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Abstract

This paper describes a maximum likelihood method using historical weather data to estimate

a parametric model of daily precipitation and maximum and minimum air temperatures. Param-

eter estimates are reported for Brookings, SD, and Boone, IA, to illustrate the procedure. The use

of this parametric model to generate stochastic time series of daily weather is then summarized. A

soil temperature model is described that determines daily average, maximum, and minimum soil

temperatures based on air temperatures and precipitation, following a lagged process due to soil

heat storage and other factors.

Key words: Air temperatures, maximum soil temperatures, minimum soil temperatures, paramet-

ric model, precipitation, soil heat storage, stochastic time series.



Generation of Simulated Daily Precipitation
and Air and Soil Temperatures

Introduction
Time series of daily weather variables such as precipitation and maximum and minimum

air temperatures are used in many applications. Examples include soil temperature models

(Logan et al. 1979, Gupta et al. 1981), models of arthropod or plant development (Naranjo and

Sawyer 1989, Kiniry et al. 1992), and watershed hydrology models for flood control assessments

(Matalas 1967). Historical data can be used for deterministic versions of these models, but if the

analysis requires longer time series, generated times series that accurately reflect actual weather

are needed. To assess uncertainty created by weather events, sampling with or without replace-

ment from historical data has been used for bio-economic analysis (Pannell 1990, Mjelde et al.

1988). Because this method is limited to observed weather, however, it may not capture the full

range of weather variability or shifts that have occurred due to climate change. The approach

presented here estimates a parametric model of the underlying stochastic processes, then de-

scribes the generation of simulated time series that exhibit the same uncertainty as the observed

daily weather. The weather model is adapted from Richardson (1981), whose model serves as

the basis for WGEN, the weather generation model used by EPIC¾the Erosion-Productivity

Impact Calculator (Richardson and Wright 1984, Williams 1995). The soil temperature model is

a modification of Potter and Williams (1994) which is also used by EPIC.

The paper begins with a brief description of the historical daily weather data used to esti-

mate model parameters for Boone, IA, and Brookings, SD. Then the estimation process for the

precipitation parametric model is described and parameter estimates are reported; the procedure

is repeated for the model of air temperatures. Next, an algorithm to generate simulated time

series of the weather variables using the parametric model is summarized. Lastly, a model that

determines soil temperatures as functions of air temperatures and precipitation is described.
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Historical Weather Data
The National Climatic Data Center’s (NCDC) Validated Historical Daily Data was ob-

tained on CD-ROM for hundreds of weather stations throughout the United States (EarthInfo

1996). Using the accompanying software package, all observations of the daily maximum and

minimum air temperature and total precipitation for weather stations in Brookings, SD, and

Boone, IA, were exported. For Brookings this information included observations from January

1, 1893, to December 31, 1994, (102 years or 37,230 days), with 441 days missing (<1.2 per-

cent). For Boone the observations covered May 1, 1948, to December 31, 1994, (47 years or

16,837 days), with 228 days missing (< 1.35 percent). These data were used to estimate all

parameters for stochastic temperature and precipitation generation. In leap years, data for

February 29 were deleted so that every year had 365 days. The error introduced by this deletion

occurred during a period generally unimportant to crop production in the Midwest. The econo-

metrics software package Time Series Program (TSP) 4.3 (TSP International 1995) was used to

estimate all parameters. The TSP defaults for missing data points were used.

Precipitation Model Parameter Estimation

Markov Model of Daily Precipitation Status
Following Richardson (1981), assume a first-order Markov chain model with two states

that generates the observed series of wet and dry days. A first-order Markov chain is defined by

its transition matrix, which contains the probabilities that the process transitions from one state

to the next, conditional on the current state. Typically, rows represent current states and columns

represent future states for a transition matrix (Lial et al. 1998). A transition matrix must be

square, because all possible states of the process must be used as both rows and columns.

Furthermore, each row sums to one because the process must end in one of the states specified

by the process.

For the process modeled here there are two states: a day is either wet or dry. The probabil-

ity that a day is wet or dry is conditional on whether the previous day was wet or dry. This is

summarized in the transition matrix P: �
�
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, where Pdd is the

probability of a dry day following a dry day and Pwd is the probability of a dry day following a
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wet day, using the convention that row subscripts define current states and column subscripts

define future states. Thus, the precipitation status for any given day is completely defined by the

two parameters Pdd and Pwd ; however, a total of 730 parameters must be estimated, because

parameter values are specific to each day and there are 365 days in a year.

