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Abstract 
We propose estimation of a stochastic production frontier model within a Bayesian 

framework to obtain the posterior distribution of single-input-oriented technical 

efficiency at the firm level. The proposed method is applicable to the estimation of 

environmental efficiency of agricultural production when the technology interaction with 

the environment is modeled via public inputs such as soil quality and environmental 

conditions. All computations are carried out using Markov chain Monte Carlo methods. 

We illustrate the approach by applying it to production data from Ukrainian collective 

farms. 

 

Keywords: stochastic production frontier, Bayesian estimation, input efficiency, 

environmental efficiency 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 



 

 
 
 
 

BAYESIAN ESTIMATION OF TECHNICAL EFFICIENCY 
OF A SINGLE INPUT 

 
 

Introduction 
Most existing stochastic production frontier models assume that technical efficiency 

is firm- or time-specific, but not input-specific. In many cases, however, researchers may 

have enough reasons to believe that a firm is especially inefficient in the use of a single 

input. For example, in the case of post-Soviet collective farming, one may believe that 

most of the measured inefficiency comes from the labor input: people work on their 

subsidiary household plots, but these hours get recorded as being spent in collective 

production. In well-established market economies, a sole input inefficiency is of interest 

when the input in question does not have a market price, as is the case of environmental 

quality or another public good. As an example, Reinard et al. (1999) (hereafter referred to 

as RLT) estimate environmental efficiency of Dutch dairy farms, where the 

environmental inefficiency is defined via the amount of nitrogen overused in the 

production process relative to a required technological minimum. 

A well-known way to measure technical efficiency of an input use is via a 

mathematical programming approach  (for a review of this methodology see, for 

example, Seiford and Thrall [1990]). Because the production frontier is constructed to 

envelope the observed data on inputs and outputs, this approach also is called data 

envelopment analysis. After the frontier is constructed, the inefficiency of a particular 

input is calculated as a multiplier by which the use of this input can be reduced while 

remaining in the feasible production set. The serious shortcoming of this technique lies in 

the inability to account for randomness in production, because all deviations from the 

frontier are assumed to be associated with inefficiency. Although this may be an 

acceptable assumption in some settings, it is hardly justifiable in the analysis of 
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agricultural production, which is intrinsically prone to random disturbances due to, for 

example, weather fluctuations, pests, and plant and animal diseases. 

In the agricultural economics literature an alternative approach, the stochastic 

frontier approach, has been generally preferred;  Battese (1992), Bravo-Ureta and 

Pinheiro (1993), and Coelli (1995) provide reviews of recent production frontier 

applications in agriculture. Stochastic frontier models have two error terms, one for 

inefficiency and another one associated with factors such as measurement error in output, 

combined effects of unobserved inputs in production, weather, etc. This intuitively 

appealing property of stochastic frontiers, however, comes at a price: assumptions must 

be made about the functional form of the production function and of the distributions of 

the two errors involved (for comprehensive reviews of stochastic frontier techniques, see 

Bauer [1990] and Greene [1993]).  

A generic stochastic parametric production frontier model is a model of the form 

( )1 ,..., ;i i Ni i iy F x x v uβ= + − ,  (1) 

where iy  is (a function of) the i-th firm output, and F(.) is a known function of the firm’s 

inputs 1 ,...,i Nix x  and a vector of parameters β . The random component iv is white noise 

representing, for example, errors in measurement of the firm’s output and other events 

(such as weather variations and pest infestations) affecting the firm’s output unobservable 

by econometricians. The nonnegative random variable iu represents the firm’s technical 

inefficiency measured in terms of forgone output, that is, by how much the firm’s output 

falls short of the maximum possible output obtainable given the technology and the 

quantities of inputs available. 

The model has been widely used to estimate an output-oriented technical efficiency 

defined as (a function of) F
yi i iTE y y≡ , where F

iy is the maximum possible output 

obtainable given the input quantities 1 ,...,i Nix x ; the maximum output obtainable is 

computed by replacing iy with F
iy and setting 0iu = in (1). By construction, 0 1yiTE≤ ≤ , 

and the measure of output efficiency is intuitively appealing as the higher values of 

yiTE correspond to higher technical efficiency (lower values of iu ), with the case 
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1yiTE = representing full efficiency ( 0iu = or F
i iy y= ), and the case 

0yiTE = corresponding to complete inefficiency ( iu = ∞ or F
i iy y!  ).  

