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Abstract 

Many cases of externalities in agricultural production such as pesticide drift, cross-

pollination, and offensive odors are attributable to the incompatibility of neighboring land 

uses. This paper offers an examination of when an efficient activity arrangement is 

compatible with free-market incentives. Also, free-market and socially efficient activity 

arrangements are characterized in terms of spatial concentration of the externality 

generating uses. 
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SPATIAL ARRANGEMENTS OF EXTERNALITY GENERATING  
AND RECEIVING ACTIVITIES 

Introduction 
In recent years, agricultural markets analysts have paid increasingly more attention 

to the spatial concentration of production in both animal and crop agriculture. In 

particular, the geographic concentration of production of main field crops in several 

growing regions is a distinctive feature of the U.S. agricultural landscape. Geographic 

production patterns are shaped by a host of factors, including soil qualities, proximity to 

input markets, vertical integration, farm size, and the marketing environment. In this 

paper I will focus on another essential feature of the grower’s decision environment: the 

presence of spatial externalities due to multiple land uses. 

A number of externalities in agricultural production, such as pesticide drift, cross-

pollination, invasion by foreign species and predators, offensive odors, industrial 

emissions and pollution, are well documented. For example, the negative impacts of 

livestock feeding operations on the values of residential properties located in the close 

vicinity are studied in Herriges, Secchi, and Babcock 2003. Damage to cotton due to the 

herbicide applied on rice planted in the surrounding area and damage to an olive crop 

produced in the vicinity of cotton are two examples of externalities in crop agriculture 

(Parker 2000). Another common occurrence of spatial externality is the danger of cross-

pollination impairing the quality of the crop delivered by seed growers (Perkins 2003). 

The same is true for the potential contamination between non-genetically modified and 

genetically modified crop varieties (Belcher, Nolan, and Phillips 2003; Munro n.d.; 

Brasher 2003). For example, certified organic crop production may entail buffer zones 

with sizes varying depending on the types of crops grown on adjacent farms. 

The damage from many types of externalities is frequently attributable to the 

incompatibility of neighboring land uses and declines with the distance between the 

externality generator and recipient (e.g., see Baumol and Oates 1998; Helfand and Rubin 
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1994; Albers 1996; Parker 2000). This implies that concentrating externality generators 

in a certain area may decrease the total cost imposed on the recipients. The concentration 

of generators has two counteracting effects on the distribution of damages across the 

recipients. On the one hand, the total number of immediate “border” neighbors with 

incompatible uses decreases. On the other hand, the “bordering” recipients are located 

next to a greater number of generators. The result is a more dispersed distribution of 

externality damages among the recipients. However, if the damage to a recipient from 

multiple externality generators accumulates quickly, a socially efficient arrangement of 

land uses may lead to spreading of the generators.1 This is because a lower level of 

spatial concentration of generators spreads out the externality damages more evenly 

across the recipients.  

Agricultural policymakers have developed a number of intervention tools designed 

to improve the efficiency of land-use arrangements, such as zoning orders, emission 

regulations, size restrictions, buffer zones, various environmental standards, and other 

types of legislation. In this light, it is interesting to examine when a given socially 

efficient land-use arrangement can be implemented through competitive markets by 

assigning the land uses (e.g., zoning orders) without any further regulation. The question 

of the choice of a policy instrument to correct for externalities when the damages must be 

spread out or concentrated in certain areas of the region is studied in Helfand and Rubin 

1994; Baumel and Oates 1998; and Dosi and Tomasi 1994 in different settings.2  

The goal of this paper is twofold. First, free-market and socially efficient land use 

arrangements are characterized in terms of spatial concentration of the externality 

generating uses. Second, a policy perspective is taken and production environments are 

found such that the efficient arrangements are implementable in a free-market setting. 

The two issues are related because the alignment of the free-market incentives with the 

efficiency considerations depends, in part, on the efficient level of generator 

concentration. While the implementability alone does not guarantee that the efficient 

arrangement will be realized in the free-market setting, it guarantees that, once the 

efficient arrangement is achieved, no further policy measures need to be taken. 

The rest of the paper is organized as follows. First, a model is developed, and the 

conditions needed for the existence of equilibrium in the free-market setting are 
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established. Then, geometric configuration patterns of the free-market arrangements are 

studied under different conditions on the externality dissipation across farms in the 

region. After that, the efficient arrangement that minimizes the total loss due to 

externality damages imposed on the recipients for a given amount of output is 

investigated in several special cases. The level of generator concentration is 

characterized, and a determination is made as to whether the efficient arrangement is 

implementable in the free-market setting. This analysis is followed by an inquiry into the 

effects of the rate of externality accumulation on the efficient arrangement, and 

concluding remarks. 

 

Model 
Let },...,1{ nN =  denote the set of farms (convex and non-overlapping plots of land) or 

agents located in a region described by a square nn×  matrix fD }{ f
ijd= , where 

f
ijd },...,2,1{ ρ∈  is the distance between farms i  and j , ji ≠ , with 0=f

iid , for Nji ∈, .3 

Each agent operates one farm, all farms are of the same size, which is normalized to one, 

and each farm produces a unit of one of the two crops: the externality “recipient” crop, r , 

or the externality “generator” crop, g .4 Farm i  that produces the generator crop imposes a 

negative externality on all farms j i≠  if they produce the recipient crop, and the damages 

decrease with the distance between the farms. At the farm level, the damage imposed by 

the generator j  on the recipient i  is given by )( f
ijij dd γ= , where 0(.) >γ  is the 

externality dissipation function. It is a decreasing function of the (“geographic,” 

“agronomic,” or “economic”) distance between the farm plots.5 Let }{ ijdD =  denote the 

matrix of the potential individual externality damages between any two farms in the region 

with distance matrix fD . The per acre cost of producing the externality receiving crop on 

farm i  is then given by )(
1 iii

n

j jiji ededCc −= ∑ =
, where ie  denotes the type of crop 

produced on farm i : 1=ie  for the generator crop, and 0=ie  for the recipient crop. The 

function (.)C  is (strictly) increasing, and reflects the rate of accumulation of the externality 

damage on an individual farm. 
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The per acre values of the two crops gross of all production costs except for the 

externality damages are rv  and gv . These values are certain and common for all farms.6 

The premium net of the externality damage decreases with the output of the recipient 

crop (increases with the output of the generating crop): )(svvv gr =− , where ∑=
=

n

i ies
1

 

is the amount of the generating crop. To assure that there is an incentive to produce both 

crops, we hold that )(nv ii
n

j ij dd −> ∑ =1
 for some i , and 0)0( <v . 

 

Free-Market Equilibrium 
In a free-market setting, farmers make their production decisions (choose the best 

response) in accordance with 

 ],max[)( g
i

r vcvi −=Π , (1) 

so that 
0

* 1
≤−−

=
i

gr cvvie , where 01 ≤x  is an indicator function. Therefore, in a pure strategy 

Nash equilibrium (PSNE), a set of farms that generates the externality is given by 

 }0:{* ≤−−= i
gr cvviG ,  (2) 

where )( *
1

*
iii

n

j jiji ededCc −= ∑ =
, ∑ =

−=−
n

j j
gr envvv

1
* )( , 1* =je  if *Gj∈ , and 0* =je  

otherwise. In general, one cannot guarantee the existence or uniqueness of the 

equilibrium set *G  defined by equation (2). The Nash equilibria in pure strategies exist if 

the (potential) costs imposed by generators on each other are sufficiently high compared 

with the costs imposed on any recipient. The spatial characteristics of the region must 

allow for a land-use arrangement with some degree of the concentration of generators.  

Formally, this can be stated as follows. The existence of the PSNE is equivalent to 

the existence of a number }1,...,2{* −∈ ns  and a permutation of farm indices )(ii π→  

such that ∑∑ ==
≥−

s

j jhll
s

j jl ddd
1 )(),()(),(1 )(),( ππππππ  for any *1 sl ≤≤ , nhs ≤≤+1* , and 

)( *sv  ],[ cc∈ , where )(max
*

* 1 )(),(
,..,1

∑ =+=
=

s

j ji
nsi

dCc ππ  and ∑ ==
=

*

* 1 )(),(
,..,1

(min s

j ji
si

dCc ππ  

))(),( iid ππ− . Then the PSNE land-use arrangement is *1*
)( siie

≤
=π . The required condition 
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on the externality impacts across farms asserts that the assigned land uses are, in fact, the 

best responses for each farm. For example, for a given number of generators s , the PSNE 

exists if there is a permutation of the impact matrix D  such that there is an s  by sn −  

zero submatrix below the main diagonal. Next, we characterize a region (impact matrix) 

where the PSNE with a certain arrangement of generators always exists, and furthermore, 

the number of generators is unique (possibly up to a scale parameter). (Proofs of results 

are available in the Appendix.)  

