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Abstract 

The growth in federal conservation programs has created a need for policy modeling 

frameworks capable of measuring micro-level behavioral responses and macro-level 

landscape changes. This paper presents an empirical model that predicts crop choices, 

crop rotations, and conservation tillage adoption as a function of conservation payment 

levels, profits, and other variables at more than 42,000 agricultural sites of the National 

Resource Inventory (NRI) in the Upper Mississippi River Basin. Predicted changes in 

crop choices and tillage practices are then fed into site-specific environmental production 

functions to determine changes in nitrate runoff and leaching and in water and wind 

erosion at each NRI site. This policy-scale model is applied to the case of green payments 

for the adoption of conservation practices (conservation tillage and crop rotations) in the 

Upper Mississippi River Basin, a region under scrutiny as a significant source of nutrient 

loadings to the Mississippi River, causing hypoxia in the Gulf of Mexico. Results from 

this application suggest that payments for conservation tillage and crop rotations increase 

the use of these conservation practices. However, the acreage response is inelastic and the 

programs are not likely to be cost effective on their own for addressing the hypoxia 

problem in the Gulf of Mexico. 

 

Keywords: agricultural policy, conservation practices, green payments, land use 

changes, nitrate runoff and leaching, non-point pollution, soil erosion.  

 



 

 

 
 

ASSESSING THE COSTS AND ENVIRONMENTAL CONSEQUENCES 
OF AGRICULTURAL LAND USE CHANGES: A SITE-SPECIFIC, 

POLICY-SCALE MODELING APPROACH 
 
 

Agriculture nationwide, and particularly in the Midwest, is increasingly under pres-

sure to adopt environmentally benign land use practices. A wide range of 

environmental improvements have been targeted in the Midwest, including reduced soil 

erosion, reduced nutrient runoff from crop and livestock facilities, habitat restoration 

for endangered species, increased biodiversity preservation efforts, restoration of 

wetlands and other native ecosystems, and reduced nitrogen loading to the Gulf of 

Mexico and other estuaries. To achieve these targets, large-scale changes in the man-

agement of agricultural land will be needed. Possible land use changes include 

changing crops or rotations, altering management practices on cultivated lands, remov-

ing land from active production to create buffers, and the complete restoration of some 

land to its natural state. The cost and effectiveness of programs to affect such landscape 

changes on a regional scale is an important policy issue and is explored in this paper. 

Numerous federal and state incentive-based programs have been initiated with goals of 

improving one or several environmental amenities, including the Conservation Reserve 

Program, the Environmental Quality Incentive Program, and the Wetland Reserve Program. 

The newly adopted Conservation Security Program expands these existing programs and 

includes provisions for new programs. Ex ante analysis of the likely cost effectiveness and 

environmental efficacy of changes in these programs, or ex post assessment of the outcomes 

of these programs, requires a large-scale economic model capable of estimating the costs of 

alternative land uses on spatially heterogeneous land, combined with the capacity to esti-

mate the environmental effects of these alternative land uses on a regional scale. In addition, 

it is important to employ micro-level data in policy analysis, both to achieve consistency 

with the underlying economic theory on which land use (discrete) choice models are based 

and to capture accurately the significant spatial variability in economic and environmental 

variables (Antle and Capalbo; Just and Antle; Hochman and Zilberman). 
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In this paper, we present an economic model that covers a large geographic region yet 

is based on micro-level data and hence captures the critical choice variables and spatial 

variability needed to assess accurately the economic and environmental consequences of 

agricultural land use changes. While conceptually straightforward, the detail and breadth of 

this model makes it well suited to assessing agro-environmental policies that affect land use 

on a large scale.  

The economic model is based on econometric estimates using the National Resources 

Inventory (NRI) data. The NRI was conducted in 1982, 1987, 1992, and 1997 and is the 

most comprehensive resource data ever collected in the United States. The inventories are 

conducted by the Natural Resources Conservation Service of the U.S. Department of 

Agriculture (USDA) to determine the status, condition, and trend of the nation’s soil, 

water, and related resources. Information on nearly 200 attributes was collected at more 

than 800,000 sites across the continental United States. A set of micro-level, discrete 

choice empirical models (McFadden) is estimated using such data to predict crop choice 

and tillage practices at each NRI site. Environmental production functions are then used 

to predict nitrate runoff and leaching, water (sheet and rill) erosion, and wind erosion at 

each NRI site based on crop choice, tillage practices, soil characteristics, and climatic 

factors. Levels of these pollutants represent the site-specific environmental effects of crop 

production. Responses to policies designed to encourage adoption of conservation tillage 

and to alter crop rotations are simulated and the environmental impacts are estimated at 

the local level. The accumulation of local environmental impacts across the landscape 

affects the overall environmental quality of the region. 

The study region is the Upper Mississippi River Basin, a region under scrutiny as a 

significant source of nutrient loadings to the Mississippi River. Such loadings are believed 

to be the primary cause of hypoxia in the Gulf of Mexico. The Upper Mississippi River 

Basin contains about 78 million acres of cropland and more than 71,000 NRI sites. Corn 

and soybeans are the major crops in the basin, accounting for 38 and 29 percent of crop-

land, respectively. Continuous corn and corn-soybean rotations are the most commonly 

used cropping systems in the basin, accounting for 11 and 49 percent of cropland in 1996 

and 1997. Conservation tillage was used on about 30 percent of cropland in the basin. To 

reduce nutrient loadings from the Mississippi River Basin to the Gulf of Mexico, “green 
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payments” have been proposed to encourage farmers to adopt conservation practices such 

as conservation tillage and crop rotations. The costs and environmental benefits of such 

incentive programs are evaluated using our empirical model. This is of significant policy 

interest since these programs have been proposed as part of a broad approach to reducing 

the hypoxic zone in the Gulf of Mexico (Mitsch et al.). 