Instead of referring to the output-oriented scale, a firm’s technical efficiency could 

also be measured on an input-oriented scale, i.e., by identifying how much less inputs 

could have been used to produce output iy had the firm been technically efficient. 

Assuming for the sake of presentation that the single input overused is 1x , the single-

input-oriented technical efficiency is defined as (a function of) 1 1 1
F

i i iTE x x≡ , where 1
F
ix is 

the minimum amount of input 1x needed to produce iy . As with the output 

counterpart yiTE , 1iTE changes between 1 0iTE = (complete inefficiency, F
i ix x" ) and 

1 1iTE = (full efficiency, F
i ix x= ). For a two-input case, the output-oriented and the input-

1x -oriented technical efficiency measures are illustrated in Figure 1. 

Recently, RLT (1999) proposed a novel approach to the estimation of a single-input-

oriented technical efficiency for the model (1). They estimated (1) using the method of 

maximum likelihood, and then they used the parameter and output-oriented efficiency 

estimates to compute single-input-oriented efficiency estimates for every firm in the 

sample. Specifically, RLT computed 1
F
ix via subtracting (1) from the equation (1) in which 

1ix was replaced with 1
F
ix and iu was set to zero.  

The RLT estimator of the input efficiency 1TE is obtained for a translog frontier 

production function F(.) and is a cumbersome, nonlinear function of model parameters.  

A Cobb-Douglas specification simplifies the estimator, but the nonlinearity remains. The 

nonlinearity does not introduce difficulties when obtaining a point estimator of the input 

efficiency, because the maximum likelihood estimator (MLE) of 1TE  can be obtained in a 

straightforward manner. This is due to the invariance property of MLEs under certain 

transformations. But obtaining an estimate of the standard error of the MLE can be 

challenging, and only approximations are possible. To improve statistical inference for 

single-input-oriented technical efficiency, we propose a Bayesian approach for estimating 

the parameters of model (1). 
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We build on results of applications of Bayesian techniques in stochastic production 

frontier models estimation in the literature (van den Broeck et al. [1994], Koop et al. 

[1995], Osiewalski and Steel [1998]). But unlike these studies, which focus on the 

frontier- and output-oriented efficiency, our study employs Bayesian techniques to 

estimate a single-input-oriented technical efficiency. 

The production model we postulate is a three-tier hierarchical model. We choose 

noninformative or diffuse prior distributions where possible. Markov chain Monte Carlo 

methods are used to obtain samples from the distributions of the parameters of interest. 

We illustrate the approach by applying it to production data from Ukrainian collective 

farms. 

The rest of the paper is organized as follows. In the next section, we lay out our 

model together with prior distributions for all parameters. We then describe the Gibbs 

sampler used to obtain unconditional posterior distributions of the parameters and 

illustrate the method using production data from a sample of Ukrainian collective farms. 

We conclude with a discussion of results and directions for future research. 

In this work, our aim is to emphasize the methodology rather than the application 

itself. Our goal is to describe an approach for modeling and estimation that is flexible and 

that provides insight beyond that arising from implementation of classical statistical 

techniques such as maximum likelihood. In particular, we argue later in this paper that 

one advantage of the Bayesian approach is that it permits estimation of firm-level 

parameters in a straightforward manner. It is not possible to do so from a classical 

statistical perspective. 

 

Econometric Model 
We postulate a three-level hierarchical model to describe the association of firm 

output and inputs. 

In level 1, the farm’s logarithm of output in tons, log( )iy , is modeled as a normally 

distributed random variable with mean equal to a linear combination of the logarithms of 
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production inputs 1log( ),..., log( )i Nix x minus the amount of inefficiency iu  and with 

variance 2
vσ : 

( )2 2
0 1 1 0 1 1log( ) | , , ,..., , ; , , ~ log( ) log( ) ,i i N v i Ni i N Ni i v

parameters data

y u x x N x x uβ β β σ β β β σ+ + + −… …$%%%&%%%' $%&%' , 

i.e., 

0 1 1log( ) log( ) ... log( )i i N Ni i iy x x v uβ β β= + + + + − , (2) 

where ( )20,i vv N σ∼ . Here the subscript i refers to the i–th farm, i=1,…,M. Conditional 

on the observable data and the parameters, the outputs log( )iy are independent for all i. 

That is, outputs are assumed to be conditionally exchangeable. 

