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Abstract 

Agriculture-based biofuels have the potential to replace fossil fuels, thereby 

offsetting greenhouse gas emissions. We estimate emission abatement supply curves 

from energy crops switchgrass, hybrid poplar, and willow under a wide range of sector-

wide greenhouse gas emission reduction incentives in U.S. agriculture. The Agricultural 

Sector Model employed captures market interactions of biofuel production with 

traditional agricultural production and with alternative emission mitigation strategies. 

U.S. results suggest an increasing importance of biomass-based electricity for carbon 

mitigation incentives above an economic threshold of $50 per ton. At incentive levels of 

$170 per ton and higher, emission offsets from energy crops provide the highest net 

emission reduction among all agricultural options. To extrapolate U.S. findings and 

assess the economic viability of energy crops in Asian Pacific countries, we conducted a 

sensitivity analysis on key parameters of the U.S. model. We find implementation of 

energy crops to be highly sensitive to biomass yields and agricultural land base. While 

U.S. crop yields can be matched in warm tropical climates, the available agricultural land 

base per capita is much smaller in most Asian-Pacific countries.  

 

Key words: abatement supply curves, Agricultural Sector Model, biofuel offsets, energy 

crops, greenhouse gas emission mitigation, mathematical programming, poplar, 

sensitivity analysis, switchgrass, willow. 



 

 
 
 

GREENHOUSE GAS MITIGATION THROUGH ENERGY CROPS  
IN THE UNITED STATES WITH IMPLICATIONS  

FOR ASIAN-PACIFIC COUNTRIES 

Demand for agricultural participation in greenhouse gas (GHG) emission mitigation 

efforts has increased in recent years. While the original text of the Kyoto Protocol only 

considered carbon changes from deforestation, reforestation, and afforestation, subsequent 

efforts were made to determine agriculture’s contribution in a broader spectrum (IPCC). 

Discussion now focuses on how rather than whether to involve agriculture.  

Planting energy crops is one of many agricultural options under consideration. Crops 

such as switchgrass, short rotation woody trees, eucalyptus, and a variety of ethanol-

generating plants can generate alternative biomass based energy and thus reduce the 

amount of fossil-fuel-based GHG-emission-intensive energy. While other agricultural 

options such as switching tillage systems or planting permanent trees saturate over time, 

GHG emission offsets from energy crops can be supplied continuously. Furthermore, 

emission offsets from energy crops are generally easier to implement than other 

agricultural emission abatement methods. For example, if a carbon market or a 

government institution prices one ton of carbon emissions at $50, all fossil fuel input 

going into energy crop production will most likely carry this price through increased 

purchasing cost, and all energy output will receive revenue based on the amount of fossil 

fuel energy offset. The net effect to the energy producer is the difference between 

increased revenue and increased cost.  

Substantial research has been conducted in the United States and Canada on energy 

crops (Walsh et al.; Mann and Spath; Wang, Saricks, and Santini; Samson and Duxbury). 

These studies, however, did not account for trade-offs between the production of energy 

crops and other agricultural mitigation strategies. This analysis estimates the economic 

feasibility of energy crops in the United States in an environment where all major 

agricultural mitigation strategies are incorporated simultaneously.  
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Greenhouse gas emissions constitute a global problem that is not limited to the 

United States; it involves countries in the Asian-Pacific as well. In contrast to the United 

States and Canada, however, research on energy crops has been very limited in many 

Asian-Pacific countries. Here, the authors try to extrapolate results from the U.S. model 

to these countries. To reflect Asian-Pacific characteristics, a sensitivity analysis is 

conducted on key parameters of the U.S. model, which might differ between the United 

States and Asian-Pacific countries. 

 
Background 

Energy crops have been explored in the United States since 1978, almost 20 years 

before the Kyoto Protocol was established (U.S. DOE 2001). Major initial objectives 

involved reducing the dependency on foreign petroleum reserves and providing clean 

burning fuels. The potential to mitigate emissions of clean gases such as carbon dioxide 

was not emphasized until the 1990s when countries started to seriously negotiate 

greenhouse gas emission reduction programs.  

 Almost all energy crops produced in the United States today are still subsidized. 