This work builds on numerous previous efforts to assess the environmental conse-

quences of agricultural land use. Several national inventories of the status, trend, or 

spatial patterns of externalities from agriculture, especially as they relate to water quality, 

have been undertaken (Smith, Alexander, and Wolman; Mueller et al.). A few studies 

have evaluated water quality at the regional or national levels (e.g., Nielsen and Lee; 

Kellogg, Maizel, and Goss) and several other studies have examined the impact of 

farming practices on water pollution at the field, farm, or watershed levels (e.g., Pionke 

and Urban; Hallberg). Generally, these studies link the effect of cropping patterns and 

farming practices to water quality but do not examine how the decisions that led to these 

cropping patterns and farming practices were made. Thus, they are not well suited to 

addressing the effectiveness of incentive-based policies. 

To assess incentive-based policies requires analysis of adoption decisions. Several 

studies have examined factors affecting the adoption of specific management practices, 

such as conservation tillage (Ervin and Ervin, Korsching et al.; Napier et al.; Williams, 

Llewelyn, Barnaby; Helms, Bailey, and Glover; Fuglie and Bosch; Kurkalova, Kling and 

Zhao), irrigation technologies (Caswell and Zilberman), and practices that protect water 

quality (Fuglie and Bosch; Wu and Babcock 1998; Cooper and Keim). Empirical studies 

that link adoption decisions to environmental consequences have been undertaken at the 

farm or watershed level (e.g., Johnson, Adams, and Perry; Helfand and House; Fleming 

and Adams). A few aggregate studies have investigated larger geographic regions but also 

take into account site-specific land characteristics (Wu and Segerson; Wu and Babcock 

1999; Antle and Capalbo). Thus, there remains a need for models that combine the infor-

mation embedded in more detailed micro-level data with the scale needed to assess policies 

that have broad-reaching geographic and environmental consequences. 

In the next section, we present the components of the microeconomic behavioral 

model, comprised of both a crop choice and tillage practice submodel. After describing 
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the data and variable construction, we present the econometric estimates of the behavioral 

model. We demonstrate the policy relevance of the model by estimating the costs and 

environmental benefits of incentive payments for the adoption of two types of conserva-

tion practices in the Upper Mississippi River Basin. We summarize the results and policy 

implications in the last section.  

 

Modeling Framework 

Within the modeling framework, a farmer is assumed to make a crop choice and till-

age practice decision at an NRI site (the basic unit of analysis for this work), choosing the 

combination of crops and tillage practices that yields the highest expected utility. These 

two choices are made simultaneously; the choice of tillage practice may depend on the 

crop choice and vice versa. Suppose that the farmer can choose among N crops and 

conventional tillage (o) or conservation tillage (c).1 Further, assume the farmer’s utility 

from growing crop i with tillage practice j is ( , )ij i j iu X Z , where iX  is a vector of vari-

ables specific to the crop choice decision, including the farmer’s expected profit from 

growing crop i and risks of growing crop i because of uncertainty about weather during 

the growing season, and j iZ  (j = o or c) is a vector of variables that affect the farmer’s 

utility from adopting conservation tillage on crop i, including the cost differential be-

tween conservation and conventional tillage.  

Because the farmer’s preferences are unknown to the researcher, ( , )ij i j iu X Z  can be 

considered a random variable and can be written as  

 ( , ) ( , )ij i ij i ijj i j iu X Z v X Z ε= + ,  i = 1, 2, …, N, j=o,c. (1) 

where ( , )ij i j iv X Z  is the mean of ( , )ij i j iu X Z and is specified as ( , )ij i j iv X Z =  

i i j i j iX Zb g+¢ ¢ , and e ij  is a random error term. If the residuals e ij  are assumed to be 

independently and identically distributed with the extreme value distribution, then the 

probability that the farmer will choose crop i and tillage j is given by a multinomial logit 

model (Maddala, p. 60): 
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= Prob(tillage j crop i) Prob(crop i)⋅ . 

This decomposition is convenient, as it means that we can study separately the choice of 

crop and the choice of tillage practice, conditioned on the choice of crop: 

 Prob(conservation tillage|crop i) 1 eZ g 1
c|i c|i= + ¢ -

e j , (4) 

where |o ig  is normalized to zero (see Greene, pp. 697-99).  

The multinomial logit model has been used widely in economic analysis, including 

in the study of the choice of transportation modes, occupations, asset portfolios, and the 

number of automobiles demanded. In agriculture, it has been used to model farmers’ land 

allocation decisions (Lichtenberg; Wu and Segerson; Hardie and Parks; Plantinga, 

Mauldin, and Miller), the choice of irrigation technologies (Caswell and Zilberman), and 

the choice of alternative crop management practices (Wu and Babcock 1998).2 

The marginal effects of chances in explanatory variables on crop choices in a logit 

model are nonlinear combinations of the explanatory variables and can be written as 
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where (  )iP Prob crop i∫ . The sign and magnitude of this marginal effect have no direct 

relationship with any specific coefficient.  

 

Data and Variable Construction 

The implementation of the framework described in the last section requires a sub-

stantial amount of data, which must be integrated from multiple sources. These data 

include (a) the choice of crop and tillage at each NRI site, (b) farmers’ expected input 

and output prices and government commodity programs, (c) expected yields, (d) site 

characteristics at each NRI point (soil properties, topographic features, climate condi-

tions), (e) measures of production risks, and (f) site-specific production costs by crop and 

tillage practice. In this section, we describe the data sources and construction of the 

variables used in model estimation. 

Time-series data on crop choice and tillage practice at each NRI site were derived 

from the 1982, 1987, 1992, and 1997 NRIs. The Upper Mississippi River Basin includes 

71,104 NRI sites, of which 42,229 are in agricultural land. Each NRI site was assigned a 

weight called the xfactor to indicate the acreage it represents. For example, the sum of 

xfactors at all NRI sites planted to corn gives an estimate of corn acreage in the region. 

The sampling design ensures that inferences at the national, regional, state, and substate 

levels can be made in a statistically reliable manner.  

Each NRI contains crop choice information for four years (the current year plus the 

previous three years) and tillage information for one year. Thus, we have crop choice 

information for sixteen years at each NRI site and tillage information for three years.3 

Pooling these time-series and cross-sectional data results in 675,664 observations for the 

crop choice model (42,229 agricultural NRI sites × 16 years) and 126,687 observations 

for the tillage model (42,229 × 3). For computational feasibility, we randomly selected 5 

percent of the observations for the estimation of the crop choice and tillage models. 