In level 2, the technical inefficiency ui is modeled as an exponential random variable 

with an inverse scale parameter 1λ − : 

) ( )1 1| ~i
parameter

u Exponentialλ λ− − . (3) 

Conditional on the parameter, iu are independent for all i. 

In level 3, the priors for the parameters 2
0 1, ,..., ,N vβ β β σ and the hyper-parameter 1λ −  

are specified. 

In the classical setting, model (2)-(3) has been introduced by Meeusen and van den 

Broeck (1977). Bayesian analysis of models such as (2)-(3) has been pioneered in van 

Broeck et al. (1994) and Koop et al. (1995). Osiewalski and Steel (1998) named model 

(2)-(3) a common efficiency distribution model, because all inefficiency terms constitute 

independent draws from the same distribution, as opposed to a varying efficiency 

distribution model, in which the distributions from which the iu ’s are drawn vary with 

firms. 

The Bayesian approach to estimation combines the information about model 

parameters that is available from all sources. Information contained in the data is 

summarized in the likelihood function, just as is done in the classical approach to 

estimation. In the Bayesian approach, however, it also is possible to incorporate 

information from other sources. To do so, prior beliefs or prior knowledge (or lack 
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thereof) about model parameters are summarized into the prior distributions chosen for 

those parameters. Bayes’ Theorem provides a mechanism to combine both sources of 

information into the posterior density of the quantities of interest, i.e., of 
2

0 1, ,..., ,N vβ β β σ , and 1λ − . In stochastic frontier models, we also are interested in the firm 

efficiencies, which are functions of iu ’s. The joint posterior distribution that results from 

combining the likelihood function and the prior distributions is an unwieldy multivariate 

function. Thus, derivation of the posterior marginal distributions of the parameters is not 

analytically tractable. We use a numerical approach, the Gibbs sampler, also called 

alternating conditional sampling, which permits obtaining a sample from the joint 

posterior distribution of all parameters by taking random draws from only full conditional 

distributions (see, for example, Gelman et al. [1995], for a detailed description of this 

technique). Following Koop et al. (1995), we include the iu ’s into the set of the random 

quantities for which we obtain the joint posterior distribution using the Gibbs sampler. 

 

Prior Distributions 

The following prior distributions were chosen for the parameters in model (2)-(3): 

0 ~ ( , )Unifβ −∞ ∞ ; 

~ (0, )k Unifβ ∞ ; k = 1, …, N; 

( )2
1 2 1 2| , ~ ,v p p Gamma p pσ − ;  

 1 * *| ~ ( ln( ))r Exponential rλ − − . 

A noninformative improper prior distribution is used for B0 because the magnitude of 

this parameter varies with the units of measurement of the production inputs. From 

economic theory, kβ  is the elasticity of output with respect to the k-th input (k=1,…,N). 

Thus, the uniform prior distributions are truncated below by zero. A Gamma prior 

distribution is a widely used choice for the inverse of the variance parameters in normal 

models (Gelman et al. [1995]). Fernandez et al. (1997) have shown that the parameter 

2p must be positive, because otherwise the posterior distribution in the inefficiency 

model does not exist. The chosen relatively noninformative prior distribution of 
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1λ − implies the prior median of the efficiency distribution is *τ  (van den Broeck et al. 

[1994]). 

The probability density functions of the prior distributions are provided in the 

Appendix. 

 

Single-input-oriented Technical Efficiency 

For the sake of presentation, we assume that the single input, in which the firms are 

technically inefficient, is 1x . Following RLT (1999), we compute the 1x -oriented 

inefficiency of the i-th firm as 1 1 1
F

i i iTE x x≡ , where 1
F
ix is obtained by replacing 1ix with 

1
F
ix and setting 0iu = in (2), i.e., 

0 1 1 2 2log( ) log( ) log( ) ... log( )F
i i i N Ni iy x x x vβ β β β= + + + + + . 

Subtracting the last equation from (2), we obtain, as in RLT, 1
1

exp i
i

uTE
β

 
= − 

 
, and 

[ ]1 0,1iTE ∈  by construction. 

Straightforward algebra ensures that the conditional probability density function of 

1iz TE≡ is given by 
1

1, 11 1
1 1( | , )p z zβ λβ λ β λ

− −− −= ,  [ ]0,1z ∈ , 

1
1 1

1 1
1

| ,
1

E z β λβ λ
β λ

−
−

−  =  +
,  and 

( ) ( )
1

1 1
1 21 1

1 1

| ,
1 2

V z β λβ λ
β λ β λ

−
−

− −
  =  + +

. 