 

RESULT 1. Suppose that ∑∑ −

== + ≤
1

1 ,1 ,1
s

j js
s

j js dd  for all 1,...,2 −= ns , and 1221 dd ≤ , Then 

there exists the PSNE with *1*
siie

≤
= , and *s  is uniquely determined by =);( * βsv  

β ],[)(ˆ * ccsv ∈  for some scale parameter 0>β , =c ∑ = +

*

*1 ,1
)( s

j js
dC , and =c  

)( 1

1 ,

*

*∑ −

=

s

j js
dC .  

 

The characteristics of the region’s impact matrix guarantee that in any arrangement where 

the first s  farms are generators and the last sn −  farms are recipients, the potential 

damage borne by each generator exceeds the actual damage borne by each recipient. This 

is illustrated using two impact matrices with a simple algebraic structure that will be 

frequently employed throughout the paper. 

  

EXAMPLE 1. (Sum Impact Matrix) Let jiij bad +=  for Nji ∈, . Here the externality 

damage received by farm i  from the externality generating farm j  is the sum of the 

recipient’s susceptibility, ia , and the generator’s intensity, jb . The condition 

guaranteeing the existence of the PSNE becomes 11
( )s

s jj
a b+=

+∑  1

1
( )s

s jj
a b−

=
≤ +∑ , or 

1+− ss aa sba ss /)( +≥  for all 1,...,2 −= ns . That is, the susceptibility of each generator 

is larger than that of each recipient. Furthermore, the magnitude of the difference in 

susceptibilities increases with both the generator’s susceptibility and intensity and 

decreases with the number of the operating generators. For example, let ii ba =  for all 
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Ni∈ . Then the condition becomes 1)/21( +≥− ss aas , that is, the region must be such 

that the farm “size” decreases with the farm index, and the magnitude of the fall in size 

decreases with the number of generators.7  

 

EXAMPLE 2. (Product impact matrix) Let jiij bad =  for Nji ∈, . In this case, the 

externality damage received by farm i  from the externality generating farm j  is the 

product of the recipient susceptibility, ia , and the generator intensity, jb . The condition 

guaranteeing the existence of the PSNE becomes ∑∑ −

== + ≤
1

11 1
s

j js
s

j js baba , or ss aa /1+  

1)/1(
1

<−≤ ∑ =

s

j js bb  for all 1,...,2 −= ns . As before, the susceptibility of each 

generator is larger than that of each recipient. Furthermore, the magnitude of the fall in 

the susceptibility for two farms with consecutive indices, i  and 1+i , increases with the 

i ’s generating intensity and decreases with the generating intensities of farms with 

smaller indices. 

Regions Where the PSNE Fails to Exist 
In general, equilibrium with a strictly positive number of both recipients and 

generators may fail to exist for two distinct reasons. First, while the spatial distribution of 

costs is compatible with the PSNE, the price premium may not be (quantitative failure). 

Second, for any price premium, the spatial distribution of costs may not be compatible 

with the PSNE. In the former case, a tax or subsidy scheme common to all growers 

resolves the problem. In the latter case, the failure is more fundamental because any 

intervention needs to be heterogeneous at the grower level. For example, for any price 

premium )(sv , no equilibrium in pure strategies exists for the region with the impact 

matrix 1=ijd  for ji ≠  and 0=iid , as depicted in Figure 1 for 4=n . Informally, the 

region must be sufficiently big so that the externality damages vary within the region, 

which may allow the “neighborhoods” of generators to form. 
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FIGURE 1. A “small” region where no PSNE exists 

 

Basically, the equilibrium does not exist if it is impossible to form a configuration 

where farms of one type bordering the farms of another type have no incentive to switch. 

Next, we characterize one class of distance matrices that possess this property.8 

 

RESULT 2. Suppose that || jid f
ij −=  for all i , Nj∈ . Then there is no PSNE for any 

price premium )(sv  and externality dissipation function )(ργ . 

 

The PSNE fails to exist because all ρ -distant neighbors of each farm are either ( ρ -1)- or 

( ρ +1)-distant neighbors of an immediate neighbor of that farm. Furthermore, there is at 

most one ρ -distant neighbor of each farm that is also a ( ρ +1)-distant neighbor of an 

immediate neighbor of that farm. Therefore, if two immediate neighbors have 

incompatible land uses, the externality damage to the recipient will exceed that of the 

generator. This is because the recipient always has at least one unit of damage more than 

the neighboring generator. For example, a region consisting of square lots located on a 

one-lot-wide strip of land, as in Figure 2, satisfies the condition in the result. 

 

 
FIGURE 2. A “stretched” region where no PSNE exists 
 

On the other hand, if the PSNE exists, there are areas with a high concentration of 

generators and areas with a high concentration of recipients because of the inverse 

relationship between the distance and the externality impact. Let }:{)( ρρ == f
iji djM  

denote the set of neighbors of farm i  located at distance ρ . Suppose that the externality 
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is local in the sense that 0)( =ργ  for all ρρ ˆ> . Then, informally, in the PSNE 

generators are concentrated (agglomerated) in groups of “size” ρ  because from hl cc >  

for *Gl ∈  and *Gh∉  it follows that 0])[(
ˆ

1 )(
*

)(
* ≥−∑ ∑∑= ∈∈

ρ

ρ ρρ
ργ

hl Mi iMi i ee . This 

implies that each generator has more ρ -distant neighbors than any recipient for some 

radius ]ˆ,1[ ρρ ∈ , ∑∑ ∈∈
≥

)(
*

)(
*

ρρ hl Mi iMi i ee . That is, generators are not “too” spatially 

dispersed and are, at least to some extent, clustered together in order to absorb more 

externality damage than the surrounding recipients. In this light, it is interesting to 

examine the geographical patterns of the PSNE land-use arrangements for different 

distance matrices, fD , and for the externality dissipation functions, )(ργ . 

Properties of Free-Market Arrangements When the Dissipation Function Is Concave 
In this section, some geometric characterizations of equilibrium farm configurations 

are provided. To this end, let f
tj

f
ti ddtjiU == :{),,( ρ  }ρ+  denote the set of farms closer 

to j  than to i  by ρ  (closer to i  than to j  by ρ−  if ρ  is negative, or equi-distanced 

from j  and i  if ρ  is zero). We hold that the distance matrix satisfies the condition that 

),,(1,0,1 ρρ jiU−=∪  N=  for any ji,  with 1=f
ijd .  

 

DEFINITION 1. A set L  is said to be locally agglomerated if for any Lji ∈,  and Lh∉  

such that 1== f
jh

f
ih dd  it is true that ∅≠∪∩ )]0,,()1,,([)1,,( jhUjhUihU  or )1,,( jhU  

)1,,([ ihU∩ ∅≠∪ )]0,,( ihU . 

 

Consider a set of farms L , and an “outsider” farm (not in the set) that is located 

immediately next to two “insiders” in the set. The set L  is locally agglomerated in the 

sense that the edge of the set is “somewhat” rounded toward the outside. That is, it is 

impossible to have a recipient that is surrounded by generators from the opposite sides, 

)1,,()1,,( hjUihU ⊆  and )1,,()1,,( hiUjhU ⊆ , and all three lie on the straight line. This 

is because at least some members of the set are closer to the “edge” members than to 

the outsider. Next, we ascertain that the equilibrium farm configuration possesses this 
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weak property when the externality dissipates at an increasing rate as distance 

increases.9  

 

RESULT 3. Suppose that the externality dissipation function )(ργ  is concave. Then the 

set of generators *G  is locally agglomerated in the PSNE. 

 

Note that the dissipation function )(ργ  is held to be non-negative, non-increasing, 

and concave for all ],0( ρρ ∈ . This implies that the externality generated from any point 

of the region is “felt” throughout the entire region (except for the edges of the region). To 

characterize global geometric properties of the equilibrium generator set, we make the 

following assumptions about the region where farms are located. 

Consider a region with Euclidean distances between farms, which are represented by 

points in the plane. An example is a rectangular grid with farms located in the grid points. 