To reduce the number of parameters, the seasonal periodicity exhibited by the transition

probabilities is utilized. Following the maximum likelihood method described by Woolhiser and

Pegram (1979), a Fourier series is estimated for each transition probability. First the number of

observed transitions from each state on each day of the year is calculated and denoted n
ija , where

iÎ{d,w} and indexes current states, jÎ{d,w} and indexes future states, and n denotes the day of the

year. The log-likelihood function is:

( ) ( )
( ) ( )=

�

�
�
�

�

−+

+−+
=

365

1 )(1ln)(ln

)(1ln)(ln
)|(ln

n wd
n
wwwd

n
wd

dd
n
dwdd

n
dd

nPanPa
nPanPa

XL φ , (1)

=

�
�
�

�
�
�

�
�
	


+�
�

�
�
	


+=
dH

k
dkdkddd K

nkS
K
nkCAnP

1

sincos)( , (2)

=

�
�
�

�
�
�

�
�
	


+�
�

�
�
	


+=
wH

k
wkwkwwd K

nkS
K
nkCAnP

1
sincos)( , (3)

where K = 365/2p  » 58.091554 is the necessary normalizing constant; Hd and Hw are the

number of harmonics estimated for Pdd, and Pwd, respectively; f is the parameter vector of Fourier

coefficients { }
wwdd wkwkdkdkwd SCSCAA ,,,,, ; and X is the matrix of the n

ija , the number of observed

transitions. The number of harmonics for each Fourier series is increased one at a time until the

addition of a harmonic fails a Likelihood Ratio test at the 5 percent level of significance. The

maximum likelihood estimates and standard errors are reported in Table 1 for Brookings and

Boone; Figures 1 and 2 illustrate the fit and smoothing of the data provided by the Fourier series.

Exponential Model of Daily Precipitation
Several alternatives are available for a stochastic model of the amount of precipitation on

wet days, but Richardson’s exponential model was chosen for its simplicity. Define Rn as the

amount of precipitation on a given day n when n is a wet day. Assume Rn is distributed according

to the exponential distribution with probability density function nnR
nn eRf λλ −=)( , where ln is
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specific to each day. As with the transition probabilities, the seasonal periodicity exhibited by the

ln is used to reduce the number of required parameters.

Following the maximum likelihood method described by Woolhiser and Pegram (1979), a

Fourier series is estimated for the parameter l. To express the log-likelihood function, define Rny

as the observed amount of precipitation for day n in year y, and define

�
�

>
=

=
0 if       1
0 if      0

ny

ny
ny R

R
D .   Then the log-likelihood function is:
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where q is the parameter vector of Fourier coefficients {A, Ck, Sk }, T is the number of years, and

H is the number of harmonics. For estimation, the number of harmonics is increased one at a time

until the addition of a harmonic fails a Likelihood Ratio test at the 5 percent level of significance.

The maximum likelihood estimates and standard errors are reported in Table 2 for Brookings and

Boone; Figure 3 illustrates the fit and smoothing of the data provided by the Fourier series.

Air Temperature Model Parameter Estimation

Daily Mean and Standard Deviation
of Maximum and Minimum Air Temperatures

Following the procedure described by Richardson (1981) and Matalas (1967), assume that

daily maximum and minimum air temperatures are a continuous, multivariate, weakly stationary

process with daily means and standard deviations conditional on the wet or dry state of the day.

For each day of the year, calculate the mean and standard deviation of the maximum and mini-

mum air temperatures separately for wet and dry days. This calculation yields eight parameter

estimates for each day of the year: the wet and dry mean and the wet and dry standard deviation

for the maximum temperature, and the same four for the minimum temperature. Again utilize

seasonal periodicity to reduce this set of parameters by using a least squares criterion to estimate

eight separate Fourier series. The general equation used for each series is:
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where q is the parameter for which the Fourier series is being estimated and n is the day of the

year. The estimated coefficients are A, the Ck and Sk, and H, the number of harmonics for the

series. For each Fourier series, harmonics are increased one at a time until the addition of a

harmonic fails a Likelihood Ratio test at the 5 percent level of significance. Coefficient estimates

and standard errors for all eight Fourier series for both Brookings and Boone are reported in

Tables 3–10; Figures 4–11 illustrate the fit provided by the Fourier series for both locations.