The case of the parameters 2 1
0 1, ,..., , ,N vβ β β σ λ − having degenerate distributions 

corresponds to a classical statistics model of Meeusen and van den Broeck (1977). Note 

that the mean of the 1x -oriented-efficiency is a nonlinear function of model parameters. 

A point estimator of the mean 1x -oriented-efficiency can be obtained in a straightforward 

manner from a classical viewpoint simply by plugging into the previous expressions the 

MLEs of the parameters. Obtaining a standard error for the estimator, however, is 

difficult from a classical perspective. This is because the estimators of interest are 
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nonlinear functions of model parameters. Consequently, drawing inference about input 

efficiency from a classical perspective is difficult, particularly in finite samples. 

An alternative is to proceed with the estimation of model parameters from within a 

Bayesian framework. Although analytically deriving a Bayesian estimate is typically 

impossible (except in trivial applications), recent developments in numerical methods 

(see, e.g., Gelfand and Smith [1990]) have made it possible to implement Bayesian 

techniques in complex subject-matter problems. In particular, Markov chain Monte Carlo 

methods, of which the Gibbs sampler is but one variation, can be used to approximate 

marginal posterior distributions of model parameters and of smooth functions of the 

parameters. For example, it is possible to derive the posterior distribution of mean input-

oriented technical efficiency. Given estimated posterior distributions, a wide array of 

inferences can be drawn about the parameter of interest (or about functions of it). We 

illustrate the approach later in this paper by applying the methods to production data 

obtained from a sample of collective farms in Ukraine. 

 
Posterior Distributions and Gibbs Sampler 

The conditional posterior distributions of the quantities of interest, 2 1, ,vβ σ λ − , and 

iu ’s are used to implement a Gibbs sampler. That is, the distributions of ( )| ;i i dataθ θ −  are 

used, where 2 1( , , , )vuθ β σ λ −≡ , iθ is a subvector of θ , )( i−θ  is θ  without the element iθ , 

and data includes y and x . The conditional posterior distributions of 2 1, , ,i vu β σ λ − are a 

truncated Normal, truncated multivariate Normal, Gamma, and Gamma distribution, 

respectively. They are reported in Koop et al. (1995) and Osiewalski and Steel (1998). 

The corresponding probability density functions are provided in the Appendix.  

Briefly, the Gibbs sampler proceeds as follows. A value of each parameter in the 

model is drawn from the corresponding conditional distribution. The sequence of draws 

obtained in this manner form a Markov chain of each parameter, whose stationary 

distribution can be shown to be equal to the marginal posterior distribution of the 

parameter. Gelfand and Smith (1990) provide the proof for the result above and list the 

conditions that must be met for good performance of the method. In practice, we start 
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with “guesses” for the values of the parameters in the model and proceed sequentially, 

drawing a value from each of the full conditional distributions described earlier. After a 

suitably large number of Gibbs steps, the draws from the conditionals can be thought of 

as draws from the corresponding marginal posterior distributions. Although convergence 

of the chains to their stationary distributions is very hard to assess exactly, the behavior 

of the chains can be monitored and “convergence” can then be assumed. In the next 

section, we describe an approach to monitor the behavior of the Markov chains when 

discussing the application. If the full conditional distributions of all parameters are of 

standard form (e.g., of normal, gamma, or other similar form) then implementing the 

Gibbs sampler is easy, which is the case for our model. Further details on the Gibbs 

sampler, including convergence criteria and application to the estimation of technical 

efficiency models, are provided in Koop et al. (1995) and in Osiewalski and Steel (1998). 

Implementation of the Gibbs sampler results in a (correlated) sample of draws of 

virtually any function of the model parameters. In each pass, draws from the distribution 

of the input- 1x -oriented technical efficiency for the i-th farm are constructed as  

1
1

exp i
i

uTE
β

 
= − 

 
. 

Once the draws are obtained, the posterior distributions of the quantities of interest 

can be approximated and easily summarized via histograms and descriptive statistics such 

as means, variances, and percentiles. In contrast to the classical approach, the Bayesian 

allows straightforward estimation of probabilities of the form [ ]Pr θ ∈∆ , whereθ is a 

random quantity of interest and ∆ is a one-dimensional set. For example, in our 

application we can make statements such as “The probability that the technical efficiency 

of firm X is between 0.5 and 0.6 is Y percent.”  