The expected profits and the variances of profits from growing corn and soybeans 

are estimated using the following formula (Bain and Engelhardt, p. 177): 
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 E E p E y p y sd p sd y C( ) ( ) ( ) ( , ) ( ) ( )p r= + - , (6) 

 V E y V p E p V y E p E y p y sd p sd y( ) ( ) ( ) ( ) ( ) ( ) ( ) ( , ) ( ) ( )p r@ + +2 2 2 , (7) 

where p is the output price, y is the crop yield, C is the non-random production cost, and 

( ),  ( ),  ( ),  ( , )E V sd◊ ◊ ◊ r ◊ ◊  are mean, variance, standard deviation, and correlation coefficient 

operators, respectively. Because the production of hay is less sensitive to weather condi-

tions, profit from growing hay is assumed to be non-stochastic and is estimated by 

subtracting the site-specific production costs from the expected revenue.  

Several approaches have been used to estimate farmers’ expected prices. Gardner, and 

Just and Rausser argued for the use of futures prices in acreage response analysis on 

rational expectations grounds as well as for forecast accuracy. Chavas and Holt used 

adaptive expectations and the lagged market price to model farmers’ expected prices. 

Chavas, Pope, and Kao examined the role of futures prices, lagged market prices, and 

support prices in acreage response analysis. They found that since futures prices and lagged 

market prices are highly correlated and reflect similar market information, use of both in 

supply equations may lead to multicollinearity, while deleting one of the two makes little 

empirical difference. Shumway defined the expected price as the higher of current 

weighted support price and a geometric lagged function of market prices in the previous 

seven years. Wu and Segerson specified expected prices for program crops as the higher of 

the current target price and a linear function of previous years’ market prices. The number 

of years lagged is determined using a partial autocorrelation coefficient method.  

Based on these studies, the expected price for corn was specified as the higher of the 

weighted target price and the average futures price in the corn planting season. The 

weighted target price is calculated by multiplying the corn target price by the portion of 

corn base permitted for corn planting (i.e., 1 – Acreage Reduction Program [ARP] rate 

for corn). The ARP rate and target price for corn were taken from Green and other USDA 

publications. The average futures price for corn in its planting season was estimated as 

the average of the first and second Thursday closing prices in March on the Chicago 

Board of Trade (CBOT) for December corn. Soybeans is a non-program crop. Expected 

prices for soybeans were specified as the average futures prices in its planting season, 

which were estimated as the average of the first and second Thursday closing prices in 
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March on the CBOT for November soybeans. Hay is a multi-year, non-program crop. 

Market prices lagged one year are used as farmers’ expected prices for hay. The state-

level, annual average market price for hay was taken from USDA’s Agricultural Statis-

tics. All prices are normalized by the index of prices paid by farmers for all inputs 

including interest, taxes, and wages. 

Crop yields at individual NRI sites are unavailable for the study region. However, 

the county-level, time-series crop data from the National Agricultural Statistics Service 

(NASS) allow us to estimate farmers’ expected yields and yield variance in each county. 

Specifically, following Chavas and Holt, a trend model of y t= + +a b e  was estimated 

in each county using the NASS data from 1975 to 1997. The resulting predictions were 

taken as expected yields. The estimated residuals were then used to generate the vari-

ances of yields, which are assumed constant over time. The non-truncated correlation 

between price and yield was estimated to be –0.293 for corn and –0.149 for soybeans.  

To capture the yield differences among NRI sites, physical variables reflecting land 

quality at individual NRI sites (land capability class, slope) are included as independent 

variables in the models. NRI provides information on land capability classes and land 

slope at each NRI site. Slope is a continuous variable measured as a percentage, while 

high-quality land is a category or dummy variable, defined as land with a capability class 

of 1 or 2. In addition, historical weather data were obtained from the Midwestern Climate 

Center. The mean and variance of maximum daily temperature and precipitation during 

corn and soybean growing seasons were estimated for each NRI site and included in the 

crop choice and tillage models to capture the differences in crop yields and production 

risks across the NRI sites. 

The perceived variances of corn and soybean prices are estimated following Chavas 

and Holt. Specifically, 

 V p p E pt j
j

t j t j t j( ) ( )= -
=

- - - -Âw
1

3

1

2
, (8) 

where the weights w j  are 0.5, 0.33, and 0.17; pt j- is the annual average of market price for 

corn or soybeans in year t-j as reported in USDA’s Agricultural Statistics; and Et j- -1  is the 

expectation, at planting time in year t-j, of the price for the crop at harvesting in year t-j.  
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Site-specific production costs, by crop and tillage practices, were developed though the 

use of USDA’s Cropping Practices Survey data to generate statistically representative crop 

production systems and costs by state, crop, previous year crop, and tillage type for the 

entire region. The Cropping Practices Survey collects nutrient and pesticide usage and 

other related practice data on major field crops (corn, soybeans, wheat, and cotton). The 

surveys were USDA’s primary source of information about the status and trends in crop 

production practices. The surveys yield annual data summaries for field-level data by crop, 

nutrient use and nutrient management practices, crop residue management practices, and 

pest management practices and pesticide use. The Cropping Practices Survey data can be 

downloaded from the Economic Research Service’s web site (USDA-ERS).  

 

Model Estimates and Interpretation 

Table 1 presents the estimated coefficients of the multinomial logit crop-choice 

model, based on the general specification presented in equation (3). As is evident from 

the table, the statistical results are quite robust; the model correctly predicts the choice of 

crops at 67 percent of in-sample sites and 69 percent of out-of-sample sites. About half of 

the estimated coefficients are significant at least at the 1 percent level, and only two of 

the price variables are not significant at the 5 percent level. All but one of the coefficients 

on the land quality and slope variables are significant at the 1 percent level. For the 

statistically significant variables, signs are generally as expected. For example, increases 

in own profit raises the likelihood of farmers choosing that crop. Similarly, selection of 

this year’s crop at a site is influenced by the previous year’s crop, a reflection of rota-

tional practices in the region. In terms of climate and land quality variables, high 

temperatures and large rainfall events during the corn growing season have a negative 

effect on the choice of corn but have a positive effect on the choice of soybeans. Corn 

and soybeans are more likely to be planted on high-quality land, while hay is generally 

relegated to low-quality land. Hay and corn are also more likely to be planted on sloped 

land than is soybeans because soybeans is a more erosion-prone crop.  