Maximum and Minimum Air Temperature Residuals
Following the method described by Matalas (1967), calculate the maximum and minimum

temperature residuals for each observation by subtracting the appropriate wet or dry mean
observed on that day of the year (not estimated by the Fourier series) and dividing by the
appropriate wet or dry standard deviation observed on that day of the year. The temperature
residuals for any day of the year are the deviation of observed temperatures from the appropriate
wet or dry mean, normalized by the appropriate wet or dry standard deviation. Next assume that
the maximum and minimum air temperature residuals follow a multivariate weakly stationary
process defined by:

(7)

where en,y is a (2 x 1) matrix of independently distributed standard normal (mean zero, variance

one) random variables for the specified day and year, and  cn,y and cn+1,y are (2 x 1) matrices of the

maximum and minimum air temperature residuals for the specified day and year.

A and B are (2 x 2) matrices whose elements are functions of the lag 0 and lag 1 serial- and

cross-correlation coefficients of the observed residuals, defined so that any series of residuals

generated by a series of standard normal errors exhibits the same serial- and cross-correlation as

the observed residuals. Note (7) implies that the residuals are normally distributed and follow a

first-order linear autoregressive process. A and B are determined by the following equations:

1
01
−= MMA (8)

TT MMMMBB 1
1

010
−−= . (9)

M0 and M1 are matrices of the lag 0 and lag 1 correlation coefficients, respectively, defined as follows:

ynynyn BA ,1,,1 ++ += εχχ
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where X and N denote the residuals for the maximum and minimum air temperature, respec-

tively, and their subscripts denote lag 0 or lag 1. Thus 
00NXρ  is the lag 0 cross-correlation coeffi-

cient between the residuals for the maximum air temperature and the residuals for the minimum

air temperature. 10 −XXρ  and 10 −NNρ  are the lag 1 serial correlation for the residuals of the maxi-

mum and minimum air temperature, respectively. 10 −NXρ  is the cross-correlation coefficient

between the lag 0 maximum air temperature residuals and the lag 1 minimum air temperature

residuals, and 10 −XNρ  is the cross-correlation coefficient between the lag 0 minimum air tempera-

ture residuals and the lag 1 maximum air temperature residuals. Table 11 reports the serial-

correlation and cross-correlation coefficients needed to construct the M0 and M1 matrices for

Brookings and Boone.

To solve (9) for B, first define a matrix Z = BBT. Using spectral decomposition, Z = CLCT,

where C is the matrix of eigenvectors, and L is the matrix with the associated eigenvalues down

the main diagonal and zeros for all other elements [see Greene (1997), p. 38]. Note that BBT =

Z½Z½T = Z, implying that B = Z½, then by Greene’s Theorem 2.10, B = Z½ = CL½C T. Table 11 also

reports the elements of A and B for both locations.

Generation of Simulated Weather
Extensive time series for precipitation and maximum and minimum air temperatures that

exhibit appropriate serial- and cross-correlations can be generated once the parametric model is

estimated. Initialize the process by specifying the previous day’s maximum and minimum

temperature residuals and its precipitation status as either wet or dry. Assuming that the previous

day was dry and that both temperature residuals were zero seems reasonable, since a dry day is

most likely for the two locations reported here and residuals of zero imply that maximum and

minimum temperatures were exactly at their respective means. Also, substitute all estimated

parameter values into the appropriate Fourier series.
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In general, the algorithm proceeds by first determining the precipitation status of the current

day conditional on the previous day’s precipitation status, then determining the daily maximum and

minimum temperatures conditional on the current day’s precipitation status and the previous day’s

temperatures. The specifics of the algorithm are outlined in a series of steps for a given day n:

1. Calculate the probability that day n is dry by using Equation (2) if day n – 1 was dry or

Equation (3) if day n – 1 was wet.

2. Draw a uniform random variable between zero and one; if it exceeds the probability that

day n is dry, then day n is wet, else day n is dry.

3. If day n is dry, go to the next step, else use Equation (5) to calculate l and draw the

precipitation amount as an exponential random variable with mean 1/l.

4. Draw two independent standard normal random variables to construct the e matrix, then

use Equation (7) to calculate the maximum and minimum air temperature residuals.

5. Calculate the mean and standard deviation of the maximum and minimum air temperatures

using the appropriate forms of Equation (6) depending on the precipitation status of day n.

6. Calculate day n’s maximum and minimum air temperature by multiplying each residual

by the appropriate standard deviation and adding the appropriate mean.