 

Application 
To illustrate the method we have just described, we used the production data 

analyzed by Kurkalova and Jensen (1996) in an investigation of the technical efficiency 

of labor input in grain production on Ukrainian collective farms. The farm-level data 
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come from a random sample of 41 farms for the years 1989 to 1991. See Kurkalova and 

Jensen (1996) for details on the data. 

Typical for Ukraine, the collective farms are very large by Western standards with 

more than 330 employees on average. Most of the collective farm members have two 

jobs: the official collective farm job, and an unofficial one on a family land plot. The 

production obtained from the family plot has always been a significant contributor to 

family income and, in the 1990s, has grown to provide more than one-half of a family’s 

income in many post-Soviet countries (Van Atta [1998]). Collective farm members have 

little incentive to work as hard in the collective sector as they work on their private plots: 

the remuneration in the collective sector does not depend on the quality of the job, and 

shirking is widespread. Yet there is no distortion in the incentive to work on the family 

plot, because all the output from the plot belongs to the family and can be sold at farmers’ 

markets. 

The years 1989 to 1991 represent the beginning of economic reforms in the Soviet 

republics and the beginning of real economic hardship in rural Ukraine. Government 

subsidies to agriculture began to phase out, but the farms were not allowed any 

significant restructuring. Related to this, the state-provided farming infrastructure 

deteriorated sharply during this period. As a result, wages on the farms declined, and 

incentives to do a good job on the collective farms—already weak in Soviet times—all 

but vanished. As a consequence, it is reasonable to assume that a large proportion of the 

collective-farm-measured inefficiency comes from labor input because the hours of labor 

recorded as being spent in collective production may well have been spent on the family 

plots. In our analysis, and to illustrate the methods, we assume that all inefficiencies 

reside on the use of a single input, and we attribute the collective farm inefficiency to 

labor alone. Although this may be an assumption that is open for discussion, we proceed 

for illustration purposes. An extension of the model to the case in which only a part of the 

technical inefficiency is attributed to the input in question constitutes an interesting topic 

for future research. 
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The model we used in this application is given by 
4

0 90 90 91 91
1

it j ijt it it
j

Y d d x V Uβ β β β
=

= + + + + −∑ , (4) 

where the subscript i indicates the observation for the i-th farm in the survey (i = 

1,2,…,41), and the subscript t indicates the observation for the t-th year (t = 1,2,3). Y 

represents the logarithm of the total grain production (in metric tons) on the given farm in 

the given year; iβ , (i = 0, 90, 91, 1,…,4) represent the unknown parameters associated 

with the explanatory variables in the production function; 90d (d91 ) is the dummy variable 

that has value 1 if t = 2 (t = 3) and value 0 otherwise; and xis (i =  1,2,…,5) represent the 

logarithms of the total amounts of land under grain production (in hectares), labor in 

grain production (in 1,000 hours), chemicals applied for grain production (in tons), and 

diesel fuel used in grain production (a proxy for machinery services) (in 1,000 liters), 

respectively. The error terms have the same meaning and distributions as before.  

The summary statistics for the data used in estimation are given in Table 1. We 

estimated the parameters in model (4) using both a classical approach (ML) and a 

Bayesian approach (as described earlier). Maximum likelihood estimates of model 

parameters were obtained using the econometrics package LIMDEP (Greene 1991) and 

are presented in Table 2. The results imply mean output-oriented efficiency of 

yiE TE   =0.92. The labor-oriented efficiency estimated has a mean of [ ]1iE TE =0.61.  

 

Table 1. Summary statistics for variables in the Production Frontier Model a  
 
Variable 

 
Units 

Sample 
Mean 

Sample 
St. Dev. 

 
Minimum Maximum

      
Production Tons 4235 2477 1219 18574 
Land Hectares 1142 531 268 2850 
Labor 1,000 hours 31 27 6 219 
Chemicals Tons 7.1 3.9 1.7 21.4 
Fuel 1,000 liters 95 53 24 285 

    
a 41 farms, 3 years, 123 observations in total 
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For the Bayesian analysis, we generated five parallel chains, each containing 5,000 

Gibbs sampler iterations, but we used only the last 1,000 draws to approximate the 

posterior distributions of interest. That is, we used the first 4,000 draws of each chain as 

“burn-in” draws to let the chains converge and assumed that the last 1,000 draws were 

draws from the stationary distributions of the chains. Because the chains were run 

independently, the last 1,000 draws from each can be combined into one sample, and all 

5,000 can then be used to approximate the posterior distributions of the parameters. 

