t is not a priori clear what the normalizing constants should be. however,
If we ignore the errors caused by the estimation of the mean and variance
functions. and use 7 = 7 eo(@) 2 the variogram will estimate
23, — ) = BT - = var(FT) 4 var(E5) — 2eov(E7027)

B (',.(ZB‘,k) N ) . 2/)(33(‘ — iE,'/‘)
(‘s(w[,) (‘f(w'/)

while if we nse 27 = r,/z',.(w[)l/g. then

9



Neither 2(-) nor 2/(+) are in general equal to 4(-) = | — p(-). so they cannot

be directly used to lit the correlation function. However. it s casy to see

that

(6]

We can therefore construct a “bias-corrected™ variogram based on (6). Let
5= F[/z',‘(ac,-)‘/2 For a given distance f.let S(1) = {(7.0") : fle,—x | € (1+0)}

with § a given bin size and n(t) = [S(#)]. Then.

| T, i (L)
n(l) “=o(f) X,) o (L)

The following parametric model is used for p(-):
p1:0) =L — e " — (1 = Oy)e ™"

with 0,.0, > 0 and 0 < #; < . This is a mixture of two exponential
functions. which was chosen to gnarantee the positive definiteness of the
variance/covariance matrix estimate. Clearly. other parametric models. in-
cluding mixtures of larger numbers of exponentials. could be selected as cor-
relation functions for other datasets. The parameters 0,.0,.0, are estimated
by weighted least squares mininization following ('ressie (1993, p.u6).

The estimate of the spatial variance covariance matrix V. is computed
by setting

V] = pla, = w00/ i),

4 Results

The model was run on the CARD dataset. using both the transformed and
untransformed EPTC-WQ predicted nitrogen runoff values as dependent vari-
ables. The transformation is no longer necessary o reduce the heteroskedas-
ticitv. This is not too surprising. since the heteroskedasticity was now ex-
plicitly accounted for in the model itself. A methodological advantage of the
untransformed model is that the predictions computed as in Section 5 are
nnbiased. while the ones found by using transformed runofl observations are
hiased after inverting the transformation. We will therefore only report the

results for the untransformed model.

10



The model converges in 2-10 iterations. depending on the strictness of the
convergence criterion and the choice of some of the tuning parameters. bor
p = 3 the model converges alter 4 iterations. which takes approximately 10
minutes to run on a DEC 3000 Model 900 AXP workstation. with the bulk
of the computing time taken by the GLS fitting (Step 1 in Subsection 3.1).

Figures 3 and < show the nonparametric estimates of the variance func-
tions v, () and v.(-) at the weather station locations. Both estimates show a
pattern of low values in the center. The patterns also show some interesting
differences: while the Great Lakes region exhibits high local and spatial vari-
ance. the spatial variance is also high in the South-most part of the study
region, while the local variance is high at the Western edge. Most of the
variability in the data is explained by the local variance v, with the mean

value of &, (@;) equal to 1.7/39, while that for t.(x,) 15 0101

In Figure 5. the bias-adjusted variogram of the standaidized residuals =
is displaved as well as the weighted least squares fitted variogram function.
The spatial correlation decrcases rapidly as distance increases. and is only

important for points at short distances of cach other.

5 Model Predictions

As mentioned in Section L. the purpose for developing this metamodel is to
he able to predict the potential nitrogen runofl at the set of 1283591 NRI
points. If we let Z* and @™ represent the matrices of covariates and locations
at any n™ prediction points. the universal kriging prediction equation for the

A= ~ ~

points Y = (Y. Y5 !is given by

n

Y - Z 3+ 0.2 \Y — Z3). (7)

where CLis a ™ < n matrvix with elements [CL] o = p(ar =202 0)

(Cressie (1993 p.173)). Since the true values for the variance and covariance

Ll



functions are unknown. we replace them by their estimators obtained by the
procedure deseribed in Section 3.

An alternative approach for prediction uses the fact that the prediction
and estimation data ave at the same set of weather station locations. so that
the spatial residuals =; can be considered a lattice process (Cressie (1993]].

’

The vector of spatial errors € = (2y.....2x) can therefore be predicted by

a “shrunk™ version of the spatial residuals r;:

-V (V.4 V.E) N

(ri.....ry)' . by a straightforward application of conditional ex-
. | — . .. L -
pectations (Fuller (1987)). Hence the spatial ~correction”™ [CE (Y — Z 1)},

]
al a weather station location &7 can be predicted directly by the correspond-

with »

ing element of the vector €. This approach is computationally much more
efficient than the “full™ universal kriging approach described above. because
the size of the matrices in (7) increases with 1. while those in (&) only de-
pend on N. Figure 6 shows a plot of the values of the spatial corrections

i

A  Proofs

Proof of Result I: The vector of residuals. r;,. can be written as r = (I —
H)Y . From the definition of & we have the vector of 7; values equalling
k(I — H)Y . The stated result in (3) then follows directly from Lemima | of
Ruppert of al. (1997} for the special case of normal Y.