The generation of reliable random numbers using computers is an essential part of generat-

ing simulated weather data but is not a simple process. Press et al. (1992) expressly warn re-

searchers against using random numbers supplied by software systems, because the series of

numbers may quickly repeat itself. Repetition of random series is a real concern if rather long

time series are needed, as can be the case for Monte Carlo analysis. Press et al. (1992) describe

several algorithms for generating uniform random variables (e.g., L’Ecuyer’s long-period genera-

tor with a Bays-Durham shuffle) and transformation techniques for obtaining random variables

from other distributions from uniform random variables.

Soil Temperature Model
Soil temperatures in the top soil layer are important in crop production. Soil temperatures

determine the germination and growth of planted crops and weeds, as well as regulate the meta-
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bolic activity and development of soil microbes, nematodes, fungi, worms, and insects. This

section presents a model of soil temperatures in the top 10-cm layer. The method of Potter and

Williams (1994) is used with a few modifications to determine the daily average soil tempera-

ture as a function of air temperature. The method of Logan et al. (1979) is modified in accor-

dance with data presented in Gupta et al. (1983) to determine the daily maximum and minimum

soil temperatures as functions of the average soil temperature.

Average Soil Temperature
The model of Potter and Williams (1994) derives the average soil temperature for a layer

below the surface by first modeling the temperature of the bare soil surface, which closely

follows the air temperatures, then adjusting this bare soil surface temperature to account for soil

cover. Next, a physically derived depth-weighting factor (DWF) is used to determine the average

soil temperature at any given depth between the soil surface and the constant temperature depth.

Following their model, PTBSn, the potential temperature of the bare soil for day n, depends on a

day’s precipitation status as follows:

�

�

�

+

+
=

dry, isday   theif   
30

 wetisday   theif   
30

air
n,

air
n,

α

α

n
nAvg

n
nMin

n NWDT

NWDT
PTBS (12)

where NWD is the number of wet days over the past thirty days (including the current day);

TMax,n, TMin,n, and TAvg,n are the maximum, minimum, and average air temperatures for day n (the

average temperature is the simple average of the maximum and minimum); and

( )air
nMin

air
nMax

air
n TT ,,2

1 −=α  is the amplitude of the temperature change on day n. The actual tem-

perature of the bare soil (TBSn) is then the two-day moving average of the PTBS.

Next, the average soil surface temperature for day n ( surface
nAvgT , ) uses the TBS, but accounts for

soil cover by using a lagged cover factor (LCFn) as follows:

( ) nnnn
surface

nAvg TBSLCFTBSLCFT −+= − 11,
(13)

{ } ., nnn SCFBCFMAXLCF = (14)
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BCFn is the biomass cover factor and SCFn is the snow cover factor for day n calculated by the

following empirically derived equations:

( )nn

n
n BB

BBCF
3951.23396.5exp −+

= (15)

( ),2197.0303.2exp nn

n
n SS

SSCF
−+

= (16)

where Bn is the total above ground crop biomass and surface residue (Mg/ha) and Sn is the water

content of the snow cover (mm) on day n. After validating the model with data from three

locations, Potter and Williams impose the following restrictions:

0 £ BCFn £ 0.19 and 0 £ SCFn £ 0.95.

To determine Bn, the base cover contributed by crop residue is assumed to be 1.4 Mg/ha,

which is approximately the amount of residue left from continuous corn production under

conventional tillage. This is calculated by assuming a 1:1 ratio of grain to residue production for

corn, following Larson et al. (1978, cited in Havlin et al. 1990) and assuming a bushel of corn

weighs 56 lbs. (USDA 1979). Thus a typical yield for Brookings of 100 bu/ac implies 6.3 Mg/ha

of residue and a typical yield for Boone of 150 bu/ac implies 9.4 Mg/ha. Standard tillage opera-

tions for conventional tillage corn are from state extension budgets for South Dakota (chisel

plow and tandem disk) and Iowa (chisel plow, tandem disk, and field cultivator) (SDSU Exten-

sion Economics 1998, ISU Extension 1998). Residue mixing efficiencies typical for these

operations are from the EPIC User’s Guide: chisel plow, 0.42; tandem disk, 0.50; field cultivator,

0.70 (Mitchell et al. 1997). Then, 6.3 x 0.42 x 0.50 = 1.32 and 9.4 x 0.42 x 0.50 x 0.70 = 1.38

are rounded up to 1.4 to serve as a simple estimate of the base cover from crop residue.