Table 2 translates the coefficients from Table 1 into elasticities of probabilities of 

choosing alternative crops, using equation (5) and the means of the variables.4 Variables 

of particular interest are the profit measures; because corn and soybean profits are highly 
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TABLE 1. Coefficient estimates for the multinomial logit crop choice model 
 Corn Soybeans Hay 

Variables Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic 
Constant -0.5890 -0.56 -11.8831*** -9.08 -1.5188 -1.13 
Expected profit for corn 0.6566*** 9.34 0.5851*** 7.60 -0.0177 -0.17 
Expected profit for hay 0.5395*** 7.16 0.1291 1.54 0.3363*** 3.11 
Variance of corn profit 0.8724*** 2.79 0.7724** 2.29 0.9468** 2.01 

Previous crop is corn 2.9166*** 51.09 3.6581***   57.24 0.0446 0.48 

Previous crop is soybeans 3.2349*** 54.33 1.4023*** 20.37 -0.9799*** -6.43 

Previous crop is hay 3.1768*** 29.11 1.5890*** 10.35 4.5319*** 43.62 
Mean max. temperature during 

corn growing season 0.0011 0.06 0.0428** 2.26 -0.0035 -0.15 
Std. deviation of max. temp. 

during corn growing season 0.0176 0.36 0.3674*** 6.74 -0.0626 -0.95 
Mean min. temperature during 

corn growing season -0.0423** -2.40  0.0813*** 4.06 -0.0330 -1.35 
Std. deviation of min. temp. 

during corn growing season 0.0495 0.91 -0.2789*** -4.59 0.1340* 1.76 
Mean precipitation during corn 

growing season 2.9955 0.90 16.0204*** 4.33 -1.1733 -0.24 
Std. deviation of precipitation 

during corn growing season -2.0675 -1.47 -3.7793** -2.46 3.4943 1.65 

High-quality land 0.4573*** 10.06 0.6308*** 12.52 0.1991*** 3.03 

Slope -0.0017*** -2.70 -0.0124*** -15.33 0.0007 0.85 

Dummy for IL 0.0463 0.63 0.1272 1.58 -0.2482** -2.21 

Dummy for IN 0.2222* 1.66 -0.0627 -0.44 -0.4213* -1.78 

Dummy for MO -0.8436*** -7.49 0.1369 1.21 -0.3580** -2.22 

Dummy for MI -0.6134*** -7.81 -0.0836 -0.97 -0.3416*** -2.97 

Dummy for WI -0.2746*** -3.02 -1.7511*** -14.56  0.2084* 1.74 

 
Total number of observations used in estimation 27,337 
Percentage of correct prediction – in sample a  67% 
Percentage of correct prediction – out of sample b 69% 
 

Note: *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively. 
aThe sample includes all observations used in the estimation.  
bThe sample includes the 42,229 agricultural NRI points. The predicted crop choices for 1997 are compared with the 
1997 NRI data. 

 

correlated in the study region, only the expected profit for corn is included in the model. 

As previously noted, increased profit has a positive effect on the choice of each crop. For 

example, an increase in the profit from corn and soybeans increases the probability that 

corn and soybeans will be planted but reduces the probability that hay will be planted. 

Likewise, increased profit from hay has a positive effect on the choice of hay but a 

negative effect on the choice of soybeans. The positive effect of increased profit from hay 
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TABLE 2. Estimated elasticities of probabilities for choosing alternative crops 
 Corn Soybeans Hay 

 Elasticity t-statistic Elasticity t-statistic Elasticity t-statistic 
Expected profit for corn 0.2238*** 7.94 0.1492*** 3.65 -0.4798*** -5.75 

Expected profit for hay 0.1579*** 7.87 -0.1240*** -4.18 0.0183 0.31 

Variance of corn profit 0.0255   1.41 0.0100 0.39 0.0370 0.64 

Previous crop is corn 0.2753*** 21.81 0.5926*** 33.15 -0.9534*** -28.76 

Previous crop is soybeans 0.4331*** 45.67 -0.0695*** -5.26 -0.7228*** -20.22 

Previous crop is hay 0.0937*** 16.31 -0.0913*** -8.45 0.2517*** 35.70 
Mean max. temperature 

during corn growing 
season 

-0.8465 -1.55 2.4145*** 2.93 -1.1994 -0.80 

Std. deviation of max. 
temp. during corn 
growing season 

-0.8043*** -4.22 2.5429*** 8.87 -1.5710*** -3.11 

Mean min. temperature 
during corn growing 
season 

-2.3409*** -5.92 4.4566*** 7.44 -1.8274* -1.71 

Std. deviation of min. 
temp. during corn 
growing season 

0.8644*** 3.99 -2.3311*** -7.27 1.6868*** 2.85 

Mean precipitation during 
corn growing season -0.3260** -1.93 1.3145*** 5.33 -0.8510* -1.70 

Std. deviation of precipi-
tation during corn 
growing season 

-0.1775 -1.02 -0.7117*** -2.86 1.5583*** 2.92 

High-quality land 0.0380*** 3.25 0.1462*** 8.53 -0.1229*** -3.72 

Slope 0.0642*** 8.43 -0.2230*** -17.05 0.1272*** 7.34 

Note: *, **, and *** indicate statistical significance at  the 10%, 5%, and 1% levels, respectively. 