The Euclidean distance measure implies that any point k  that lies on a straight line 

between points i  and j  is a convex combination of these points. Therefore, the distances 

from any arbitrary point x  in the plane to points k , i , and j  are connected by the 

inequality f
ix

f
kx dd λ≤ )1( λ−+ f

jxd , where ]1,0[/ ∈= f
ij

f
jk ddλ  and f

ij
f

ik dd /1 =− λ  since 

f
kj

f
ik

f
ij ddd += . The following definition is a version of convexity suitable for a discrete 

finite set of points.  

 

DEFINITION 2. A set of farms L  is agglomerated if for any Lji ∈,  with f
kj

f
ik

f
ij ddd +=  it 

follows that Lk ∈ . 

 

That is, a set of farms is agglomerated if it contains all farms that lie on the shortest 

path (a line) between farms i  and j  in the set. The following result establishes that the 

equilibrium set of generators is agglomerated, if the externality dissipates “slowly” 

over the entire region, and the distances between farms are measured using the 

Euclidean metric. 
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RESULT 4. Suppose that the externality dissipation function )(ργ  is concave, and the 

distance matrix fD  is such that f
jx

f
ik

f
ix

f
jk

f
kx

f
ij dddddd +≤  for any Nkji ∈,,  with 

f
kj

f
ik

f
ij ddd +=  and Nx∈ . Then the set of generators *G  is agglomerated in the PSNE. 

 

On the other hand, in many agricultural contexts, the externality only impacts the 

immediate “border” neighbors and dissipates quickly, which is inconsistent with the 

global concavity of the dissipation function. The equilibrium land-use arrangements in 

these cases are investigated next. 

Properties of Free-Market Arrangements When the Externality Impact Is Local 
Suppose that generators impact only immediate neighbors within a unit radius, 

11)( ≤= ρργ . And so, the externality damage imposed on a recipient is equal to the 

number of the neighboring generators, ∑∈
=

)1(
*

iMi ii ez .10 Let )(4 aD  and )(8 aD  denote 

the impact matrices corresponding to a × a  square grids consisting of identical farms 

(cells) each having no more than, respectively, four and eight neighbors within a unit 

radius (with the exception of the cells at the edges of the region). In the case of 4D , a cell 

i  has one immediate east, west, south, and north neighbor j  if they share a common 

border, 1=ijd ; otherwise, 0=ijd . In the case of 8D , two cells i  and j  are immediate 

neighbors, 1=ijd , if they share either a common border or a common corner; otherwise, 

0=ijd . 

A set of farms G  is a neighborhood (a connected graph), if for any Gji ∈,  there is 

a sequence of immediate neighbors in the set, Ggg k ∈,...,1 , such that 1
1
=

+

f
gg tt

d  for 

1,...1 −= kt , ig =1  and jgk = . The quick dissipation of the externality impact suggests 

that a plural number of generator neighborhoods may exist in equilibrium because farms 

that are not in the immediate vicinity of each other are effectively independent in terms of 

externality damage. 

 

RESULT 5. Suppose that the externality is local, 11)( ≤= ρργ .  



Spatial Arrangements of Externality Generating and Receiving Activities / 11 

 (a) Let )(4 aDD =  with 2an = , 3≥a . Then the generators are arranged in 

rectangular neighborhoods containing at least four farms, and 1≤iz  if 0* =ie  for all 

Ni∈ .  

 (b) Let )(8 aDD =  with 2an = , 3≥a . Then the generators are arranged in 

square neighborhoods containing exactly four farms, if 2≤iz  for all Ni∈  with 0* =ie . 

Otherwise, the generators are arranged in the (irregular) octagon-shaped neighborhoods 

determined by the intersection of parallel vertical, horizontal, and diagonal lines, and 

3≤iz  for all Ni∈  with 0* =ie .  

 

To prove Result 5, we take into account that farms located at the edge of the region 

have fewer neighbors than farms in the middle of the region. The limited number of 

possible local configurations implied by the simple spatial structure has an immediate 

consequence for the shape of the generator neighborhoods.11 For example, Result 5 implies 

that, in case of 4D )(a , in any PSNE the number of generators, s , is not a simple number, 

],4[ ans −∈ . From Result 5 it also follows that for regions 4D  and 8D  each neighborhood 

of generators is agglomerated. For any *, mGji ∈  and *Gh∉  with 1== jhih dd  it is true 

that )1,,([)1,,( jhUihU ⊂ )]0,,( jhU∪  and )1,,([)1,,( ihUjhU ⊂  )]0,,( ihU∪ , where *
mG  

is a neighborhood of generators, **
mGG ∪= , and ∅=∩ **

km GG . An example of a region 

)11(8D  with =n 121 cells and a PSNE with two neighborhoods of generators is depicted 

in Figure 3, where “x” cells are generators and “0” cells are recipients. 

0
x
x
0

x x
x x x

x
x

x x x0

x x
x

x0

0 0 00 00

0
0

0

0
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0
x x

0
0
0
0

0 0 00 x0 x x
0 0 00 x0 x x

x

0
0

0

0

0 0
0
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0
0
0
0

x x x
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x x 0

00
0
0

0 0 00 00 x x
 

FIGURE 3. Octagon-shaped generator neighborhoods in )11(8D  
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Efficient Land-Use Arrangement 
In this section, we take a policy perspective and look for an efficient land-use 

arrangement that minimizes the total cost of producing the recipient crop for any given 

amount of total production, ∑ =
−=

n

i ii ceseT
1

)1();( :  

 );(min
}{

seT
ie

 subject to sen

i i =∑ =1
. (3) 

In a linear externality damage case, this is a well-known combinatorial problem that can be 

formulated as a graph partitioning problem, a specific instance of the quadratic assignment 

problem, or a quadratic optimization problem using graph-theoretic or matrix notation 

(Cela 1998; Burkard et al. 1998). This problem arises in a number of settings, including 

facility layout, manufacturing, circuit board and microchip design, parallel computing, and 

numerous other areas of engineering, physics, and management. The graph partitioning 

problem is NP-hard, that is, the time required to find an optimal solution grows 

exponentially with the size of the problem. The variety of the suggested solution algorithms 

based on different approaches can be grouped into four categories: spectral and geometric 

methods, multilevel algorithms, and discrete or continuous optimization-based methods 

(see Hager and Krylyuk 1999 and references therein). We follow the latter approach and 

consider several tractable special cases (Burkard et al. 1997).  

We are interested in two properties of the optimal solution: the degree of concentra-

tion of generators, and the supportability of the efficient arrangement in a free-market 

setting. For the rest of the paper, we assume that the social planner has the ability to set 

the relative prices (common to all producers) for the externality generating and the 

externality receiving products. Then we say that an arrangement is implementable 

through free markets if the assigned land uses are such that the externality damage for 

any recipient is less than the externality damage for any generator.  

To investigate the level of the generator concentration (externality absorption) in the 

efficient arrangement, it is more convenient to work directly with the impact matrix, D . 

We first consider a benchmark case with a linear externality damage and a symmetric 

“regular” impact matrix satisfying the condition ddn

j ij =∑ =1
 for all i . This can be 

interpreted to mean that the region has “rounded edges” and there are no farms in the 
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“middle” of the region.12 After that, the effects of the rate of externality damage 

accumulation and the spatial heterogeneities across the region on the efficient land-use 

arrangement are studied.  

Linear Externality Accumulation and the “Regular” Impact Matrix 
We will need a stronger notion of concentration as compared with the measures of 

concentration used to study the PSNE arrangements. Let ∑ ∑∈ ∈
=

1 2
),( 21 Li Lj ijdLLq  

∑∈
−

1Li iid  measure the potential externality damage imposed by farms in 2L  on farms in 

1L . We say that a set 1L  is more concentrated than a set 2L  if ),(),( 2211 LLqLLq ≥  and 

|||| 21 LL = . The efficient arrangement of generators is more concentrated than any other 

generator arrangement if the greatest degree of externality absorption by generators 

entails the least exposure by the recipients. 

Divide the set of generators in the efficient arrangement into two non-overlapping 

sets 1L  and 2L , GLL =∪ 21 , ∅=∩ 21 LL , }1:{ == ieiG . In the case of a linear 

externality accumulation and a symmetric impact matrix, the total cost, );( seT , can then 

be written as (here, without loss of generality, we take zzC =)( ) 

 )1();(
1 1 ij

n

i

n

j ij eedseT −= ∑ ∑= =
aw QQQ −−= , (4) 

where ),( LNqQ = , ∑ =
=

2

1
),(

t tt
w LLqQ , and ),(2 21 LLqQa = . Informally, the total cost 

is decomposed into three components. The first component, Q , represents the amount of 

the potential impact of generators on all farms in the region. The wQ  measures the degree 

of the concentration of generators within the subsets, and aQ  measures the degree of 

concentration across the subsets of generators. Next, we establish that the efficient 

arrangement of generators is always concentrated under certain conditions on the impact 

matrix. 