To include the contribution of growing crop biomass to Bn, the year is divided into four

periods roughly coinciding with seasons: (1) no living crop biomass, (2) linear biomass accumu-

lation during crop growth, (3) maintenance of living crop biomass during summer, and (4) linear

decline of crop biomass during senescence and harvest. For each of these periods, the value of Bn

is determined as follows:

November 1 to plant day Bn = 1.4 (17a)
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Plant day to peak flower �
��
�

�

−
−+=

dayplant  flower peak 
dayplant  day current 74.1nB (17b)

Peak flower to harvest Bn = 9.4 (17c)

Harvest to November 1 .
harvest  305

harvest day current 
74.9 �
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�

�

−
−

−=nB (17d)

Plant days range from early May to early June, with early to mid-May typical. Peak flower

depends on the maturity of the corn hybrid and occurs from early August to mid-September, with

mid- to late August typical. Harvest can range from as early as late September to as late as late

November, but mid-October is typical.

To determine Sn, the water content of snow cover (mm), a model of snowfall accumulation

and snowmelt is used. If precipitation occurs on a day, it is categorized as snowfall if the maxi-

mum air temperature is less than 40° F and the average is below 35° F. The multiple-layer soil

temperature model of snowmelt developed by Williams (1995) is adapted to the single-layer soil

temperature model used here. If a snow pack is present and the average soil temperature on day n

(         ) is above zero, then the millimeters of snowmelt on day n (SMn) occurs according to the

empirically derived equation:

{ }( )nAvg
soil

nAvgnAvgn TTMINTSM ,,, ,54.052.1 += . (18)

The method of Potter and Williams (1994) is then used to determine the daily average soil

temperature at 5 cm, the middle of the top 10 cm of soil, as follows:

( )surface
nAvg

surface
nAvg

soil
nAvg

soil
nAvg TTDWFTTT ,,1,, 5.05.05.0 −++= −

. (19)

    is the long-term average air temperature that approximates the constant soil temperature

maintained at some sufficient depth (6.2°C for Brookings and 8.5°C for Boone) and DWF is the

depth-weighting factor. Potter and Williams’s Equations (7) – (11) were used to determine the

value of DWF over a wide range of soil bulk density and soil water conditions. The value

changes very little (0.2237 - 0.2260), even under extraordinarily unlikely conditions, so an

average value of 0.225 is used for all simulations. Because Potter and Williams note that the

model tends to underpredict average soil temperatures, the average is increased by 2.5 percent.

T

soil
nAvgT ,
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Maximum and Minimum Soil Temperatures
To determine the daily maximum and minimum soil temperatures, the method of Logan et

al. (1979) is modified to extrapolate from air temperature extremes to near-surface soil tempera-

ture extremes. Their method was developed to extrapolate from measured temperatures at one

depth to temperatures at another depth, not from surface to below-ground temperatures. Essen-

tially, the method assumes that the amplitude at one depth is proportional to the amplitude at

another depth, with the constant of proportionality depending on the difference in depth. Using

Logan et al.’s Equation (9) gives a value of 0.98 for a depth difference of 10 cm. Assuming that

the soil surface temperature is the same as the air temperature, this factor implies that the ampli-

tude of soil temperatures at 5 cm is 98 percent of the amplitude of the air temperature. However,

this does not account for dampening due to soil cover, nor due to additional heat input from solar

radiation, especially significant in spring when the soil is dark and crops do not shade the soil

surface.

To adjust for soil cover, the constant of proportionality is reduced to 0.95 for days between

March 1 and November 15 (approximately soil thaw to soil freeze). Benoit and Van Sickle

(1991) report data on winter soil temperatures for various tillage-residue management systems in

west central Minnesota. These data indicate that the difference between the maximum and

minimum air temperatures is around 10–12°C, whereas the difference between the maximum

and minimum soil temperatures at 5 cm is about 2–4°C, or about 25 percent less. Thus from

November 15 to March 1, the constant of proportionality is set to 0.25.

Research has also shown that the variation of near-surface soil temperatures around the

average is asymmetric and changes throughout the season due to tillage and crop growth (Gupta

et al. 1981, Gupta et al. 1983, Potter and Williams 1994). Data reported by Gupta et al. (1983)

indicate that in spring the maximum soil temperature is approximately 25 percent more above

the average soil temperature than the maximum air temperature is above the average air tempera-

ture. This occurs because the soil is generally dark and no crops provide shade. In summer, the

factor is approximately 15 percent because solar radiation has increased, but crops begin to

provide increasingly more shade.