 

 
on the choice of corn may reflect the fact that the corn-hay rotation is a profitable crop-

ping system in the region. Corn acreage is the most responsive to profit changes, while 

hay is the least responsive (because hay is a perennial crop typically relegated to lower-

quality land). However, consistent with previous studies, all price elasticities are inelas-

tic. Thus, crop choice in the study region is relatively unresponsive to changes in the 

price variables. This is not surprising, in view of agronomic (rotational) constraints and 

the relatively few crops grown in the study region. To capture the differences across the 

states in the region that are not reflected by the independent variables (e.g., cultural 

practices), state dummies are used in the models. Most of the state dummies are statisti-

cally significantly at the 10 percent level.  
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The elasticities of the land quality variables indicate that high-quality land (Natural 

Resources Conservation Service [NRCS] soil classes I and II) are more likely to be 

planted to high-valued crops (e.g., corn and soybeans) than to hay. In contrast, land with 

steeper slopes is more likely to be allocated to other crops (e.g., hay) than to erosion-

prone soybeans. Finally, if the previous year’s crop is corn, farmers are more likely to 

grow corn or soybeans; however, if the previous crop is soybeans, farmers are more 

likely to grow corn but less likely to grow soybeans. These results reflect the fact that 

continuous corn and a corn-soybean rotation are the most popular cropping systems in the 

study region, while growing continuous soybeans is not widely practiced. 

The other choice model in this framework is the farmers’ choice of tillage practices. 

Table 3 presents the estimated coefficients for the logistic tillage choice model and the 

elasticities for the non-dummy variables. Overall, the model performs well; it correctly 

predicts the adoption of alternative tillage practices at 75 percent of the sample points. 

About two-thirds of the coefficients and elasticities are statistically significant at the 1 

percent level. A variable of particular interest is the difference in production costs among 

tillage practices. Since tillage practice does not have an appreciable effect on crop yields 

in the short run (Vetsch and Randall; Ashraf et al.), the differences in costs play the same 

role in the tillage choice model as do the profits in the crop choice model. As expected, 

the less costly is conservation tillage relative to conventional tillage, the more likely it is 

that farmers will adopt conservation tillage. This result holds for both corn and soybeans. 

Also, the positive coefficients on high-quality land and slope are also as expected because 

conservation tillage is more likely to be adopted on sloped, high-quality land. However, 

the coefficient on the slope variable is not statistically significant at the 10 percent level. 

 

Environmental Production Functions 

Economic incentives such as green payments have the potential to change the choice 

of crop, rotations, and tillage practices at some NRI sites. These changes in turn will 

affect soil erosion, chemical runoff, and leaching at these points. We use environmental 

production functions to predict changes in such agricultural externalities at these NRI 

sites. The environmental production functions are estimated using a metamodeling 

approach (Wu and Babcock 1999). Specifically, for a sample of NRI points, the Erosion  
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TABLE 3. Coefficient estimates for the logit tillage choice model 

Variables Coefficient t-statistic Elasticity t-statistic 

Constant -12.0773*** -5.75   
Difference in prod. costs of corn 

between conventional and con-
servation tillage×dummy for 
corn 5.1614*** 9.74 0.3392*** 9.74 

Difference in prod. costs of 
soybeans between conventional 
and conservation tillage×dummy 
for soybeans 3.1022*** 4.40 0.1448*** 4.40 

Mean max. temperature during 
corn growing season 0.0763*** 2.72 4.4866*** 2.72 

Std. deviation of max. temperature 
during corn growing season 0.3740*** 4.78 2.6897*** 4.78 

Mean min. temperature during corn 
growing season -0.0285 -1.01 -1.1790 -1.01 

Std. deviation of min. temperature 
during corn growing season -0.0490 -0.56 -0.3588 -0.56 

Mean precipitation during corn 
growing season -18.1523*** -3.36 -1.7325*** -3.36 

Std. deviation of precipitation 
during corn growing season 5.3103** 2.50 1.2486** 2.50 

Expected yield of corn 0.0325*** 10.73 2.5527*** 10.73 

Expected variation of corn yield 0.0010*** 4.18 0.3488*** 4.18 

Expected price for corn 17.9834 1.33 0.1899 1.33 

High-quality land 0.1890** 2.53 0.0903** 2.53 

Slope 0.0004 0.35 0.0094 0.35 

Dummy for IL -0.4197*** -3.79   

Dummy for IN -0.2214 -1.31   

Dummy for MO -1.1675*** -5.34   

Dummy for MI -1.3738*** -11.31   

Dummy for WI -1.6270*** -7.77   

     
Total number of observations used in stimation: 6,851 
Log of likelihood function -3342 
Percentage of correct predictions – in sample  75% 
 

Note: *, **, and *** indicate statistical significance at  the 10%, 5%, and 1% levels, respectively.  
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Productivity Impact Calculator (EPIC) (Sharpley and Williams) is used to simulate 

environmental impacts based on crop management practices (crop rotation, tillage, and 

conservation practices), soil characteristics, and climatic factors at that site. Environ-

mental production functions are estimated by regressing the simulated environmental data 

(e.g., measures of nitrate runoff and leaching) on the vector of crop management prac-

tices and site characteristics. The estimated equations are then used to predict 

environmental impacts at the full set of NRI points. Metamodeling is required because it 

is infeasible to simulate environmental impacts at all sites and for all sets of conditions 

that arise in a large regional analysis such as the one performed here. 

The nitrate-N runoff and leaching production functions are taken from Wu and Bab-

cock 1999. The methodology used to develop the water and wind erosion production 

functions, similar to those used in this analysis, is described in Lakshminarayan, Bab-

cock, and Ogg. Environmental production functions of the type used here have been 

applied in Gassman et al. and in Wu and Babcock 1999. 

The site-specific impacts measured at each NRI site are aggregated to the polygon 

and regional level using the acreage expansion factors provided in the NRI dataset. The 

polygons represent unique intersections of county, major land resource area, and hydro-

logic unit boundaries and are the least aggregated level at which NRI data can be 

reported. Figure 1 provides a map showing the polygons representing the Upper Missis-

sippi River Basin. As the map indicates, the model covers a large portion of total 

agricultural land in Iowa, Illinois, Minnesota, Missouri, and Wisconsin.  

 

An Application: Green Payments to Reduce Nonpoint Pollution  
in the Upper-Mississippi River Basin 

The preceding sections describe a set of crop choice and environmental performance 

models that collectively form an assessment framework. We applied this framework to 

evaluate the costs and environmental efficacy of some commonly suggested conservation 

practices for reducing nonpoint source pollution. Specifically, we analyze changes in the  
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FIGURE 1. The Upper Mississippi River Basin 

 

adoption of crop rotations (i.e., from conventional continuous corn practices to a corn-

soybean rotation) and conservation tillage under a range of conservation payment levels. 