Suppose that the impact matrix is symmetric, jiij dd = , 0=iid , and regular, 

ddn

j ij =∑ =1
, for all i , j . Then minimizing (4) is equivalent to maximizing the total 
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impact of generators on each other, aw QQ + , because the potential impact is fixed, Q  

∑ ∑= =
=

n

j

n

i ijj de
1 1

* ds= . And so, the efficient arrangement of generators, }1:{ == e
i

e eiG , 

is concentrated. Furthermore, any efficient arrangement satisfies ),( 11 LLq ),(2 21 LLq+  

),( 22 LLq+  ),( 11 LLq≥ ),(),(2 1 XXqXLq ++  for any NX ⊂ , ∅=∩ 1LX  and 

∑∈ 2Li
e
ie ∑∈
=

Xi ie . Rearranging the last inequality yields ),(),( 121 XLqLLq −  

),((5.0 XXq≥ )),( 22 LLq− , or ))()((5.0)()( GQGQGQGQ wewaea −≥− . That is, there 

is a trade-off between achieving maximal concentration within the subsets of generators 

and across the subsets.  

Incidentally, we find that under these conditions, any (individual) generator absorbs 

more externality damage than any recipient that is not affected by that particular 

generator. This property, of course, does not imply that the arrangement is implementable 

through free markets. Summarizing, we have the following. 

 

RESULT 6. Suppose that the externality accumulation function C  is linear and the impact 

matrix is symmetric, jiij dd = , 0=iid , and ddn

j ij =∑ =1
 for all i , j .  

 (a) Then the efficient arrangement of generators is concentrated.  

 (b) The externality damage for the generator l  exceeds that of the recipient h , 

hl cc ≥ , if 0=hld . 

 

To demonstrate part (b) of Result 6 we use a standard exchange argument. Observe that a 

generator not only increases the social (and private) costs since it imposes the cost on 

recipients but also decreases the social costs because it does not contribute to the total 

cost by not bearing the damage from other generators. In the efficient arrangement, the 

generating use is assigned to the set of farms that are both more susceptible to externality 

and generate it with lesser intensity as compared to any alternative rearrangement. The 

search for an optimal arrangement is greatly simplified if the impact matrix is separable 

in the sense that the generating intensity of each farm is recipient-invariant, while the 

susceptibility to externality of each farm is generator invariant. Impact matrices 

possessed of this property are considered in the next section. 



Spatial Arrangements of Externality Generating and Receiving Activities / 15 

Linear Externality Accumulation and Separable Impact Matrices 
For the ease of exposition, we consider the case of sum and product impact matrices, 

jiij bad +=  and jiij bad = , separately. Any impact matrix with entries of the form 

jiij bad 21 αα += jiba3α+ , where 0,, 321 ≥ααα , will possess the same properties. First, 

we analyze the efficient arrangement for impact matrices from Examples 1 and 2.13 

  

EXAMPLE 3. (Sum and Product Impact Matrix) Let jiij bad += , naaa ≥≥≥ ...21 , and 

nbbb ≤≤≤ ...21 . That is, it is held that farms can be ordered so that the farms with the 

largest susceptibility to externality are also those with the smallest externality generating 

intensity. After a little algebra, the total damage is ∑ =
=

n

i iasseT
1

();(  )
1∑ =

−
n

i iiea  

∑ =
−+

n

i iiebsn
1

)( , where sen

i i =∑ =1
. The total damage to recipients is minimized when 

si
e
ie ≤= 1 .14  The efficient arrangement assigns generators to farms with the greatest 

susceptibilities, saa ,...,1 , and the least intensities, sbb ,...,1 . 

This arrangement is supportable through free markets if, in addition, 1+− ss aa  

sba ss /)( +≥  for all 1,...,2 −= ns  (see Example 1). In the case of a product matrix, 

jiij bad = , we have −= ∑ =

n

i iaseT
1

();( )
1∑=

n

i iiea ∑=

n

i iieb
1

 and the optimal arrangement 

is unchanged. The additional condition required for the efficient arrangement to be 

implementable through free markets is stated in Example 2. 

The efficient arrangement of generators may or may not be concentrated for both 

sum and product impact matrices. In case of a sum matrix, the degree of externality 

absorption is ),( ee GGq ∑ ∑= =
+=

s

i

s

j ji ba
1 1

)( ∑∑ ==
+−=+−

s

i ii
s

i ii basba
11

)()1()( , 

where }1:{ siiG e ≤≤= . Only if the sum of generating intensity and susceptibility 

decreases with the farm index, 11 ++ +≥+ ssss baba , is the efficient arrangement of 

generators assuredly concentrated. For example, suppose that the intensities and 

susceptibilities are perfectly negatively correlated, ii aKb −=  for all i , }{max ii
aK ≥ . 
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Then the measure of concentration is arrangement-invariant: ),( GGq Ks )1( −=  for any 

G  with sG =|| . 

 

Next, we consider impact matrices where for each farm the (generator-invariant) 

susceptibility and (recipient-invariant) intensity coincide. Because in this case farms 

can no longer be ordered so that the degrees of susceptibility and intensity vary 

inversely, the efficient arrangement turns out to depend on the number of generators 

and the size of the region. 

 

EXAMPLE 4. (Symmetric Sum Impact Matrix) Let jiij aad += , naaa ≥≥≥ ...21 . Here 

the total cost is ∑∑ ==
−+=

n

j ii
n

j i easnasseT
11

)2();( , and the optimal solution to (3) 

depends on the sign of sn 2− . Because the susceptibilities (intensities) }{ ia  are non-

increasing, the optimal arrangement is sni
e
ie −≥= 1  if ns <2 , and si

e
ie ≤= 1  if ns ≥2 .  

If the number of generators is small, it is optimal to assign them to smaller farms 

because then the amount of the generated externality is also small. The situation is reversed 

if the number of generators is large because then it is optimal to reduce the overall recipient 

susceptibility. The efficient arrangement is not implementable through free markets in the 

former case, but it may be implementable in the latter (see Example 1). 

The externality cost imposed on the recipient farm h  ( 0=e
he ) is hh sac =  

∑ =
+

n

j
e
jj ea

1
, while the potential cost for the generator l  ( 1=e

le ) is ll asc )2( −=  

e
j

n

j j ea∑ =
+

1
. If ns <2  and sni

e
ie −≥= 1 , the condition lh cc <  cannot be satisfied because 

it implies that lh aa <  for lh < , which contradicts the assumption. On the other hand, for 

ns ≥2  and si
e
ie ≤= 1 , the condition lh cc <  is satisfied, if, in addition, )/21( s−  1+≥ ss aa  

for all 1],...,2/[ −= nns  (see Example 1). 

Observe that the optimal degree of generator concentration, ),( ee GGq )1(2 −= s  

∑ −=

n

sni ia , is the least for ns <2  with }:{ sniiG e −≥= , and is the largest for ns ≥2 , 
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),( ee GGq ∑ =
−=

s

i ias
1

)1(2  when eG }:{ sii ≤= . To summarize, the efficient 

arrangement may be supportable if the number of generators is large because then it is 

optimal to assign the biggest farms to the externality generating use. Because the biggest 

farms are not only the “biggest” externality generators but also the “biggest” externality 

recipients (if assigned to the recipient use), the generator farms do not have an incentive 

to alter the assigned activity.  

 

EXAMPLE 5. (Symmetric Product Impact Matrix) Now let jiij aad = , naaa ≥≥≥ ...21 . 

Here the total cost is 2
1

);( zzaseT n

j i −= ∑ =
, where ∑ =

=
n

j iieaz
1

, sen

i i =∑ =1
. This 

quadratic function is minimized by sni
e
ie −≥= 1  or si

e
ie ≤= 1  depending on whether 

>∑∑ +==

n

si i
s

i i aa
11 ∑∑ −=

−−

=
≤

n

sni i
sn

i i aa1

1
)( .  

It is easy to check that the last condition is equivalent to ns )(2 ≥< . The optimal 

arrangement assigns the externality generating uses to the farms with the lowest (highest) 

capacity if less (more) than half of all farms are generators. Note that the products of 

partial sums in the optimality condition are minimized when the difference between the 

product terms is maximized because =+∑∑ +==

n

si i
s

i i aa
11 ∑∑∑ =−=

−−

=
=+

n

i i
n

sni i
sn

i i aaa
1

1

1
. 