All these adjustments are summarized in the equations used to determine the soil maximum

and minimum temperatures:
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Spring (March 1 to plant day + 42 days):

(20a)

(20b)

Summer (plant day + 42 days to September 15):

(21a)

(21b)

Fall (September 15 to November 15):

(22a)

(22b)

Winter (November 15 to March 1):

(23a)

. (23b)

The overall performance of the soil temperature model is difficult to evaluate without com-

paring to actual data. However, the model is based on assumptions and equations well-tested in

the literature; e.g., Potter and Williams (1994) is the soil temperature model used for EPIC. The

soil temperature model developed here predicts the daily average, maximum, and minimum soil

temperature as a function of the daily maximum and minimum air temperature and precipitation

status (wet or dry). Furthermore, the model accounts for the impact of crop growth and seasonal

changes, including snowfall accumulation.
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Conclusion
This paper describes the estimation of a parametric model of daily precipitation and maxi-

mum and minimum air temperatures and the use of that model to generate simulated time series

of weather variables. Maximum likelihood equations for estimating the parametric model using

historical data are provided and parameter estimates for Brookings, SD, and Boone, IA, are

reported. Alternative specifications of the parametric model could be explored to improve the

modeling of the underlying stochastic processes. For example, for the precipitation model,

higher-order Markov chains or multiple rainfall states could be explored, as well as more flexible

distributions such as the gamma or beta for the amount of rainfall on wet days (Richardson

1981). For the daily temperature model, corrections for skewness and kurtosis could be incorpo-

rated, or nonnormal error specifications could be used (Matalas 1967). The soil temperature

model could be validated by comparing model predictions with actual soil temperature data in a

manner similar to that of Potter and Williams (1994).

Table 1. Fourier series coefficient estimates for the probability of a dry day following a dry day
and the probability of a wet day following a dry day in Brookings, SD, and Boone, IA

          Brookings, SD              Boone, IA

Coefficienta Estimate Standard Errorb Estimate Standard Errorb

A
d

 0.7807 0.0025  0.7715 0.0037
Cd1  0.1031 0.0035  0.0635 0.0051
Sd1 -0.0094 0.0035 -0.0206 0.0053
Cd2 -0.0015 0.0034
Sd2  0.0183 0.0036
Cd3 -0.0063 0.0034
Sd3 -0.0128 0.0035

Aw  0.7712 0.0048  0.5716 0.0076
Cw1  0.0967 0.0071  0.0492 0.0107
Sw1 -0.0063 0.0064 -0.0033 0.0108
Cw2 -0.0034 0.0070  0.0384 0.0104
Sw2         0.0153  0.0065          0.0499               0.0110
Cw3 -0.0067 0.0068  0.0022 0.0107
Sw3 -0.0236 0.0067 -0.0248 0.0106

a See Equations (2) and (3) for coefficient definitions.
b Computed according to the method of Berndt et al. (1974).
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Table 2. Fourier series coefficient estimates for the parameter l of the exponential probability
density function for Brookings, SD, and Boone, IA

           Brookings, SD               Boone, IA

Coefficienta Estimate Standard Errorb Estimate Standard Errorb

A 5.2815 0.0560 3.6183 0.0489
C1 3.4095 0.0920 1.7404 0.0757
S1 0.9470 0.0608 0.4353 0.0617
C2 1.2737 0.0806 0.4926 0.0706
S2 0.7630 0.0715 0.3211 0.0668
C3 0.4884 0.0702 0.2207 0.0655
S3 0.3548 0.0728 0.2046 0.0675
C4 0.1094 0.0555 0.0404 0.0523
S4 0.3386 0.0580 0.2009 0.0565

a See Equation (5) for coefficient definitions.
b Computed according to the method of Berndt et al. (1974).

Table 3. Fourier series coefficient estimates for the mean of the maximum air temperature on a
dry day for Brookings, SD, and Boone, IA

          Brookings, SD              Boone, IA

Coefficienta Estimate Standard Errorb Estimate Standard Errorb

A  56.2517 0.0617  60.4045 0.0939
C1 -29.5203 0.0872 -28.0091 0.1328
S1   -9.4464 0.0872   -8.5034 0.1328
C2   -3.0251 0.0872   -3.0917 0.1328
S2   -0.6941 0.0872   -1.0609 0.1328
C3    0.1797 0.0872   -0.2957 0.1328
S3   -0.2027 0.0872    0.3601 0.1328
C4    0.3126 0.0872   -0.1516 0.1328
S4    0.8663 0.0872    0.7117 0.1328

a See Equation (6) for coefficient definitions.
b Computed using the Gauss-Newton method with the quadratic form of the analytic first
derivatives [see Greene (1997) p. 139].
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Table 4. Fourier series coefficient estimates for the mean of the maximum air temperature on a
wet day for Brookings, SD, and Boone, IA

           Brookings, SD               Boone, IA

Coefficienta Estimate Standard Errorb Estimate Standard Errorb

A  51.9957 0.1353  57.3062 0.1533
C1 -30.5627 0.1914 -27.7780 0.2168
S1   -9.3814 0.1914   -9.0578 0.2168
C2   -2.2156 0.1914   -2.3425 0.2168
S2   -0.3683 0.1914   -1.0260 0.2168
C3   -0.0083 0.1914
S3   -0.6594 0.1914

a See Equation (6) for coefficient definitions.
b Computed using the Gauss-Newton method with the quadratic form of the analytic first
derivatives [see Greene (1997) p. 139].