[f the bias due to estimation of Z3 is ignored. then the this expression
simplifies to

2(&2&7')[4.

Fxpression (1) follows directly alter noting that we are indexing the matrix
¥ as [ollows:

Ei‘/-l’./’ - ('()VH"VAM )’v/’./’)

for j=1..... nmior = 1.... N Hence.
n, g
(K’EK’ )ii’ — (,77/'71/’.) Z Z LZ‘-/‘//-/I
J=1y=

12



so that

o ) ) Pl — w0 0 F

Proof of Result 2: Recall that

l "y thy

N — 2 - — 2

[‘u(mz) - (ru - ]'/') — L(”u — ).

: =1 i=1

Because the {u;;} arve iid normals. @ is independent of ¢, (@;). Therefore.
7

tor ((71)%... .. (f\:)z)rr. 3;, the covariance matrix of (r(@®).. ... rlaey))’.

and X the covariance matrix of (v, (@)... .. Soden)). Sinee v (@) s

is independent of ¢, (@;). Let X, be the covariance matrix of the vee

colae;)/(n; — 1) times at \An; — 1) random variable, we have
. Qe .
3, = diag (—“(4) = '_’V[f}E,_,).

By (1), and ignoring the error caused by using 5 in place of 8. we have
Y. =2V, +V E) 4 BV = z{(v, + V. BN+ VEf]EEZ]Ez}. (9)
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denotes weatherstation location).



!
[ ] {
[ 1
S {
®
! ~,
i ~.
i
| | o /
L ) T @
! [ ] ST Sl I
! "\ —— ;
| . ; .
| ® Y hS A =
! L I i ?
[ y ; ‘
i LS - TN i
" \ {
i o~ 3
| / 4 ~
\‘\ /!ru“‘ﬁ
N 5
) N IS
W
— x
S iy
i i ' A3
i
' |
j !
! N
’, e pen i

\ \’\l Spatial variance (unadjusted)
/ e negative
/ positive

Fionre 20 Locations of negative and positive estimates of ¢.(+) before local

averaging adjnstment.



® % \ o
. ‘ < i
® 5 .
el J s
® 89 <
® “ {
'® e’ % o
O® e vy LI et
[’ e ——— — /!
; .. . q»'\\& -
Y
J. ®
; e ®o Y :
o0 o o R
I I N
. | \\‘ ~ <
oo | 7 /
¢ ‘ o
) o 1 ~ DSl
o o i et
% ! At
e L E AT
d ._.. e —— E
! »
. ® !
) ®
e g
. ‘ ®
N Local variance

0.276 - 2.826
2.826 - 5.375
® 5.375-7.924
® 7924-10.474
® 10.474-13.023

Figure 3: Estimate of the variance function v, () at the weatherstation loca-
t1ons.



; e

[P e S ,;

! (

! §

! |

L : ST,
| ST -
. 1\

| L
‘17;77 o L ~ i
Y N
} ~
I ] : 777 T ,,,J
! ‘ T i
!
! {\
‘C T RN I\\iﬁ
o8 ! ' “ . :
N Spatial variance
Yy 0.006 - 0.376

0.376 - 0.747
0.747 -1.117
1.117-1.487
1.487-1.858

[legnre 1 Estimate of the variance function v.(-) at the weatherstation loca-

Hions.

19



Variogram

1.4+

o
[e¢]
I

0.6

0.2

Distance

Figure 5: Variogram and estimated variogram function p(-:0).

25



! _ A
P e e e - P
! : S B ~ e
‘:r ® ° ?\ Xf'/’ e e
® \ . T -
I '\ o
s 4 B f
! e 0 @ Vi ‘
| | ! g °,_ @
! s B . e
i ® ! ) ..
) _ 1 \ \
L - o %o () ‘
) N \‘\i ® L N W ' . B .
! > kY < o N 3 S
. IR P
. ® y ® = . T e J® °
- ' Y 5 ' ., ® ®
[ ] j / P @ )
ol s “ ' ® o®
g e * ® ! e
° [ J \\ 5. o s
'’ .
L {5 P
[ ] )

Spatial corrections
-1.281--0.574
-0.574-0.132

e 0.132-0.838
e 0.838-1.544
® 1.544-2251

Figure 6: Spatial corrections £; at the weatherstation locations.