Since farm capacity decreases with farm index, we have >−∑∑ −=

−−

=
|| 1

1

n

sni i
sn

i i aa  

)(≤ ||
11 ∑∑ +==

−
n

si i
s

i i aa  as ns )(2 ≥< . That is, the difference between the total 

generating intensities and recipients’ susceptibilities is maximized when the generators 

have smaller intensities and the recipients are more susceptible, if the number of 

generators is small. In contrast, this difference is maximized when the generators have 

greater intensities and the recipients are less susceptible, if the number of generators is 

large. 

As in the case of a symmetric sum impact matrix, the efficient arrangement is not 

implementable through free markets if ns <2 , but it may be implementable if ns ≥2  

(see Example 2). The externality cost imposed on the recipient farm h  ( 0=e
he ) is hc  

ha= ∑ =

n

j
e
jj ea

1
, while the potential cost for the generator l  ( 1=e

le ) is e
j

n

j jll eaac ∑ =
=

1
(  
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)la− , if 1=e
ie . If ns <2  and sni

e
ie −≥= 1 , the condition lh cc <  cannot be satisfied 

because it implies that lh aa <  for lh < , which contradicts the assumption. On the other 

hand, for ns ≥2  and si
e
ie ≤= 1 , the condition lh cc <  is satisfied, if, in addition, ss aa /1+  

∑ =
−<

s

i is aa
1

/1  for all 1],...,2/[ −= nns . Also, observe that the optimal degree of 

generator concentration, ),( ee GGq ∑ ∑= +=
=

n

si

n

ij ji aa
1

2 , is the least for ns <2  when eG  

}:{ snii −≥=  and the arrangement is not implementable. The concentration, ),( ee GGq  

∑ ∑= +=
=

s

i

s

ij jiaa
1 1

2 , is the largest for ns ≥2  when eG }:{ sii ≤=  and the arrangement is 

implementable through free markets. The generators must be big (have high 

susceptibilities), and the recipients must be small (have low susceptibilities) to assure that 

the actual damages exceed the potential damages from changing the assigned use.  

Convex and Concave Externality Damage Accumulation Functions 
Now we turn to a more general form of the externality damage accumulation 

function. In the non-linear damage accumulation case, not only the sum of the private 

damages but also the distribution of damages among the recipients determines the social 

cost of the arrangement, );( seT . To compare the distributions of damages corresponding 

to the candidate land-use arrangements, we will need the following definitions commonly 

used to measure dispersion (Marshall and Olkin 1979). 

  

DEFINITION 3. A vector ),...,( 1 Nxxx =  is sub-majorized by the vector ),...,( 1 nyyy =  

(denoted by w≺ ) if ∑∑ ==
≤

k

i i
k

i i yx
1 ][1 ][  for nk ,...,2,1= , where ][]2[]1[ ... nxxx ≥≥≥  and 

][]2[]1[ ... nyyy ≥≥≥  are their components in the decreasing order. 

 

DEFINITION 4. A vector ),...,( 1 Nxxx =  is super-majorized by the vector ),...,( 1 nyyy =  

(denoted by w≺ ) if ∑∑ ==
≥

k

i i
k

i i yx
1 )(1 )(  for nk ,...,2,1= , where )()2()1( ... nxxx ≤≤≤  and 

)()2()1( ... nyyy ≤≤≤  are their components in the increasing order. 
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As is well-known, the sub-majorization ( yx w≺ ) and super-majorization ( yx w≺ ) 

relations generate classes of the order-preserving functions: increasing Schur-concave 

and increasing Schur-convex functions. A function )(xf  is Schur-convex if yx ≺  

implies that )()( yfxf ≤ . Here ≺  denotes the usual majorization order obtained by 

requiring that ∑∑ ==
=

n

i i
n

i i yx
11

 in Definition 3 or 4. Suppose that the damage 

accumulation function, )(zC , is convex (concave). For a given number of generators, the 

total damage cost imposed on the recipients, ∑=
=

n

i in zCzzT
11 )(),...,( , is increasing 

Schur-convex (Schur-concave) in the damages to recipients, )(ezi  )1(
1 i

n

j jij eed −= ∑ =
, as 

a sum of increasing convex (concave) functions. Now imagine that we need to compare 

two arrangements e and e′  with ∑∑ ==
′=

n

i i
n

i i ee
11

 in terms of social efficiency. If it is 

known that )()( ezez w ′≺  or )()( ezez w≺′ , then arrangement e ( e′ ) is welfare dominant 

depending on whether )(zC  is convex (concave). Summarizing, we have the following. 

 

RESULT 7. (a) Suppose that there exists a permutation of farm indices )(iφ  such that 

∑ ∑∑ ∑ ∈ ∈

++

+= =
≤

kSi Lj ij
sk

si

s

j ij dd)1(

)1(

)(

)1(

φ

φ

φ

φ
 for any 1,...,1 −−= snk , NLSk ⊂, , kSk =|| , 

sL =|| , ∅=∩ LSk .  

(b) Suppose that there exists a permutation of farm indices )(iϕ  such that 

∑ ∑∈ =kk
Ti

s

j ijT
d)(

)1(
max ϕ

ϕ ∑ ∑∈ ∈
≤

kk
Si Lj ijS

dmax  for any 1,...,1 −−= snk , NLSk ⊂, , 

),...,1({ +⊆ sTk ϕ  )}(nϕ , kST kk == |||| , sL =|| , ∅=∩ LSk . Then the efficient 

arrangement is given by si
e

iee ≤= 1
)(π

 for Ni∈ , where φπ =e  if C  is concave, and 

=eπ ϕ  if C  is convex. Observe that condition (a) implies that ( )
( )(1)

s
h jj

dφ
φφ=∑  

( )
( 1),(1)

s
h jj

dφ
φφ +=

≤ ∑  for any h  ,...,1+= s 1−n  , while condition (b) implies that 

∑∑ = +=
≥

)(

)1( ),1(
)(

)1( ),(
s

j jh
s

j jh dd ϕ

ϕ ϕ
ϕ

ϕ ϕ  for any 1,...,1 −+= nsh . If the impact matrix D  is such 

that both permutations φ  and ϕ  satisfy conditions (a) and (b), respectively, we have 
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n
siic 1)( }{ +=φ

n
siic 1)( }{ +=ϕ≺ . That is, the optimal distribution of damages is more “spread out” 

if the externality damage accumulation function is convex.  

It is easy to check that both conditions (a) and (b) are satisfied with the identity 

permutation φ = i=ϕ  for the product and sum impact matrices considered in Example 3. 

Let the externality from a generator j  to a recipient i  be a sum or a product of the 

recipient’s susceptibility and the generator’s intensity, or a linear combination of these, 

jiij bad 21 αα +=  jiba3α+ , where 0,, 321 ≥ααα  . Suppose that the farms with the 

smallest generating intensities, ib , have the greatest susceptibilities, ia : naaa ≥≥≥ ...21  

and nbbb ≤≤≤ ...21 . From Result 7 it follows that it is optimal to assign the externality 

generating uses to the farms with smallest generating intensities for any shape of the 

damage accumulation function. This is generalized in the following result.     

 

RESULT 8. Let 1,, +≤ jiji dd  and jiji dd ,1, +≥  for all Nji ∈, . Then for any shape of the 

damage accumulation function the efficient arrangement is si
e
ie ≤= 1  for all Ni∈ . 

 

The monotonicity conditions on the individual externality damages shift the “mass” of 

the impact out of the left bottom corner of the externality impact matrix.15  Clearly, the 

product and sum matrices with the inversely ordered susceptibilities and intensities 

considered in Example 3 satisfy the monotonicity conditions. 

Next, we inquire into some effects of the geographical features of a region on the 

efficient arrangement. The level of the concentration of generators in the efficient 

arrangement depends on both the type of curvature of the damage accumulation function 

and the specifics of the spatial interactions and externality dissipation in the region. For a 

concave accumulation function, it may be optimal to let a small number of recipients bear 

most of the externality damage while lowering the damage for other recipients. In 

contrast, for a convex accumulation function, it may be optimal to spread the externality 

damage more evenly among the recipients.16 Therefore, it appears that in the efficient 

arrangement the degree of generator concentration should be greater in the former case 

than in the latter. As the following example demonstrates the specifics of the spatial 
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structure of the region and the externality dissipation function may interact to make the 

effect of the accumulation function curvature on the efficient arrangement ambiguous.  