Ethanol suppliers receive, on average, a $0.54 per gallon subsidy, which is even greater 

than the 1998-99 wholesale price of gasoline of $0.46 per gallon (Yacobucci and 

Womach). Governmental incentives to promote biomass power include project co-

funding, various tax credits, deductions and exemptions, and direct subsidy payments 

(Badin and Kirschner). 

Greenhouse gas emission mitigation efforts could improve the economics of energy 

crop production. If a market or governmental institution values carbon emission savings, 

energy crops would yield additional revenues equal to the carbon price times net 

emission savings relative to an energy equivalent amount of fossil fuel. The question then 

becomes, What carbon price level is needed to make energy crops economically feasible? 

In answering this question, one must analyze both energy crop possibilities and 

traditional agricultural production (Schneider) for two reasons: 

1. Large-scale production of energy crops reduces the amount of land devoted to 

food production. As a consequence, aggregate food production is likely to fall, 
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causing food prices to rise and land values to increase. This effect may cause a 

negative feedback to energy crop production.  

2. General mitigation incentives will promote a variety of agricultural strategies. 

McCarl and Schneider (1999, 2000) grouped agricultural GHG mitigation op-

tions into three broad categories: (a) reductions in agricultural-based emissions, 

for example, through diminished use of fossil fuels, fossil fuel intensive inputs, 

or livestock herd size reductions; (b) enlargements of agricultural based sinks, 

for example, through afforestation or tillage changes; and (c) increased produc-

tion of commodities such as energy crops, which offsets emissions in other 

sectors of the economy.  

Some agriculture mitigation strategies are mutually exclusive, some are complemen-

tary, and most interfere with traditional agricultural production. Hence, an independent 

analysis of a large-scale production of energy crops would most likely overestimate the 

economic potential. 

 

U.S. Agricultural Sector Model 

For this analysis we used a new version of the U.S. Agricultural Sector Model 

(ASM) (McCarl et al.). The ASM was first developed in the mid-1970s and has been 

used in many economic appraisals of environmental policies in the United States (see 

Chang et al. for references). Schneider modifies the ASM to include GHG emission 

accounting and mitigation possibilities. This new version is employed for this analysis 

and will hereafter be referred to as ASMGHG. 

Scope of ASMGHG 

The ASMGHG depicts production in 63 U.S. agricultural subregions, endogenizing 

crop choice, crop management, livestock numbers, and livestock management. 

Commodity coverage is broad: more than 30 commodities are considered, including the 

major U.S. feed and food grains, oilseeds, fiber, hay, silage, sweetener, cattle, sheep, 

poultry, dairy, and hog commodities. Production of eight major internationally traded 

commodities in 27 rest-of-the-world regions is included with detailed international 

trade depiction for those commodities. Trade and consumption of more than 50 other 

commodities are modeled at a more aggregate level. Production is gathered together 
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into ten U.S. marketing regions and shipped on to processing, consumption, or 

international markets. 

The ASMGHG solutions provide projections of land use and commodity production 

within the 63 U.S. areas, commodity production in the rest of the world, international 

trade, crop and livestock commodity prices, processed commodity prices, agricultural 

commodity consumption, producer income effects, consumer welfare effects, and various 

environmental impacts. 

Greenhouse Gas Features in ASMGHG 

The ASMGHG jointly incorporates all major GHG emission mitigation options 

available to agriculture for which reasonable data are available. For this study we 

considered only feasible potential strategies. Other strategies may become profitable in 

the near future as technology advances. However, we did not want to speculate as to 

when this might happen. Engineers are often overly optimistic about new technologies, 

not taking economics into account. Currently included strategies are listed below. For a 

detailed technical description of how these strategies are implemented in ASMGHG,    

see Schneider. 