These changes in conservation practices are then translated into corresponding changes in 

nonpoint pollution (e.g., nitrate leaching and runoff, water and wind erosion) in the Upper 

Mississippi River Basin. Results are generated for acreages under each conservation 

practice at varying levels of incentive payments and for associated changes in per acre and 

total amounts of soil erosion, and nitrate leachate and runoff for the region. 

To estimate the effect of green payments, the estimated crop and tillage models are 

first used to predict crop choice and tillage practices at each NRI site in 1998 and 1999 

without these incentive payments. The predictions serve as a baseline or reference for 

measuring the effect of the incentive payment programs. Specifically, by substituting 



16 / Wu, Adams, Kling, and Tanaka 

 

farmers’ expected prices and costs for 1998 and 1999 into the crop and tillage models, the 

probabilities of the farmers’ choices of crops and tillage practices in 1998 and 1999 are 

calculated for each NRI point. The total acres of each crop and total conservation tillage 

acres are then estimated using the following equations: 

 A crop i xfactori k k
k

K

=
=

Â Prob( ) *
1

,  i = 1, 2,…, N (9) 

 A conservation tillage crop i crop i xfactorconserv k k k
i

N

k

K

=
==
ÂÂ Prob Prob( | ) * ( ) *

11

, (10) 

where k = 1, 2,…K is an index of NRI sites, iA  is the total acreage of crop i in the region, 

and conservA  is the total acreage under conservation tillage.  

Continuous corn and corn-soybean rotations are the major cropping systems in the 

study region. Based on farmers’ crop choices at each NRI point in 1998 and 1999, the 

probabilities of adopting alternative cropping systems at each NRI site are estimated using 

the following formula: 

 
(  ) (   98 |    97)

* (   99 |   98)
k k

k

Prob continuous corn Prob corn in crop choice in

Prob corn in corn in

=
; (11) 

 

( -  ) (   98 |    97)

* (   99 |   98)

(   98 |    97)

* (   99 |   98)

k k

k

k

k

Prob corn bean rotation Prob corn in crop choice in

Prob soyb in corn in

Prob soyb in crop choice in

Prob corn in Soyb in

=

+
. (12) 

Based on the crop rotation at each NRI point, the acreage of land under a corn-soybean 

rotation is then estimated as follows: 

 A xfactorcorn bean rotation k k
k

K

-
=

= Â Prob corn - soyb rotation( ) *
1

. (13) 

Acres of continuous corn and continuous soybeans are estimated in a similar way. 

Estimates from equations (9) through (13) without green payments serve as the base-

line predictions. The probabilities of choosing alternative crops and tillage are then 
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reestimated under alternative levels of conservation payments. These results are com-

pared with the baseline acres to determine the effect of such payments. In this study, two 

conservation payments are simulated, one for adopting crop rotations (corn-soybean 

rotation) and one for adopting conservation tillage. Fertilizer runoff from agricultural 

lands in the Mississippi River Basin contributes nearly one-third of the annual nitrogen 

inputs to the Mississippi-Atchafalaya River Basin (Mitsch et al.). Reducing fertilizer use 

or runoff through conservation practices such as crop rotation and reduced tillage is the 

most commonly suggested on-site approach for reducing nutrient loadings, and hence the 

hypoxia problem, in the Gulf of Mexico.  

In the incentive payment programs for crop rotations, farmers adopting a corn-

soybean rotation are assumed to receive a payment. Specifically, farmers who grow 

soybeans after corn or corn after soybeans receive a payment. The effects of the pay-

ments are simulated by increasing the expected profit for the eligible crops in the crop 

choice model (soybeans after corn or corn after soybeans) by the amount of the pay-

ments. In the payment program for conservation tillage, farmers adopting conservation 

tillage also receive a payment. The effect of this payment is simulated by increasing the 

difference between the production costs for conventional tillage and conservation tillage 

in the tillage model by the amount of the conservation payments.  

The effects of alternative incentive payments on the adoption of crop rotations are pre-

sented in Table 4. Table 5 reports the effects of the same levels of incentive payments on 

the adoption of conservation tillage practices. Multiplying the payment rates by the total 

acreages in Tables 4 and 5 gives the total costs of the incentive programs. A common, and 

expected, pattern displayed in the tables for both practices is increasing levels of adoption 

under higher payment levels. However, the effect of such incentives is very small for the 

adoption of corn-soybean rotations. For example, a payment level of $25 per acre is 

required before any change in rotations occurs. At that payment level, total acreage in corn-

soybean rotation increases by only 1 percent. The rate of acreage response for conservation 

tillage practices is more elastic; a $25-per-acre incentive payment increases the adoption 

rate for corn by 29 percent, and by 20 percent for soybeans. 

The consequences of these changes in rotations and conservation tillage practices for 

nitrate leaching and runoff and for water and wind erosion are reported in Tables 6 and 7.  
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TABLE 4. Estimated effects of green payments for corn-soybean rotation on crop 
rotations and acreage 

 1998 and 1999 Corn and Soybean Acres in Crop Acreage in 1998 

 
Continuous 

Corn 
Continuous 
Soybeans 

Corn-soybean 
Rotation 

 
Corn Soybeans 

Payment 
$/Acre 

1,000 
Acres Percent 

1,000 
Acres Percent 

1,000 
Acres Percent 

1,000 
Acres Percent 

1,000 
Acres Percent 

0 9151 32 2099 7 12275 44 18613 66 9550 34 

5 9191 33 2074 7 12286 44 18603 66 9582 34 

10 9153 32 2069 7 12371 44 18592 66 9614 34 

15 9115 32 2064 7 12456 44 18582 66 9647 34 

20 9083 32 2052 7 12541 44 18571 66 9679 34 

25 9052 32 2037 7 12627 45 18561 66 9712 34 

30 9017 32 2028 7 12712 45 18549 66 9744 34 

35 8993 32 2005 7 12798 45 18538 65 9777 35 

40 8971 32 1980 7 12884 45 18527 65 9810 35 

45 8936 32 1968 7 12971 46 18515 65 9843 35 

50 8900 31 1957 7 13059 46 18503 65 9876 35 

100 8544 30 1816 6 13949 49 18373 64 10209 36 

 
 