 

EXAMPLE 6. (Tick-Tac-Toe) Consider a region )3(4D  (see Result 5 for details), where 

only cells with a common border may impact each other. Farms are indexed as depicted 

in Figure 4a. 

 

5 6
8 9

4
7

321

 
(a) 

0 0
0 0

x
0

xxx

 
(b) 

x 0
0 0

x
0

0xx

 
(c) 

FIGURE 4. Efficient land-use arrangements in )3(4D  

 

Let there be four generators, 4=s , and si
e

ie ≤= 1)(π  for }9,...,1{∈i . Consider the identity 

permutation, ii =)(φ , and let φπ =e , so that the first s  cells are generators (“x”), and 

the last 1−− sn  cells are recipients (“0”) as in Figure 4b. Then the amounts of 

externalities (actual and potential dissipated among the farms) are 21 =xz , 22 =
xz , 

13 =xz , 14 =
xz , 20

5 =z , 10
6 =z , 10

7 =z , 00
8 =z , and 00

9 =z . Consider another arrangement 

with =)(iϕ {1,2,4,5,3,6,7,8,9} as in Figure 4c, and let ϕπ =e . Then the corresponding 

amounts of externalities are 21 =xz , 22 =
xz , 24 =

xz , 25 =xz , 10
3 =z , 10

6 =z , 10
7 =z , 

10
8 =z , and 00

9 =z . Checking all possible permutations )(iπ  reveals that condition (a) 

holds for the distribution in Figure 4b while condition (b) holds for the distribution in 

Figure 4c (up to the reordering of the costs). Note that the distribution of the amounts of 

the received externalities under φπ =e  is majorized (“more uneven than”) by that under 

ϕπ =e , 9
5)( }{ =i

x
izφ  9

5)( }{ =i
x

izϕ≺ . 

Turning to the level of generator concentration, note that the arrangement in Figure 

4b is not concentrated, 6),( =ee GGq , }4,3,2,1{=eG , while the arrangement in Figure 4c 
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is concentrated, 8),( =ee GGq , }5,4,2,1{=eG . In the case of a concave externality 

accumulation function, it is optimal to decrease the number of exposed recipients at the 

expense of a “double” exposure for one recipient. In the case of a convex externality 

accumulation function, it is optimal to “even out” the exposure among the recipients at 

the expense of increasing the number of the exposed ones. 

If the externality accumulation function is concave, by Result 5a, the efficient 

arrangement is not supportable by a free market (note that 0
5 2 1c = > = 3 1xc = ). On the other 

hand, in the case of a convex externality accumulation function, by Result 5a, the efficient 

arrangement is supportable by a free market (note that 0 1jc = 2 x
ic< =  for all ,j i ).  

 

In general, the efficient arrangements in Result 7 is implementable through free 

markets if condition ∑ =>

)(

)1( )(max s

j jisi
dπ

π π ∑ =≤
≤

)(

)1( )(min s

j jisi
dπ

π π  holds for φπ = ,ϕ . The 

conditions of efficiency and free-market implementability may or may not be compatible 

as demonstrated in Example 6. In the case of convex externality damage, the efficient 

allocation is more likely to be implementable if the number of generators is large relative 

to the number of recipients. Then the arrangement that is characterized by concentration 

of generators may be optimal even in the convex cost case if the “spreading” of 

generators across the region raises private costs for each recipient (see Example 6). 

Otherwise, the implementability may fail because condition (b) implies that 

∑ =∈
=

)(

)1(
max s

j ijiHi
dc π

π
 for ),...,1({ += sH π  )}(nπ  is low. This means that the externality 

impacts are “evenly” spread out across the recipients, which, in turn, implies a small 

degree of the concentration of generators and may violate the condition that the exposure 

to externality for each generator exceeds that for each recipient. 

 

Conclusions 
This paper takes a close look at the arrangement of externality generating and 

externality receiving activities in a region. We consider a distance-dependent 

externality with heterogeneous externality generating intensities and damage 

susceptibilities across the production units in the region. Two types of activity 
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arrangements: free-market and efficient, are studied. The free-market arrangements 

arise as a result of independent decisionmakers playing the Nash game in pure 

strategies. The efficient arrangements minimize the total cost due to the externality 

imposed on recipients by generators for a given amount of output. The level of 

generator concentration in terms of the externality absorption, which may or may not 

coincide with the spatial concentration, is investigated for both free-market and 

efficient arrangements. Broadly speaking, the implementability of the efficient 

arrangement in a free-market setting depends on the spatial characteristics of the region, 

the number of generators, and the curvature of the externality accumulation function. 

We first analyze the benchmark case when the individual damage from the 

externality accumulates linearly under certain restrictions placed on the spatial 

characteristics of the region. In particular, we consider a regular region where the sum of 

the distances from one farm to all other farms is invariant across farms (a regular graph). 

In this case, generators are concentrated in the efficient arrangement, and the free-market 

implementability property feasibly holds. We also investigate a case where the 

susceptibility (if in the receiving use) is invariant to the generator, and the generating 

intensity (if in the generating use) is invariant to the recipient for each farm in the region. 

Here, the efficient arrangement is easily determined, and is likely implementable as long 

as the level of intensity varies inversely with the level of susceptibility for each farm. If 

the generating intensity and susceptibility to the externality are perfectly correlated, the 

efficient arrangement depends on the number of generators and the size of the region. 

Then the arrangement may admit the free-market implementability only if the number of 

generators is large relative to the size of the region.   

Another aspect of the environment under scrutiny is the effect of the rate of the 

externality accumulation on the efficient arrangement. To this end, we use the 

majorization orders, which capture the effect of the curvature of the objective function on 

the optimal arrangement. The conventional wisdom that associates the slow rate of 

damage accumulation with the optimality of concentrating damages and the fast rate of 

damage accumulation with the optimality of spreading damages may be overturned in 

several instances. In the case of the separable impact matrix with inversely related 

intensities and susceptibilities, the efficient arrangement is invariant to the curvature of 
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the accumulation function. We also consider a simple example that illustrates that a 

higher level of generator concentration does not necessarily lead to a more “uneven” 

distribution of the externality exposure among the recipients. In fact, the distribution of 

the externality exposures among the recipients may be “more even” when the level of 

generator concentration is the highest.  

The issue of the spatial arrangement of conflicting or benefiting activities is not 

confined to crop agriculture; in fact, it is pertinent in other areas of economics such as 

urban economics and social sciences (e.g., Berliant, Peng, and Wang 2000). For example, 

Calvo-Armengol and Zenou (2003) use a similar model to study the role of social 

networks in promoting criminal activities and explore the endogenous formation of a 

criminal network. In their framework, affiliated criminals impose a positive externality 

on each other by sharing “trade secrets.” In the agricultural contexts, the spatial 

connection of land lots is ordinarily exogenous to the model. However, some insights 

developed in this paper may be applicable, for example, to the inquiry into the efficiency 

of an allocation of police resources among city districts.  

The model developed in this paper rests on a number of restrictive assumptions, such 

as perfect information among the agents, the observability of the production activities in 

the entire region, and the lack of countermeasures to combat the effects of the externality 

(e.g., pollution abatement) other than the choice of the production activity. The temporal 

dimension of the activity choice and, as a consequence, the fixed costs that are frequently 

associated with changing the land use, as well as the uncertainty of the future income 

flow contingent on the surrounding land uses, are completely left out of the model. 

Relaxing these and other assumptions regarding the participants’ behavior is likely to 

glean valuable insights into the problem of improving the efficiency of the spatial 

arrangement of externality generating and receiving activities.



 

 

Endnotes 

1. Helfand and Rubin (1994) identify a number of “technical” and “psychological” 
sources of non-convexities in the externality damage accumulation function, which 
cause constant or diminishing marginal damage to the recipient of one more 
additional unit of the externality. 

2. To cite one example of an applied study in this area, Ancev, Stoecker, and Storm 
(2003) investigate the optimal spatial allocation of waste management practices to 
reduce phosphorous pollution in a watershed. 

3. To reflect the potential agronomic influence, the distance may not coincide with the 
Euclidean distance between the (land mass) centers of the two farm plots. 

4. The model can be easily adjusted to account for the heterogeneity in farm size. For 
example, the differences in farm size can be reflected in the distance matrix.  

5.  Explicitly accounting for the variation in farm sizes complicates the exposition. This 
variation can be accommodated by allowing for asymmetry in the externality 
damages. Say, ij jid d> may be attributed to a bigger size of farm j relative to farm i. 