The ASMGHG mitigation strategies through the agricultural sector include  

• afforestation; 

• production of energy crops for use in electrical power plants; 

• production of ethanol to replace fossil-fuel-based gasoline; 

• soil carbon sequestration through tillage and crop choice and through conversion 

of arable land into permanent grassland; 

• reduction in crop management emissions through alternative crop mix, fertilizer, 

irrigation, and tillage intensities; 

• methane reductions through livestock herd size reduction, livestock, manure 

system improvements, enteric fermentation changes, and rice acreage reduction; 

and 

• reduction in nitrous oxide emissions from livestock herd size reductions, and 

alternative fertilization, crop, and tillage choices.  
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Each individual emission and emission reduction category is individually accounted 

for but also aggregated into a measure of total carbon equivalents. To place different 

gases on an equal footing, methane and nitrous oxide are converted to carbon equivalents 

based on the Intergovernmental Panel on Climate Change (IPCC) 100-year global 

warming potentials (GWP): 21 for methane, 310 for nitrous oxide, and 44/12 for carbon.  

The ASMGHG can examine the impact of various mitigation policies on the 

agricultural sector. At each incentive level, it identifies the optimal choice of mitigation 

strategy. In addition, impacts on the traditional agricultural sector are reported. 

 

Economic Feasibility of Energy Crops in the United States 

Competitive feasibility of major GHG emission mitigation strategies was simulated 

by running the ASMGHG under a wide range of carbon equivalent prices imposed on net 

emissions from agriculture. For emissions of non-carbon GHGs, prices were adjusted 

based on the GWP of the affected GHG relative to carbon. In addition, carbon credits 

from soil carbon sequestration and afforestation were value-discounted to reflect the 

saturating nature of these carbon sinks. McCarl and Murray provide a detailed description 

along with examination of many alternative setups. We chose an average setup leading to 

a 25 percent value discount for sequestered tree carbon and a 50 percent value discount 

for sequestered soil carbon (Schneider and McCarl). Thus, at a hypothetical carbon price 

of $20 per ton of carbon equivalent (TCE), land owners would receive $20 for each ton 

of offset carbon emissions, $10 for each ton of sequestered soil carbon, and $15 for each 

ton of carbon sequestered through afforestation and they would pay each ton emitted with 

$20 for carbon, $114.55 for methane, and $1,690.91 for nitrous oxide. 

Major Impacts of Agricultural Greenhouse Gas Emission Mitigation Incentives 

Figure 1 displays the resultant levels of emission abatement from agricultural 

mitigation strategies (see also Table 1). Unsubsidized energy crops as identified by 

current technologies are not competitive at zero carbon prices. Economic feasibility of 

biofuel crops begins at carbon prices above $50 per ton of carbon equivalent. Energy 

crops used as electrical power plant feedstock are more competitive than crops processed 

into gasoline substitutes such as ethanol.  
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FIGURE 1. Role of major agricultural strategies to greenhouse gas mitigation at 
selected carbon equivalent prices 
 

Under low carbon prices, agricultural management changes (e.g., tillage changes) are the 

preferred option. Above carbon incentives of $170 per ton of carbon equivalent, emission 

offsets from bioelectricity-generating crops dominate all agricultural mitigation 

strategies. At such high carbon prices the model favors mitigation options with the 

highest carbon saving potential per acre, outweighing higher operation and 

implementation costs of these strategies.  

The results (Table 1) also show that large-scale bioelectricity production diverts 

farmland, reduces food supply, increases pressure to manage traditional agricultural 

products more intensively, increases food prices, and changes agricultural welfare 

distribution, with producers likely to gain and consumers likely to loose.  

Economic versus Technical Potential 

An important concept when regarding biofuel production involves the potential to 

mitigate GHG emissions. Physical scientists often quote very large estimates of potential, 

but these estimates typically neglect the cost of achieving that potential. We used ASMGHG 

under three settings to derive alternative measures of potential. The first represents technical  
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TABLE 1. Mitigation summary from the U.S. agricultural sector 
Category Unit 10 20 50 100 200 500 

Major Ag-Mitigation Strategy 
Soil carbon  

sequestration 
MMTCE 30,413 45,391 63,529 57,881 50,932 47,298 

Afforestation MMTCE 4,028 13,445 20,619 61,939 128,046 133,380 
Bioelectricity MMTCE 0 0 0 62,008 141,198 193,208 
Subsidized corn- 
  ethanol 