Table 5. Fourier series coefficient estimates for the mean of the minimum air temperature on a
dry day for Brookings, SD, and Boone, IA

            Brookings, SD              Boone, IA

Coefficienta Estimate Standard Errorb Estimate Standard Errorb

A  31.2684 0.0552  35.7891 0.0851
C1 -26.3254 0.0781 -25.4551 0.1204
S1   -8.3304 0.0781   -7.6758 0.1204
C2   -1.4249 0.0781   -1.2151 0.1204
S2   -0.5198 0.0781   -0.6731 0.1204
C3   -0.5433 0.0781   -0.5060 0.1204
S3   -1.2559 0.0781   -1.0473 0.1204
C4    0.1131 0.0781
S4   -0.2720 0.0781
C5    0.0743 0.0781
S5    0.3328 0.0781
C6    0.4958 0.0781
S6   -0.0171 0.0781

a See Equation (6) for coefficient definitions.
b Computed using the Gauss-Newton method with the quadratic form of the analytic first
derivatives [see Greene (1997) p. 139].
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Table 6. Fourier series coefficient estimates for the mean of the minimum air temperature on a
wet day for Brookings, SD, and Boone, IA

      Brookings, SD Boone, IA

Coefficienta        Estimate Standard Errorb        Estimate Standard Errorb

A  33.5774 0.1367  38.3504 0.1548
C1 -27.1519 0.1934 -25.0132 0.2189
S1   -8.7806 0.1934   -8.0771 0.2189
C2   -3.0643 0.1934   -2.3501 0.2189
S2   -1.2747 0.1934   -1.2593 0.2189
C3   -0.7844 0.1934   -0.9538 0.2189
S3   -1.2311 0.1934   -0.9808 0.2189

a See Equation (6) for coefficient definitions.
b Computed using the Gauss-Newton method with the quadratic form of the analytic first
derivatives [see Greene (1997) p. 139].

Table 7. Fourier series coefficient estimates for the standard deviation of the maximum air
temperature on a dry day for Brookings, SD, and Boone, IA

             Brookings, SD Boone, IA

Coefficienta Estimate Standard Errorb Estimate Standard Errorb

A 11.1102 0.0395 10.0688 0.0670
C1   2.8808 0.0559   2.9809 0.0947
S1   1.2214 0.0559   1.3168 0.0947
C2  -0.5267 0.0559  -0.6754 0.0947
S2  -0.2341 0.0559  -0.1711 0.0947
C3   0.1342 0.0559
S3   0.2585 0.0559
C4   0.2079 0.0559
S4   0.3425 0.0559
C5  -0.1920 0.0559
S5   0.2608 0.0559
C6  -0.2079 0.0559
S6   0.0854 0.0559
C7  -0.0636 0.0559
S7  -0.2245 0.0559
C8  -0.0874 0.0559
S8  -0.2487 0.0559

a See Equation (6) for coefficient definitions.
b Computed using the Gauss-Newton method with the quadratic form of the analytic first deriva-
tives [see Greene (1997) p. 139].
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Table 8. Fourier series coefficient estimates for the standard deviation of the maximum air
temperature on a wet day for Brookings, SD, and Boone, IA

             Brookings, SD               Boone, IA

Coefficienta Estimate Standard Errorb Estimate Standard Errorb

A 10.2603 0.0944  9.8459 0.1166
C1   1.8704 0.1335  2.0811 0.1649
S1   0.8781 0.1335  1.2429 0.1649
C2  -0.6026 0.1335 -0.9649 0.1649
S2  -0.5283 0.1335 -0.6009 0.1649
C3   0.5335 0.1335
S3   0.4154 0.1335

a See Equation (6) for coefficient definitions.
b Computed using the Gauss-Newton method with the quadratic form of the analytic first
derivatives [see Greene (1997) p. 139].