Values for the parameters of the priors were set as follows. For the prior distribution of 

the noise variance we set 1p =1, 2p =0.01, implying that a priori, the expected value of 
2

vσ − was equal to 100. The parameter *r was chosen to be 0.8, because this is the value 

reported in many studies of technical efficiency of (post-)Soviet agriculture (e.g., Sedik et 

al. (1999), Johnson et al. (1994), Sotnikov [1998]). For all other model parameters, we 

chose noninformative prior distributions. In particular, all of the regression coefficients 

were modeled, a priori, as uniform random variables bounded below by zero. Notice that 

this choice of prior distribution, even though improper, still results in an integrable 

posterior distribution.  

The five independent Markov chains for all parameters were initialized by drawing 

the initial values from overdispersed distributions. The starting values for 1λ − , β , and 
2

vσ −  were drawn from the corresponding prior distributions. The behavior of the chains 

was monitored by computing the statistic R̂ . This statistic was proposed by Gelman 

and Rubin (1992). Intuitively, the statistic monitors convergence by comparing the 

within- and between-chain variances. If the chains have converged to their stationary 

distributions, the value of the statistic is approximately equal to 1. Values larger than 1 

indicate that the “noise” in the draws can be reduced by an amount equivalent to the 

excess of 1 if the chains are allowed to proceed for additional steps. In our application, 

the values of the R̂ statistic were under 1.05 for all parameters after 5,000 iterations, 

indicating that additional Gibbs steps would not have resulted in increased precision of 

our estimates. From those values, we can reasonably assume that the chains have 

converged to their stationary distributions. 
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Bayesian estimation results are summarized in Table 2 and Figures 2 to 7. The point 

estimates of the frontier parameters and their standard deviations are very close to those 

that were obtained using the classical maximum-likelihood approach, suggesting that 

Bayesian estimation provides little advantage there. It is important to notice, however, 

that in general we cannot expect this to be the case, in particular for second order 

moments. The variances of the regression coefficients obtained from the classical 

approach to estimation are in this case very similar to the posterior variances of the 

regression coefficients. One reason for this is that the error with which 2
vσ is estimated 

appears to be rather small (see, e.g., Figure 2) so that even when incorporating the 

uncertainty about 2
vσ into the estimate of the uncertainty around the regression 

coefficients, the resulting variance is similar to that arising from the MLE.  

The estimates of variance parameter 2
vσ  differ slightly between the classical and 

Bayesian approaches. The mean of technical efficiency, both output-oriented and input-

oriented, is also estimated closely using the two methods.  

The Bayesian methodology, however, provides more informative results on 

individual firm inefficiency scores. Whereas from the ML approach all we are able to 

compute is an average (across-firms) efficiency, the Bayesian approach permits 

estimation of firm-level efficiency scores, both for output and for labor input orientation. 

Consider two of the firms in our study, labeled 5 and 6. These two firms appear to have 

very different efficiency in their use of inputs. As Figures 5 and 6 show, the technical 

efficiency scores for firms 5 and 6 differ substantially. In particular, the distributions of 

the labor-input-oriented technical efficiencies for these two firms hardly overlap. The 

firms differ both in the actual efficiency estimates (whether we choose the mean or the 

median of the posterior distributions as point estimate) and also in the precision with 

which efficiency can be assessed for the firm. For example, it appears that there is little 

information in the data to accurately estimate the technical efficiency for firm 6.  
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Table 2. Maximum-likelihood and Bayesian estimates for parameters of the 
Frontier Model 

Bayesian Point Estimates b  
Variable 

 
Parameter 

Maximum 
Likelihood 
Estimate a 25th 

Percentile 
 

Median 
75th 

Percentile 
Stochastic Frontier      

Constant β0 4.49 4.16 4.48 4.80 
  (0.45*)  (0.48)  
Year 1990 Dummy β90 -0.084 -0.107 -0.085 -0.062 
  (0.034**)  (0.034)  
Year 1991 Dummy β91 -0.372 -0.397 -0.374 -0.350 
  (0.036*)  (0.035)  
ln (labor) β1 0.141 0.123 0.141 0.160 
  (0.029*)  (0.028)  
ln (land) β2 0.32 0.24 0.32 0.41 
  (0.12*)  (0.13)  
ln (chemicals) β3 0.264 0.227 0.262 0.297 
  (0.041*)  (0.052)  
ln (fuel) β4 0.181 0.118 0.184 0.251 
  (0.098***)  (0.099)  
Inefficiency model       