MMTCE 2,893 2,893 2,893 2,893 2,893 2,893 

Fossil fuel ag-inputs MMTCE 1,540 2,941 5,771 7,118 9,315 11,567 
Livestock technologies MMTCE 184 908 1,622 5,547 8,570 14,304 
Crop non-carbon GHG MMTCE 1,314 1,461 1,750 2,721 4,426 5,782 

Agricultural Production 
Irrigation Percentage 18.95 17.89 16.57 19.84 22.03 26.55 
Acreage Mill Acres 333.4 332.2 329.3 298.4 248.4 215.7 
Reduced tillage Percentage 62.22 73.56 82.10 83.86 85.62 84.11 
Nitrogen fertilizer 1,000 Tons 9,662 9,604 9,462 8,869 7,722 6,948 
Farmers’ welfare Billion $ 0.42 0.93 2.59 9.62 18.47 60.70 

Agricultural Market Effects 
Production Fisher Index 99.80 99.33 97.91 91.08 77.85 67.47 
Prices Fisher Index 100.50 101.08 103.93 118.67 153.03 254.64 
Ag-sector welfare Billion $ -0.10 -0.32 -0.83 -5.72 -21.20 -40.62 
Net exports Fisher Index 99.33 97.85 94.12 73.52 35.51 23.41 

Net Emission Reduction 
Carbon dioxide MMTCO2 132 227 330 684 1188 1385 
Methane MMTCH4 0.04 0.14 0.25 1.22 2.22 3.32 
Nitrous oxide MMTN2O 0.02 0.02 0.02 0.04 0.07 0.1 
Total carbon  

equivalents 
MMTCE 37.5 64.2 93.3 197.2 342.5 405.5 

Non-GHG Externalities from Crop Production 
(Excluding Trees andPerennial Energy Crops) 

Nitrogen % Change -0.9 -1.1 -0.7 -5.4 -26.6 -40.3 
Phosphorous % Change -22.9 -36.1 -48.9 -52.2 -61.9 -66.2 
Erosion % Change -13.2 -26.0 -40.0 -46.6 -58.4 -65.5 
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potential, the second, economic potential when only considering biofuels, and the third, 

competitive economic potential when considering all mitigation options.  

The technical potential estimate was obtained by changing the ASMGHG’s objective 

function from maximizing total economic surplus to maximizing bioelectricity-based 

emission offsets, thereby disregarding economics. This yields substantial emission offsets 

in the amount of 326 million metric tons carbon equivalent (MMTCE) annually (Figure 

2). The single strategy economic potential takes into account all costs of bioelectricity 

generation except for the opportunity cost related to other possible agricultural mitigation 

strategies. Under such a setting, achieving only 50 percent of the technical potential 

requires carbon prices as high as $180 per TCE. Finally, all agricultural mitigation 

options were incorporated to find the competitive economic potential. This method yields 

the fewest emission offsets because implementation of other mitigation strategies limits 

the extent to which biofuel crops can be grown. The gap in the results between single 

strategy and competitive economic potential is reflective of inter-strategy competition 

and relative advantage. Some strategies are superior in some price ranges. It takes 

extremely high incentives to achieve anything close to the technical potential. 
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FIGURE 2. Comparison of various measures of carbon emission mitigation potential 
from energy crops 
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Sensitivity Analysis on Key Parameters of the U.S. Model 

Agriculture in the United States is certainly very different from agriculture in Asian-

Pacific countries. Differences exist with respect to soil, climate, culture-based 

preferences, per capita land availability, technology, and international market competition 

(FAO). To illustrate these differences, we conducted a sensitivity analysis on a few 

decisive model parameters of the U.S. agricultural sector model.  

Biomass Yield 

The competitiveness of energy crops depends on many technological parameters. We 

chose to examine alternative energy crop yields ranging from 50 to 200 percent of current 

U.S. yield estimates. Asian-Pacific biomass producers in moist tropical regions may 

benefit from generally higher plant productivity compared to the United States but could 

also experience lower productivity due to production conditions and altered input mixes. 

Duke, for example, reports U.S. comparable or higher biomass yields in Asian-Pacific 

countries for eucalyptus and panicum (Table 2). 
 