Table 9. Fourier series coefficient estimates for the standard deviation of the minimum air tem-
perature on a dry day for Brookings, SD, and Boone, IA

             Brookings, SD                     Boone, IA

Coefficienta Estimate Standard Errorb Estimate Standard Errorb

A 10.4959 0.0400 9.5900 0.0616
C1   3.0695 0.0566 2.8803 0.0872
S1   0.9792 0.0566 0.8108 0.0872
C2   0.7013 0.0566 0.5321 0.0872
S2   1.0220 0.0566 0.4681 0.0872
C3   0.2662 0.0566 0.3502 0.0872
S3   0.8091 0.0566 0.7953 0.0872
C4  -0.1969 0.0566
S4  -0.2837 0.0566
C5  -0.1496 0.0566
S5  -0.3494 0.0566

a See Equation (6) for coefficient definitions.
b Computed using the Gauss-Newton method with the quadratic form of the analytic first
derivatives [see Greene (1997) p. 139].
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Table 10. Fourier series coefficient estimates for the standard deviation of the minimum air
temperature on a wet day for Brookings, SD, and Boone, IA

Brookings, SD Boone, IA

Coefficienta Estimate Standard Errorb Estimate Standard Errorb

A 9.3562 0.0970 8.9704 0.1161
C1  3.8418 0.1371 4.1114 0.1643
S1 0.9883 0.1371 0.9426 0.1643
C2  0.6352 0.1371 0.5169 0.1643
S2  0.5066 0.1371 0.2418 0.1643
C3  0.1161 0.1371 0.3764 0.1643
S3  0.5401 0.1371 0.6857 0.1643
C4 -0.3181 0.1371
S4 -0.3372 0.1371
C5 -0.1425 0.1371
S5 -0.7686 0.1371
C6  0.0023 0.1371
S6 -0.4120 0.1371

a See Equation (6) for coefficient definitions.
b Computed using the Gauss-Newton method with the quadratic form of the analytic first deriva-
tives [see Greene (1997) p. 139].

Table 11. Correlation coefficients for temperature residuals and derived matrix elements for
Brookings, SD, and Boone, IA

      Brookings, SD        Boone, IA

Coefficient or Element    Value for Brookings     Value for Boone

0.69580 0.69215
0.67244 0.61300
0.61889 0.64883
0.51265 0.51185
0.59365 0.55112

A1,1 0.61206 0.49666
A1,2 0.08678 0.16809
A2,1 0.31603 0.19587
A2,2 0.39900 0.51326

B1,1 0.7160 0.75178
B1,2 = B2,1 0.19382 0.21057
B2,2 0.72656 0.71742

0000 XNNX ρρ =

10 −XXρ

10 −NNρ

10 −NXρ

10 −XNρ
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Figure 1. Observed and Fourier series estimated daily probability of a dry day following a dry
day (top) and a dry day following a wet day (bottom) in Brookings, SD.

Figure 2. Observed and Fourier series estimated daily probability of a dry day following a dry
day (top) and a dry day following a wet day (bottom) in Boone, IA.
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Figure 3. Observed and Fourier series estimated daily value of l for the exponential probability
density function for Brookings, SD, (top) and Boone, IA, (bottom)

Figure 4. Observed and Fourier series estimated daily mean (°F) of maximum air temperature
for a dry day (top) and for a wet day (bottom) for Brookings, SD.
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Figure 5. Observed and Fourier series estimated daily mean (°F) of maximum air temperature
for a dry day (top) and for a wet day (bottom) for Boone, IA.

Figure 6. Observed and Fourier series estimated daily mean (°F) of minimum air temperature
for a dry day (top) and for a wet day (bottom) for Brookings, SD.



28 / Mitchell

Figure 7. Observed and Fourier series estimated daily mean (°F) of minimum air temperature for
a dry day (top) and for a wet day (bottom) for Boone, IA.

Figure 8. Observed and Fourier series estimated daily standard deviation (°F) of maximum air
temperature for a dry day (top) and for a wet day (bottom) for Brookings, SD.
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Figure 9. Observed and Fourier series estimated daily standard deviation (°F) of maximum air
temperature for a dry day (top) and for a wet day (bottom) for Boone, IA.

Figure 10. Observed and Fourier series estimated daily standard deviation (°F) of minimum air
temperature for a dry day (top) and for a wet day (bottom) for Brookings, SD.
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Figure 11. Observed and Fourier series estimated daily standard deviation (°F) of minimum air
temperature for a dry day (top) and for a wet day (bottom) for Boone, IA.
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