The inverse of the mean 
of the output-
oriented inefficiency

1λ −
 

11.2 
(4.9**) 

8.9 13.3 
(6.8) 

15.7 

      
Standard deviation of the 

white-noise error 
component  

vσ  0.126 
(0.023*) 

0.117 0.130 
(0.020) 

0.144 

      
Mean output-oriented 

technical efficiency yiE TE    0.918 
(0.033) 

0.900 0.920 
(0.028) 

0.940 

      
Mean labor-oriented 

technical efficiency 
[ ]1iE TE  0.61 

(0.18) 
0.55 0.60 

(0.10) 
0.68 

      
Log (Likelihood)  57.04    
a Standard errors in parentheses; they are computed from analytic second derivatives. 

Values below means of marginal posterior distributions are not standard errors of the 
means but rather posterior standard deviations. 

b Computed from 5,000 runs of the Gibbs sampler. 
*, **, and *** indicate statistical significance at the 1, 5, and 10 percent level, 

respectively. 
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We can take this analysis a step further and obtain an estimate of the marginal 

posterior distribution of the percentage difference in efficiency across the two firms. 

Consider, for example, the indicator 1,5 1,6/TE TE . If the ratio approaches 1, then we would 

conclude that firms 5 and 6 have comparable efficiency in the use of labor.  If the ratio is 

larger than 1, then we would conclude that firm 5 uses labor input more efficiently than 

firm 6.  For illustration, we have obtained the marginal posterior distribution of the ratio 

of technical efficiency in the use of labor for the two farms. The histogram that represents 

that distribution is given in Figure 7. Notice that in our application, a large proportion of 

the mass of the distribution is to the right of 1. We can therefore say that the probability 

that firm 5 uses labor input more efficiently than firm 6 is approximately equal to 89.5 

percent. Furthermore, the variance of this posterior distribution reflects the confidence 

with which we can conclude that firm 5 uses inputs more efficiently than firm 6. 

 

Concluding Remarks 
Our study is built upon two intuitively appealing techniques: the idea of recalculation 

of input efficiency from an estimated output efficiency of RLT (1999), and Bayesian 

estimation of an output-oriented frontier production function as presented, for example, 

in Osiewalski and Steel (1998). 

Recently, there has been an increase in both academic and policy attention to the 

environmental consequences of agricultural production (see, for example, Weaver 

[1998]). The methodology we suggest for single-input-oriented technical efficiency 

estimation is applicable to the estimation of environmental efficiency of agricultural 

production when the technology interaction with the environment is modeled via public 

inputs such as soil quality and environmental conditions.  

In the more traditional production economics research, or for environmental-type 

work, a next step in the analysis would include investigation of those firm-specific 

attributes that may affect efficiency in the use of an input. In our study, it is apparent that 

collective farms in Ukraine exhibit very different efficiencies in labor use. Which firm 

characteristics result in a more efficient use of inputs?  Answering this question requires 

that the production model be extended and that an additional layer in the hierarchy be 
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added. In this level, the response variable would be the firm’s efficiency, and the 

predictors in the model would then be firm characteristics that might be associated to 

input efficiency. Because firm efficiency is observed with error, a classical approach 

would suggest that methodology appropriate when variables are measured with error be 

employed. But most of the methods available for analysis assume that the error in the 

dependent variable is homogeneous across firms. As is clear from Figures 5 and 6, the 

uncertainty with which we measure efficiency for the firms is variable across firms, and 

thus a more general approach for modeling efficiency as a function of firm attributes 

needs to be developed. The Bayesian paradigm provides a flexible framework that 

permits the investigation of these types of questions in a natural and unambiguous 

fashion. 

We have attempted to illustrate, using the production data from a small sample of 

collective farms in Ukraine, the wealth of results and inferences that can be drawn when 

adopting a Bayesian approach for analysis. Although we are not arguing that the classical 

approach to estimation is inappropriate in all cases, we stress the additional information 

that can be obtained from within the Bayesian framework. In addition, we demonstrate 

that the Bayesian approach is feasible, even in complex problems. In our case, we wanted 

to derive firm-level estimates of efficiency in the use of labor and to highlight the fact 

that the precision of the estimate is likely to be heterogeneous across firms. This fact 

would have been difficult to uncover from the usual ML analysis.   