TABLE 2. Energy crop yield comparison between the United States and Asian-Pacific 
countries 

Species Country 
Yield Indicator 

MT/ha/yr Reference 
Australia 12-13 (ADM) Duke 

India 33 (ADM) Duke 
Eucalyptus 

USA 10–32.5 (ADM) Harwood 

Leucaena 
leucocephala 
(Giant Ipil-Ipil) 

Philippines 16-24 (NPP) Durst 

Hybrid Poplar USA 3.5-5.25 (ADM) Walsh et al. 

Willow USA 3.15-5.77 (ADM) Walsh et al. 

Sri Lanka 4-7 (NPP) 
Taiwan 14-24 (NPP) 

Thailand 20 (NPP) 

Panicum 
maximum 
(Guineagrass/ 
Hamilgrass) India 1-40 (NPP) 

Duke 

Panicum 
virgatum 
(Switchgrass) 

USA 3-7 (ADM) 
9 (NPP) 

Walsh et al. 
Duke 

Notes: ADM = Average Dry Mass, NPP = Net Primary Productivity. 
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Results show a strong impact of energy crop yields on supply of emission offsets 

(Figure 3). In most cases, increased yield leads to more than proportional increases in 

biomass emission offsets. For example, at a carbon price of $100 per TCE, energy crops 

offset about 58 MMTCE per year. A 50 percent yield increase leads to a 269 percent 

increase in emission offsets. In interpreting Figure 3, one should keep in mind that all 

yield increases were implemented without changing crop input parameters. If higher 

yields were based on higher input use, the effects would be less significant.  

The results from yield scenarios are not limited to crop yield differences. They can 

be applied to all technological improvements, from farming to generation of bio-energy, 

that increase the emission-input/energy-output ratio. 

Energy Price  

There are two sources of revenues for producers of energy crops: (a) revenue from 

selling energy and (b) potential revenue from carbon emission offsets associated with  
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FIGURE 3. Changes in amount of emission offsets generated by energy crops when 
energy crop yields are altered  
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emissions-market-based income source. If the country is a major energy importer, then its 

electricity price is determined by the international energy market price.  

Many Asian-Pacific countries, for example, Japan, South Korea, the Philippines, 

Taiwan, and Thailand, import substantial amounts of energy (Table 3). Because currency 

values differ between countries, the international market price may cause different 

incentives to grow biomass. For example, agricultural producers in energy-importing 

countries with a relatively low domestic currency value would earn a higher relative 

revenue from selling electricity than would U.S. biomass producers. Similarly, revenues 

would be low if conventional energy is cheap (energy-exporting countries or countries 

with high currency value). In this study we examine alternative prices for conventional 

electricity ranging from 50 to 200 percent of the current U.S. market price. 

 The effect of energy price changes on the amount of bioelectricity emission offsets is 

depicted in Figure 4. Note that a 100 percent energy price increase results in much less 

additional emission offsets than does a 100 percent yield increase. This occurs because 

selling electricity is only one profit source besides revenues from supplying carbon 

offsets. If, for example, selling electricity contributes 25 percent to total profits, then a 20 

percent energy price increase results only in a 5 percent total profit gain.1 As the carbon 

price increases, the electricity revenue becomes relatively less important, and energy 

price changes have less effect on the amount of emission offsets supplied. For example, a 

doubling of the energy price increases carbon offsets by 88 percent at $100 per TCE but 

only by 43 percent at $200 per TCE (Figure 4).  

The results on energy price sensitivity are useful beyond extrapolation of U.S. results 

to foreign countries. They indicate how the energy crop’s competitiveness changes as 

fossil fuel prices fluctuate in general. If the recent trend of increased fossil fuel prices 

continues, energy crop farming may soon be on the rise in the United States. 

Furthermore, the results also indicate how higher or lower costs of energy crop strategies 

would affect their competitiveness because higher energy prices are equivalent to lower 

production and processing costs. 