 
TABLE 5. Estimated acres of crops under conservation tillage in 1998 at different 
payment levels 

 Corn under 
Conservation Tillage 

Soybean under 
Conservation Tillage 

All Crops under 
Conservation Tillage 

Payment 
($/acre) 1,000 Acres Percent 1,000 Acres Percent 1,000 Acres Percent 

0 7,389 41 4,069 40 13,787 34 

5 7,841 43 4,232 41 14,401 36 

10 8,294 46 4,396 43 15,019 37 

15 8,748 48 4,562 44 15,639 39 

20 9,201 51 4,728 46 16,257 40 

25 9,649 53 4,895 48 16,872 42 

30 10,091 56 5,061 49 17,481 43 

35 10,526 58 5,228 51 18,082 45 

40 10,951 60 5,394 53 18,674 46 

45 11,366 63 5,560 54 19,254 48 

50 11,769 65 5,724 56 19,821 49 

100 15,015 83 7,244 71 24,587 61 
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TABLE 6. Simulated effects of green payments for corn-soybean rotation on  
non-point pollution in the Upper Mississippi River Basin 

 N Leaching N Runoff Wind Erosion Water Erosion 

Payment Average Total Average Total Average Total Average Total 
($/ac) (lb/ac) (1k lbs) (lb/ac) (1k lbs) (tons/ac) (1k tons) (tons/ac) (1k tons) 
0 3.47  238,959  1.69  116,542  0.16  10,691  3.06  210,752  
5 3.46  238,215  1.69  116,654  0.15  10,622  3.06  210,765  
10 3.45  237,430  1.70  116,796  0.15  10,595  3.06  210,769  
15 3.43  236,512  1.70  116,919  0.15  10,594  3.06  210,776  
20 3.42  235,669  1.70  117,030  0.15  10,596  3.06  210,782  
25 3.40  234,588  1.70  117,272  0.15  10,545  3.06  210,810  
30 3.39  233,435  1.71  117,686  0.15  10,483  3.06  210,829  
35 3.36  231,588  1.71  117,967  0.15  10,456  3.06  210,838  
40 3.35  230,807  1.72  118,423  0.15  10,382  3.06  210,861  
45 3.34  230,032  1.72  118,630  0.15  10,338  3.06  210,864  
50 3.31  228,309  1.73  118,955  0.15  10,340  3.06  210,875  

Note: ac indicates acre; k indicates 1,000. 

 
 
TABLE 7. Simulated effects of green payments for conservation tillage on non-point 
pollution in the Upper Mississippi River Basin 

 N Leaching N Runoff Wind Erosion Water Erosion 

Payment Average Total Average Total Average Total Average Total 
($/ac) (lb/ac) (1k lbs) (lb/ac) (1k lbs) (tons/ac) (1k tons) (tons/ac) (1k tons) 
0 3.47  238,959  1.69  116,542  0.16  10,691  3.06  210,752  
5 3.48  239,702  1.68  115,929  0.14  9,988  3.01  207,185  
10 3.50  241,312  1.67  114,758  0.13  9,121  2.91  200,246  
15 3.51  242,040  1.66  114,161  0.13  8,773  2.82  194,480  
20 3.52  242,707  1.65  113,487  0.12  8,421  2.75  189,798  
25 3.53  243,159  1.64  113,122  0.12  8,099  2.72  187,351  
30 3.53  243,486  1.64  112,872  0.12  7,996  2.69  185,526  
35 3.54  243,869  1.63  112,479  0.11  7,740  2.66  183,422  
40 3.54  244,090  1.63  112,279  0.11  7,614  2.64  182,204  
45 3.55  244,289  1.63  112,089  0.11  7,487  2.63  181,156  
50 3.55  244,458  1.62  111,876  0.11  7,354  2.62  180,361  

Note: ac indicates acre; k indicates 1,000. 
 

 

Table 6 provides the changes in per acre and total amounts of the four nonpoint pollution 

measures, by incentive payment level, for the adoption of a corn-soybean rotation. Under 

this practice, leached nitrate and wind erosion averages per acre fall slightly, while the 

average nitrate runoff per acre increases slightly. Average water erosion shows little 

change. Thus, a shift toward a corn-soybean rotation is likely to have beneficial effects on 

groundwater quality but negative effects on surface water. However, the overall changes 
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in the four pollution measures are small; at the $50 payment level, leached nitrate and 

wind erosion totals are reduced by only 4.5 percent and 3.3 percent, respectively, while 

total wind runoff for the region increases by about 2 percent. 

The effects of payments for adoption of conservation tillage on these four pollu-

tion measures are presented in Table 7. Here, the effect on nitrate runoff and leaching 

is the opposite of that observed for the adoption of crop rotations. Specifically, under 

the increased use of conservation tillage, the amount of leached nitrogen increases, 

while the amount of nitrate runoff is reduced. This outcome is consistent with the 

slowing of water movement across the field because of increased vegetative cover. As 

was the case with crop rotations, the net effect, as measured by a percentage change in 

total amounts of leached nitrate and nitrate runoff, are quite small: less than a 3 per-

cent increase in leached nitrate and a 4 percent reduction in nitrate runoff for a $50-

per-acre incentive payment. The small changes in per acre and total nitrogen under the 

varying practices at relatively high incentive payment levels is attributable to three 

factors: the limited number of crop choices in the Upper Mississippi River Basin, the 

relatively small change in nitrogen levels (both leachate and runoff) between the 

conservation practices evaluated here and conventional practices, and the averaging 

over all crops grown in the Upper Mississippi River Basin. Green payments for con-

servation tillage are more effective in reducing soil erosion than in reducing nitrate 

water pollution. At the $50 payment level, total wind and water erosion are reduced by 

31 percent and 14 percent, respectively. 