As a final note, we must comment that the use of the Cobb-Douglas specification is 

not crucial for the method suggested. Less parsimonious forms can be used for the 

frontier production function as long as it is possible to recalculate input inefficiency from 

estimated output inefficiency as RLT (1999) showed it for a Translog frontier production 

function.  

Possible future extensions of the model include the abolishment of the common 

inefficiency effects model in favor of the model in which firm efficiency varies with 

firm-specific variables in the spirit of Battese and Coelli (1995) and Osiewalski and Steel 

(1998). Also, the exponential model has a drawback originating from the properties of 

Gamma distribution because the mean and the variance of the Gamma distribution are 
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positively related. In our setting, that means that the model structure imposes a positive 

relationship between the size and the dispersion of inefficiency.  Whether this assumption 

is plausible or not is something to be determined in future work. 
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FIGURE 1. Output-oriented and single-input-oriented technical efficiency. 
 
For the point A in the production space (y, 1x , 2x ), the output-oriented technical 
efficiency is F

yi i iTE y y≡ , and the input- 1x -oriented technical efficiency is 

1 1 1
F

i i iTE x x≡ . 
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FIGURE 2. Marginal posterior distribution of 2

vσ , the variance of the error term. 
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FIGURE 3. Marginal posterior distribution of the mean output-oriented technical 
efficiency. The mean is computed over all farms.
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FIGURE 4. Marginal posterior distribution of the mean labor-input-oriented 
technical efficiency. The mean is computed over all farms. 
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FIGURE 5. Marginal posterior distributions of ,5yTE and ,6yTE , the output-oriented 
technical efficiency for firms #5 and #6. 
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FIGURE 6. Marginal posterior distributions of 1,5TE and 1,6TE , the labor-input-
oriented technical efficiency for firms #5 and #6. 
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FIGURE 7. Marginal posterior distribution of 1,5 1,6/TE TE , the ratio of the labor-
input-oriented technical efficiency of firm 5 to that of firm 6. 
 





 

 
 
 

 
Appendix 

Throughout the Appendix, ( )p x denotes the probability density function of a random 

variable X. The notation x is used for a vector/matrix x of the appropriate dimension. 

Probability density functions of prior distributions are given by 

( )0 0( ) 1, ,p β β= ∈ −∞ ∞ ; 

( ) 1, 0, 1,..., ;k kp k Nβ β= ≥ =  

( ) ( ) ( )
1

1 12 2 2 22
1 2 2

1

( | , ) exp , 0;
p

p

v v v v
pp p p p

p
σ σ σ σ

−− − − −= − ≥
Γ

 

( ) ( )1 * * * 1 1( | ) log( ) exp log( ) , 0.p r r rλ λ λ− − −= − ≥  

The full conditional posterior of u  is a truncated Normal distribution: 

2 1 2
1 2

2
2

1 1( | , , ; , ,..., ) exp ( ) , 0
2

2
i v i i Ni i i i

vi
v

v

p u y x x u m u
m

β σ λ
σ

π σ
σ

−  
= − − ≥    

Φ 
 
 

, 

where  
1 2

0 1 1log( ) ... log( ) log( )i i N Ni i vm x x yβ β β λ σ−≡ + + + − − . 

The full conditional posterior of β  is an (N+1)-variate Normal distribution truncated 

to the subspace ( )βΚ : 

( ) ( ) ( ) ( )

2

2

( | , ; , )
1exp ' log( ) ' log( ) ,
2

v

v

p u x y

x x

β σ

σ β µ β µ β β

−

−

∝

 ∝ − − − ∈Κ 
 

 

where 

( ) ( )1
log( ) ' log( ) log( ) ' log( )x x x y uµ

−
= + , and 

( ) [ ) [ )( , ) 0, ... 0,βΚ = −∞ ∞ × ∞ × × ∞ . 
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The full conditional posterior of 2
vσ −  is 

( )

1 12 2 2

22 2
0 1 1 2

1

( | , ; ) ( )

1exp log( ) log( ) ... log( ) , 0.
2

M p

v v

M

v i i N Ni i v
i

p u data

y x x u p

σ β σ

σ β β β σ

+ −− −

− −

=

∝

  × − − − − − + + ≥  
  
∑

 

Finally, the full conditional distribution of 1λ − is also a Gamma distribution: 

1 1 *

1

( | ) exp log( )
M

M
i

i
p u u rλ λ λ− − −

=

  ∝ − −  
  
∑ . 
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