Demand Elasticities 

Energy crop production on agricultural land takes away land from traditional 

agricultural operations. As a consequence, traditional agricultural production, that is, food 
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TABLE 3. Energy indicators in selected Asian-Pacific countries based on U.S. 
Department of Energy 

 Energy 

 Production Consumption Net Balance Export Import 

Country (Quadrillion BTU) (% of Consumption) 

Australia 8.29 4.30 3.99 92.79   

Bangladesh 0.29 0.40 -0.11   27.50 

Brunei 0.74 0.07 0.67 957.14   

China 33.13 33.93 -0.80   2.36 

Hong Kong  0.67    

India 9.95 12.51 -2.56   20.46 

Indonesia 7.49 3.62 3.87 106.91   

Japan 4.67 21.28 -16.61   78.05 

North Korea 1.69 1.81 -0.12   6.63 

South Korea 0.97 6.93 -5.96   86.00 

Malaysia 3.21 1.74 1.47 84.48   

Mongolia 0.05     

New Zealand 0.65 0.79 -0.14   17.72 

Pakistan 1.08 1.74 -0.66   37.93 

Papua New Guinea 0.17 0.00 0.17    

Philippines 0.23 1.08 -0.85   78.70 

Singapore N/A 1.33     

Taiwan 0.49 3.31 -2.82   85.20 

Thailand 1.15 2.34 -1.19   50.85 

Vietnam 0.98 0.74 0.24 32.43   

Total Asian Pacific 75.41 99.27 -23.86   24.04 

Russia 41.04 25.99 15.05 57.91   

USA 72.81 94.79 -21.98   23.19 

World Total 382.18 377.72 4.46 1.18   
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FIGURE 4. Changes in amount of emission offsets generated by energy crops when 
electricity prices are altered 
 
production, will decrease, raising prices. The extent to which prices increase may depend 

on the elasticity of demand. ASMGHG explicitly defines demand curves for 48 primary 

agricultural products and more than 50 processed products. Demand curves are specified 

as constant elasticity functions. To assess the effect of higher or lower elasticities, we 

changed demand elasticities across all primary agricultural products to (a) 50 percent and 

(b) 200 percent of the original value. 

Modifications of demand elasticity assumptions did not significantly affect the 

amount of emission offsets supplied from energy crops. Figure 5 shows that different 

domestic demand elasticities have almost no effect on supply of bioelectricity. Similar 

results were obtained when altering export and import elasticities for traded agricultural 

commodities. Note that elasticities were equally modified across all commodities. In 

reality, elasticities in foreign countries may be higher or lower depending on the 

commodity in question. 

Land Availability 

The United States has a large agricultural land base relative to its population (Table 4). 

Therefore, taking food cropland away for the production of energy crops may be cheaper in 

the United States but more expensive in densely populated countries, which heavily depend 
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FIGURE 5. Changes in amount of emission offsets generated by energy crops when 
domestic agricultural demand elasticities are altered 

 
on domestic food production. To illustrate such differences we modified the available 

agricultural land base in the United States to between 50 to 200 percent of its original value. 

Figure 6 shows the supply of bioelectricity emission offsets for different assump-

tions about the amount of available agricultural land. Not surprisingly, we find energy 

crops to be very sensitive to land availability. If the U.S. agricultural land base were cut 

in half, energy crops would not become profitable below carbon prices of $260 per 

TCE (Figure 6). These results indicate the importance of opportunity costs of farmland 

for the economic feasibility of energy crops. Less land implies less production, higher 

commodity prices, and thus higher revenues in the traditional agricultural sector. 

Consequently, farmers have to give up more by growing energy crops. Limited 

availability of agricultural land may be a major obstacle to growing energy crops in the 

Asian-Pacific area. 
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TABLE 4. Populations and land availability in selected Asian-Pacific countries based 
on the Food and Agriculture Organization information 

 Area (1,000 hectares) 
Area per Person 
Relative to U.S. 