6. The formulation where the externality affects yields rather than production costs is 
accommodated by positing ( )r r

i iv p y c= − , where rp  is the per unit price and y is 
the per acre yield for recipient crop. 

7. Here, the association of the susceptibility and intensity parameter with the physical 
size of a farm is somewhat internally inconsistent because the output is held to be 
invariant across farms. 

8. This type of distance matrix plays an important role in discrete optimization 
problems. The impact matrix generated from such a distance matrix, 

{ } (| |)ijD d i j= = γ − , is called a Toeplitz matrix (e.g., see Burkard et al. 1997). 

9. This is a weak version of the separability implied by the hyperplane theorems for 
closed convex sets.  

10. These kinds of environments were modeled using a cellular automata simulation 
program known as the game of life (e.g., see Parker 2000; Belcher, Nolan, and 
Phillips 2003.) Munro (n.d.) assigns a fixed number of externality generating uses in 
a random manner and considers upper and lower bounds on the total externality 
damage imposed on the recipients for D8(20). 
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11. The regions are held to be square mostly for the ease of exposition. In fact, in Figure 
3, the region is rectangular. 

12. A square matrix whose entries are non-negative, and whose rows and columns sum 
to one is called doubly stochastic. The corresponding graph with the doubly 
stochastic adjacency matrix (with the edge weights equal to the distances between 
any two farms) is called regular. 

13. Note that the total externality damage ( ; )T e s  does not depend on the diagonal 
values of the impact matrix, dii. 

14. In the context of the quadratic assignment problem, the results of this sort are 
surveyed in Burkard et al. 1997. 

15. A matrix with this property is sometimes called left-lower graded. This result is an 
easy generalization of Theorem 3.2 in Burkard et al. 1997, p. 7, with one of the 
matrices having entries (1 )ij i jm e e= − , 1i i se ≤=  (right-upper graded). 

16. Different circumstances that may lead to optimal concentration versus spreading 
damages are discussed in Helfand and Rubin 1994. 
 



 

 
 

Appendix 

Proofs of Results 

Proof of Result 1 

Suppose that generators are located in farms si ,...,1= , and recipients are in the 

remaining farms, nsi ,...,1+= . From the partial sum condition it follows that 

∑ =
=

s

j hjh dsc
1

)(  ∑ −

=
≤

1

1

h

j hjd  2 1 1
1,1 1 1

...h l l
h j lj ljj j j

d d d− − −

−= = =
≤ ≤ ≤ ≤∑ ∑ ∑  

1
 ( )s

lj lj l
d c s

= +
+ =∑  

for any hsl <≤ . Also, observe that )(min)( scsc isis ≤
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both costs )(scs  and )(1 scs+  decrease with s , while the premium )(sv  (smoothly) 
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1* sc

s +
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* sc
s

] for some 

0>β . Note that the scaling parameter β  is necessary only because *s  is an integer. 

Proof of Result 2 
The proof proceeds in two steps. 

 Step 1. Let }|:|{)( ρρ =−= jijM i . Observe that for any ji,  such that )1(jMi∈  

two properties are satisfied: (a) ⊂)(ρiM )1()1( +∪− ρρ jj MM , and (b) ∩)(| ρiM  

1|)1( ≤+ρjM  for any ],0[ n∈ρ . From property (a) it follows that =)(ρiM )(ρiM  
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 Step 2. Suppose that }{ *
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ργ lc= . The first inequality follows because )1()( +> ργργ . The 

third equality follows because 0* =he . The last inequality follows from Step 1, and 

because lMM lh =∩ )0()1(  and 1* =le . Hence, we have lh cc > , which contradicts the 

assumption. Therefore, no equilibrium solution to (2) exists. 

Proof of Result 3 

Suppose that there is Nhji ∈,,  such that 1** == ji ee , 0* =he , and 1== jhih dd , and 

)1,,()1,,( hjUihU ⊆  and )1,,()1,,( hiUjhU ⊆ . Observe that we can write )1,,(1 ihUj
f

ijd ∈=  

)1( −f
hjd )1(11 )1,,()0,,( +++ ∈∈

f
hjhiUj

f
hjihUj dd . Using this decomposition we have xc  
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From equilibrium condition hx cc >  and the monotonicity of (.)C  it follows that 
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inequalities yields ∑∑ ∈∈
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hlhjUl l
f

hl eded γγ , 0>  where )(2 ργ∆  

)2( += ργ )1(2 +− ργ )(ργ+  denotes the second-order difference operator. But this is a 

contradiction because 0)(2 ≤∆ ργ  for all 0>ρ . 

Proof of Result 4 

Suppose that there are three farms Nkji ∈,,  such that 1** == ji ee , 0* =ke , and k  

lies on the shortest path (or a line) between i  and j , f
kj

f
ik

f
ij ddd += . Let 

]1,0[/ ∈= f
ij

f
jk ddλ  so that f

ij
f

ik dd /1 =− λ . By assumption we have )1( λλ −+≤ f
ix

f
kx dd  

f
jxd  for any Nx∈ . Because the externality dissipation function (.)γ  is decreasing and 

concave it follows that )())1(()( f
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f
jx

f
ix

f
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over all x  with 1* =xe  yields ∑∑ ≠=
≥

ix x
f

ix
n

x x
f

kx eded *
1

* )()( γλγ  )1( λ−+  *)( xjx
f

ix ed∑ ≠
γ , 

which implies that ∑∑ ≠=
≥

ix x
f

ix
n

x x
f

kx eded *
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* )(min[)( γγ , ])( *
xjx

f
ix ed∑ ≠

γ , or kc  

],min[ ji cc≥  by the monotonicity of the externality accumulation function (.)C . But this 

is a contradiction. 

Proof of Result 5  
Part (a). It will be convenient to index cells in the square grid starting in the left-

upper corner and going from the left to the right of each row. Then the horizontal and 

vertical locations of the cell i  are given by ]/)1[( aiyi −=  and ii ayix −= , where ][b  

denotes the integer part of b . In the case of )(4 aD , the externality impacts are given by 

]/)1[(]/)1[(  ,1||||0||,1||1||,0|| 1111 ajaijiajiyyxxyyxxij jijijiji
d −=−=−=−=−=−=−=− +=+= . To show that a 

generator can border, at most, one generator, suppose that 1)1(max * >− iii
ez . Then the 

corner farms must be recipients because 21 ≤=== − nana zzzz . But this implies that any 

farms located in the cells adjacent to the corners must be recipients because we also have 

2≤iz  for {=i anaaa 2,2,1,1,2 −−+ , 1,1,1 −−−+− annan }. But the farms adjacent 

to these cells may have, at most, two neighbors that are generators and thus must be 

recipients as well. Continuing in this manner, we can show that all farms are recipients, 

which cannot be in equilibrium. Hence, in any equilibrium, 1)1(max * ≤− iii
ez .  

Next, we show that the generators must be arranged in rectangular neighborhoods. 

Consider a two-by-two fragment of a square cell with farms }1,,1,{ ++++ aiaiii , where 

kai ≠  for any ak ,...,1= . Suppose that there are two generators that are corner 

neighbors, for example, 1*
1

* == ++aii ee . Then any recipient in 1+i  or ai +  must border 

two generators, which is impossible. However, each generator must border at least two 

other generators. Therefore, generators must be arranged in rectangular neighborhoods of 

four or more generators.  

Part (b). For )(8 aDD = , an analogous argument is used to show that 

3)1(max * ≤− iii
ez . Suppose that 3)1(max * >− iii

ez . Then the corner farms must be 
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recipients because 31 ≤=== − nana zzzz . But the edge cells adjacent to the corner cells, 

{=i 2, a+1, a-1, 2a, n-2a+1, },1,1 annan −−+− , have, at most, four neighbors that can 

be generators. And so, they must be recipients as well. The same is true for all of the 

remaining edge cells, })3(,...,3{},1)3(,...,13{},2,...,3{ aaaaaaai −+−+−= , 

}2,...,3)1{( −+− naa . Next, remove the (recipient) edge cells of the region and apply the 

same reasoning to the remaining cells. Continue in this manner until the region consists 

of the one cell, ]2/[ni = 1+ , when n  is odd, or the four adjacent cells in the middle, 

2/)1{( aai −= ,  aaaaa +−+− 2/)1(,12/)1( }12/)1( ++− aaa , when n is even. Hence, 

all farms are recipients, which cannot be in equilibrium. It is also clear that no PSNE 

exists if 1)1(max * =− iii
ez . Suppose that a recipient i  has one generator neighbor (corner 

or border). Then all neighbors of this generator must be recipients, which is impossible. 