The environmental performance of one of the conservation payment programs is por-

trayed on a geographical scale in Figure 2. Specifically, Figure 2 depicts the changes in 

potential water pollution from soil erosion and nitrate runoff and leaching that arise from 

a green payment of $50 for adoption of conversation tillage. As expected, the pattern of 

changes varies across the basin and reflects soil and topographical characteristics, as well 

as cropping patterns. For example, the areas of greatest change in nitrate leachate and 

runoff occur in Iowa and Illinois, areas of high nitrogen application, intensive cropping of 

corn, and deep soils. The areas of a greatest change in wind erosion follow the soil and 

wind patterns of the region, with western areas of the basin experiencing the greatest 

benefit from conservation tillage. Water erosion tends to occur along the mainstems of  
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FIGURE 2. Estimated changes in nonpoint pollution under green payments for 
conservation tillage ($50/acre) 
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the Mississippi and its tributaries; the benefits of conservation tillage reflect topography 

(areas of slope greater than 5 percent) and a higher percentage of corn in the crop rotation 

in these areas. 

Figure 2 should be viewed as demonstrating the utility of the modeling framework to 

provide general patterns of responses in these environmental variables across the landscape, 

not in forecasting actual environmental performance for each polygon. As noted elsewhere, 

these patterns reflect the relative variability in soils, slope, and cropping systems found 

across the polygons of the Upper Mississippi River Basin. The magnitude of the changes in 

nitrate leachate and runoff, as well as soil erosion, are driven by the crop choice models and 

the level of incentive payments imposed on the model simulations. 

In sum, the marginal cost curves associated with reducing nitrogen pollution through 

conservation tillage or changing crop rotations in the Upper Mississippi River Basin are 

nearly vertical. This finding suggests that the costs of these two policies as a means of 

reducing nutrient loadings and hypoxia problems in the Gulf of Mexico are likely to be 

very high relative to the environmental benefits. The policy implications of these findings 

are important. Specifically, the potential for addressing hypoxia and other water quality 

problems in this region through use of these practices is limited. Instead, policymakers 

should consider other conservation alternatives, such as land retirement, reduction in 

nitrogen applications, or changes in the timing and methods of nitrogen applications, to 

reduce nitrate runoff from the Upper Mississippi River Basin. However, policies evalu-

ated here do have merits in terms of reducing soil erosion in the basin.  

 

Concluding Comments 

The 2002 federal farm legislation contains a substantial increase in funding for con-

servation initiatives. Critics argue that many programs in the farm bill are political 

payments, and that there is little evidence that these incentive payments are cost effective. 

As the debate over future agricultural policy continues, it is important for policymakers 

and other interest groups to have reliable and timely information on the relationships 

between agricultural practices and environmental conditions and how these relationships 

may be affected by changes in agricultural and resource policies.  
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This study presents an empirical modeling framework designed to assess the envi-

ronmental and economic effects of incentive programs over a large area of the Midwest 

(all of the Upper Mississippi River Basin). The empirical models predict crop choices, 

crop rotations, and the adoption of conservation tillage practices at more than 42,000 

National Resource Inventory sites based on the level of conservation payments, profits, 

and variances of profits, as well as land quality, climate conditions, and other physical 

characteristics at each of the sites. The changes in crop choices and tillage practices are 

then combined with site-specific environmental production functions to determine the 

effect of conservation payments on nitrate runoff and leaching and on water and wind 

erosion at each NRI site. The modeling framework’s predictive ability of crop and tillage 

choice decisions (out of sample) is strong by standard statistical measures. Prediction of 

the effects of green payments on environmental performance, however, is less reliable, 

given the nature of the underlying environmental production functions. Even here, the 

results conform to estimates found in other regionally focused studies.  

We present a case study focusing on the important issue of the costs and environ-

mental consequences of reducing nitrate and soil loadings in the Upper Mississippi River 

Basin. The results suggest that conservation payments can increase the use of crop 

rotations and conservation tillage in the region. However, the acreage response is inelas-

tic. More importantly, the effect on nitrate runoff and leaching is quite small, implying 

high marginal costs for reducing nitrate water pollution. These results provide informa-

tion about the effect of incentive payments on the supply of environmental goods from 

agriculture, as well as an assessment of a commonly suggested approach for controlling 

hypoxia in the Gulf of Mexico. Findings from this assessment indicate that adoption of 

conservation practices such as conservation tillage and crop rotations are not likely to be 

effective methods on their own for reducing nutrient loadings in the Gulf of Mexico. 

These practices do show promise in terms of reducing soil erosion and hence may have 

more local water quality benefits.



 

 

Endnotes 

1. Conservation tillage is one component of conservation through crop residual man-
agement (USDA-ERS). Conservation tillage is defined as leaving more than 30 
percent of crop residual, and includes mulch-till (soil is not disturbed prior to plant-
ing), ridge-till (residual left on the surface between tilled ridges), and no-till (no 
tillage performed). The 1982 and 1992 NRI data only allow us to identify whether 
conventional or conservation tillage is used at each NRI point. 

2. An often-cited limitation of the multinomial logit model is the assumption of inde-
pendence of irrelevant alternatives. This assumption imposes a restriction that the 
relative choice probabilities for any two alternatives are independent of the other 
choices available. This property is convenient for estimation but legitimate only if 
there are no omitted variables in estimation, as omitted variables that are correlated 
across the choice will result in its violation. Nested logit models are a commonly 
employed way to relax this assumption, but they require that the analyst impose the 
correlation pattern ex ante. Multinomial probit models are no panacea either as re-
strictions on the variance-covariance matrix must also be imposed before estimation. 

3. The 1997 NRI data used here contained crop information but not tillage information.  

4. To determine the effect of land quality and other dummy variables on the choice of 
crops and tillage practices, we calculate elasticities with respect to these dummy 
variables as if they were continuous. Specifically, the following formula is used to 
calculate the elasticities with respect to these dummy variables: 
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 where D  is the mean of D in the sample (i.e., the percentage of NRI points where 

D=1), and �b i
D is the coefficient on D in equation i. It is necessary to calculate these 

elasticities because the sign of the coefficients on these dummy variables does not 
indicate how land quality or other dummy variables affect crop and tillage choices. 
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