Country 
Population 

(1,000) 
 

Total 
 

Ag-Land 
 

Arable 
 

Total 
 

Ag-Land 
 

Arable 

Australia 18,701 774,122 472,000 53,775 12.21 16.67 4.49 

Bangladesh 126,947 14,400 8,932 7,992 0.03 0.05 0.10 

Bhutan 2,064 4,700 460 140 0.67 0.15 0.11 

Cambodia 10,945 18,104 5,307 3,700 0.49 0.32 0.53 

China 1,274,107 959,805 535,566 124,144 0.22 0.28 0.15 

Fiji Islands 806 1,827 460 200 0.67 0.38 0.39 

India 998,056 328,759 180,600 161,500 0.10 0.12 0.25 

Indonesia 209,255 190,457 42,164 17,941 0.27 0.13 0.13 

Japan 126,505 37,780 5,405 4,535 0.09 0.03 0.06 

North Korea 23,702 12,054 2,050 1,700 0.15 0.06 0.11 

South Korea 46,480 9,926 1,969 1,708 0.06 0.03 0.06 

Laos 5,297 23,680 1,678 800 1.32 0.21 0.24 

Malaysia 21,830 32,975 7,890 1,820 0.45 0.24 0.13 

Mongolia 2,621 156,650 118,469 1,321 17.63 29.85 0.79 

New Zealand 3,828 27,053 16,580 1,555 2.08 2.86 0.63 

Pakistan 152,331 79,610 27,040 21,425 0.15 0.12 0.22 

Papua New 
Guinea 4,702 46,284 760 60 2.90 0.11 0.02 

Philippines 74,454 30,000 11,280 5,500 0.12 0.10 0.12 

Russian 
Federation 147,196 1,707,540 217,155 126,000 3.42 0.97 1.34 

Singapore 3,522 62 1 1 0.01 0.00 0.00 

Sri Lanka 18,639 6,561 2,329 869 0.10 0.08 0.07 

Thailand 60,856 51,312 21,175 16,800 0.25 0.23 0.43 

Vietnam 78,705 33,169 7,892 5,700 0.12 0.07 0.11 

USA 276,218 936,352 418,250 176,950 1.00 1.00 1.00 
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FIGURE 6. Changes in amount of emission offsets generated by energy crops when 
land availability is altered 

 

Conclusions 

Energy crops supply fossil fuel alternatives and therefore have the potential to reduce 

greenhouse gas emissions. Economic feasibility implies that the energy output has to be 

greater than the energy input; otherwise—in the absence of subsidies—growers could not 

yield a profit. The attractiveness of energy crops relative to fossil fuels depends on the net 

emission balance and the value of carbon offsets. In addition, growing energy crops must 

be economically superior to other possible land use strategies.  

 Assessments of energy crops in the U.S. agricultural sector show that biomass-based 

electricity (based on switchgrass or short rotation woody crops), while expensive, has 

considerable potential to offset carbon emissions. Emission offsets range between 1 and 2 

metric tons per acre per year. However, a financial support of at least $60 per ton of 

carbon equivalent (about $30 per dry ton) is needed to make them economically feasible. 

Paying less than $60 per ton of carbon offset induces other agricultural mitigation options, 

for example, changes in tillage, fertilization, and irrigation. Ethanol-generating energy 

crops turned out to be an inferior strategy over the whole range of carbon prices. 
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We also tried to generalize U.S. results through a sensitivity analysis on key 

parameters and to infer for Asian-Pacific countries. Results indicate that implementa-

tion of energy crops in the United States is highly sensitive to yields, land availability, 

and the price of energy but relatively insensitive to demand elasticities of traditional 

agricultural commodities. With the exception of Australia and Russia, most of the 

Asian-Pacific countries have far less arable land per capita than has the United States 

(FAO). Allocation of currently cultivated land to energy crops in those countries would 

imply less land available to produce food. Shortages in domestic food supply, however, 

could only be offset through increased food imports. Thus, energy crops in most Asian-

Pacific countries may not be economically feasible unless food imports are cheaper 

than energy imports. 



 

 

Endnote 

1. Suppose p = e + c, where p represents total profit, e represents energy revenue, and c represents 

carbon offset revenue and that the ratio of carbon revenue to energy revenue is known, i.e., c/e = r. 

Substitution yields the following identity: p = e + er = (1 + r)e. If the energy revenue is increased by a 

factor f, the new profit (np) can be calculated as np = te + c = te + er = (t + r)e. Thus, np/p = (t + r)/(1 

+ r). Setting r = 3, a 20 percent energy revenue increase (t = 2) implies a total profit increase of 5 

percent. 
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