To investigate the geometric configuration of the generator neighborhoods, we need 

to consider two cases: (i) 2)1(max * =− iii
ez , and (ii) 3)1(max * =− iii

ez . In case (i), let 

0* =ie  and consider cells surrounding the recipient in cell i , 1|:|{ =−= kikBi , or 

1||or ,|| +=−=− akiaki , or }1|| −=− aki , where kai ≠  for any ak ,...,1= . There 

must be exactly two iBgg ∈21 ,  with 1
21
== gg ee , and suppose that 1|| 21 +=− ngg . 

Then for 
21 gg BBj ∩∈ , ij ≠  there must be exactly two jBgg ∈21 ,  with 1

21
== gg ee . 

But this implies that 2,
21
≤gg zz , which is impossible. Note that neighborhoods of more 

than four generators cannot exist because this would imply that at least one recipient has 

three or more generator neighbors. Because for each generator there must be at least three 

cells gBggg ∈321 ,,  with 1
321
=== ggg eee , generators must be arranged in square 

neighborhoods of exactly four generators.   

In case (ii), we first make the following observations. Let 0* =ie  and consider eight 

cells surrounding cell i , 1||or ,||or  ,1|:|{ +=−=−=−= akiakikikBi , or || ki −  

}1−= a . The following observations regarding local configurations will be useful. 

Observation 1: Suppose that 1=iz . Then we have ∈∈= },1:{ *
ik Bkek 1{ −−= aiK , 

1+− ai , 1−+ ai , 1++ ai }. Otherwise, we have 3≤kz , which is impossible. 
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Observation 2: Suppose that 2=iz . Then we have KBlklkeelk ilk ∈∈≠== },,,1:,{ **  

},for   22|| ,|| ,1|:|,{ iBlkalkalklklk ∈+=−=−=−= . To prove, suppose that 

lkjje ,
* 1 ==   for all iBj∈  and some pair Klk ∉},{ . Then we have ∑∈

≥
xBt te 4*  for 

lkx ,= . But this implies that there is a iBj∈  with 4≥jz  and 0* =je , which is 

impossible. Observation 3: Suppose that 3=iz . Then we have 

* * *{ , , : 1,  ,k l mk l m e e e k l m= = = ≠ ≠  ∈∈ },,for iBmlk  { , , :| | 1K k l m k l= − =  and 

| | 1,k m− = | | 1k l− =  and | | ,k m a− = || lk −  a=  and 1|| ,|| =−=− lkamk  

and alkamk =−+=− || ,22||  and 22|| +=− amk  for },, iBmlk ∈ . That is, the three 

generators are either located in one of the corners of iB , or along one of the sides of iB , 

or two generators are located at the diagonally opposite corners of iB , and the third 

generator borders one of them. All other cases are ruled because ∑∈
≥

xBt te 4*  for 

mlkx ,,=  implies that there is a iBj∈  with 4≥jz  and 0* =je , which is impossible. 

Because 4min * ≥iii
ez , there must exist at least one generator neighborhood G  with 

4|| >G . Pick a recipient i  with 2|| ≥∩GBi  (there are always at least four recipients in 

cells 1, a, n-a+1, and n). It is possible, because if 1|| =∩GBi , by observation 1, there 

must be a recipient in cell gi BBj ∩∈  with 2≥jz , where iBg ∈  and 1* =ge . Draw a 

line passing through the common corners of cells iBGg ∩∈  and cell i  that will be 

shown to “separate” i  and G . The line is horizontal if 2=iz  and 1|| 21 =− gg  for some 

GBgg i ∩∈21 , , or 3=iz  and 1 2| | 1g g− =  and 1 3| | 1,g g− =  for some 

GBggg i ∩∈321 ,, , so that ]/)1)[((]/)1[( agai −<>−  for all Gg ∈  when i  is “below” 

and “above,” respectively. The line is vertical if 2=iz  and agg =− || 21  for some 

GBgg i ∩∈21 , , or 3=iz  and agg =− || 21 , agg =− || 31  for some 321 ,, ggg  

GBi ∩∈ , so that aaggaaii ]/)1[()(]/)1[( −−<>−−  for all Gg ∈  when i  is “to the 

left” and “to the right,” respectively. The line is diagonal if 3=iz  and 1|| 21 =− gg , 
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agg =− || 31  for some GBggg i ∩∈321 ,, , so that we have >+−− )1](/)1[( aagg  

)]1/))[(( −−< ain  or )]1/())[(()1](/)1[( +−<>−−− ainaagg  for all Gg ∈  depending 

on the slope of the line and the location of i  relative to G . 

For concreteness, suppose that i  is below G , 3=iz , 1|| 21 =− gg  and || 31 gg −  

=1 for GBggg i ∩∈321 ,, . Then we need to show that ]/)1[(]/)1[( aiag −<−  for all 

Gg ∈ . From observations 1, 2, and 3 applied to the recipients in ,:{1 iBrrLj ∈=∈  

,0* =re ∅≠∩GBr  }, and the fact that G  is connected, it follows that ]/)1[( ag −  

]/)1[( ai −<  for GBg j ∩∈ . To induct, assume that the same is true for GBg j ∩∈ , 

where ∈j tL  ,0:{ * == rer }∅=∩GBr  such that tLi∈ , and consider ,:{1 tt LrrL ∈=+  

,0* =re ∅≠∩GBr  } and generators GBg j ∩∈ . For tt LLj /1+∈  with ]/)1[( ai −  

]/)1[( aj −− 2≥  the condition is trivially satisfied. We cannot have ]/)1[( ai −  

]/)1[( aj −− 0<  because of the induction assumption. Then, using observations 2 and 3, 

and the fact that G  is connected, it follows that ]/)1[(]/)1[( aiag −<−  for GBg j ∩∈ , 

1+∈ tLj . Observe that 1+⊆ tt LL . Therefore, for some z  we must have 1+= zz LL  because 

the number of cells is finite. This means that i  and G  must lie on the opposite sides of 

the line. The cases where the recipient is in the corner or on the edge of the region are 

considered completely analogously. Furthermore, each generator neighborhood must 

have obtuse corners formed by the intersection of diagonal and vertical or diagonal and 

horizontal lines. Otherwise, there is a Gg ∈  with 3≤gz , which is impossible.  

Proof of Result 6 

Part (b). Suppose the distribution e
ie  is a socially efficient allocation with 0=e

he , 

1=e
le . Then );();( seTseT e ≤  for any eee =  except for 1=he , 0=le . Upon 

substitution, )1()(
, ,

e
ilhi illhj

e
jij ededC −+∑ ∑≠ ≠

)(
, hllhj

e
jhj dedC ++ ∑ ≠

 

∑ ∑≠ ≠
+≤

lhi ihlhj
e
jij dedC

, ,
)( )1( e

ie− )(
, hllhj

e
jlj dedC ++ ∑ ≠

. Because 0=′′C , we have  

 



Spatial Arrangements of Externality Generating and Receiving Activities / 33 

hc hll
e
i

n

i ih dced +≤−−∑ =
)1(

1
 )1(

1
e
i

n

i il ed −−∑ =
 for each 0=e

he , 1=e
le . Rearranging the 

last inequality yields hl cc −  −≥ ∑ =

n

j ljd
1

(5.0 ∑ =

n

j hjd
1

 hlhl dd 5.0) =− . 

Proof of Result 8 
We need to check both conditions (a) and (b) in Result 7. Note that the monotonicity 

conditions imply that )()(
1 ,111 ∑∑ = ++=

=≥=
s

j jii
s

j iji dCcdCc  for 1,...,1 −+= nsi . And 

so, to check condition (a), let ii =)(φ  for si ≤≤1  and ini −=)(φ  1++ s  for 

nis ≤≤+1 . Then we have ∑ ∑∈ ∈kSi Lj ijd ∑ ∑∈ ∈
≥

kSi Lj ijL
dmin  

∑ ∑∈ =
=

kSi

s

j ijd
1 ∑ ∑++

+= =
≥

)1(

)1( 1

sk

si

s

j ijdφ

φ
 for any 1,...,1 −−= snk , NL ⊂ , LNSk \⊆ , 

kLSk =|)(| , sL =||  since the elements entering the last summation are the smallest by 

the monotonicity conditions. To check condition (b), let ii =)(ϕ  for all Ni∈ , and 

proceed analogously.
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