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Abstract 

The focus of this investigation is three-fold. First, seminonparametric techniques are 

considered in order to avoid the pitfall of imparting bias on value estimates. Second, the 

efficacy of seminonparametric techniques are explored in an empirical setting by valuing 

recreational access at Clear Lake, Iowa. Finally, a technique from Eastwood and Gallant 

(1991) is adapted and applied to the count data model.  

 

Keywords:  Clear Lake survey, nonmarket valuation, recreation valuation, seminon-

parametric techniques, value estimates, welfare estimates.



 

 

VALUING RESOURCE ACCESS WITH SEMINONPARAMETRIC 
TECHNIQUES: AN APPLICATION TO CLEAR LAKE 

Introduction and Motivation 

In recreation valuation studies, accurate estimation of welfare measures is critically 

important. Oftentimes in the applied setting, welfare estimates are used to make policy 

decisions regarding the management of resources (and sometimes these management 

decisions are irreversible). The result in the literature suggests that the researcher must be 

careful in estimating welfare, as the potential for biased estimates is high (Bockstael, 

Hanemann, and Strand 1986; Graham-Tomasi, Adamowicz, and Fletcher 1988; Ada-

mowicz, Fletcher, and Graham-Tomasi 1989; Kling 1989; Kling and Sexton 1990; Smith 

1989).1 Certainly, the presence of biased welfare estimates forces undesirable characteris-

tics on decisions made based on these welfare estimates. 

The focus of this investigation is threefold. First, we consider seminonparametric tech-

niques in order to avoid the pitfall of imparting bias on value estimates. Second, we wish to 

explore the efficacy of the seminonparametric techniques in an empirical setting by valuing 

recreational access at Clear Lake, Iowa. Creel (1997) and Cooper (2000) found desirable 

characteristics of these techniques in Monte Carlo settings. However, actual parameteriza-

tion of the seminonparametric models in purely empirical settings is lacking in the 

literature. One notable investigation in the money-demand literature is provided in Fisher, 

Fleissig, and Serletis 2001. Finally, determining the length of our sequence of periodic 

functions, we adapt a technique from Eastwood and Gallant (1991) and apply it to the 

count data model. Cooper (2000) investigated the Fourier Flexible Form (FFF) in the count 

data setting; however, his analysis did not consider adaptive techniques in selecting the 

seminonparametric truncation. These issues will be developed in what follows. 

The remainder of this paper is divided into eight sections. The next section discusses 

why welfare estimation in the travel-cost model setting is problematic and explores 

approaches that researchers have used to address these concerns. Next, the Clear Lake 
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application is discussed and the survey instrument used to gather data is described. Then 

an overview of count data and seminonaparametric modeling is presented. This is fol-

lowed by a presentation of the results of these estimation techniques applied to the Clear 

Lake dataset. The pivotal statistics bootstrap approach for bounding welfare estimates in 

the applied setting is presented next. The final section presents remarks, conclusions, and 

extensions for future work. 

 

Welfare Estimation in the Travel-Cost Model Setting 

Typically, researchers assume a functional form for trip demand. Most often, this is 

assumed to be linear or semilog (McConnell 1985; Bockstael and Strand 1987). For 

example,  

 Linear: iiii MPy εγβα +⋅+⋅+= ; and 

 Semilog ( ) ,ln iiii MPy εγβα +⋅+⋅+=  (1) 

 Log-linear ( ) ( ) ( )ln ln lni i i iy P Mα β γ ε= + + +  

where iy  indicates individual i’s observed trips; iP  is the individual’s price of attending 

the recreation site; iM  is individual i’s income; iε  captures individual i’s unsystematic 

stochastic deviation from the central tendency; and { }γβα ,,  are unknown model parame-

ters.2 These functional forms imply consumer surplus (c) is as follows: 

 Linear: 

2

2
i

i
y

c =−
β ; and 

 Semilog: 

i
i

y
c =−

β , (2) 

 Log-linear: 1
i i

i

P y
c

β
=

+ . 

Among the dilemmas of the traditional approaches is that these formulations involve 

nonlinear transformations of the parameter estimates. This is problematic, in general, as 
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  where V and W are stochastic variables. It follows that applying the 

plug-in principle to equation (2) will result in biased estimates in finite samples. Re-

searchers have argued that Taylor series approximations may be appropriate for 

correcting the bias (Bockstael, Hanemann, and Strand 1986; Kealy and Bishop 1986). 

However, this approach also has its problems. Graham-Tomasi, Adamowicz, and Fletcher 

(1988) suggest that errors from the second-order approximations in a Taylor series are 

potentially large for both linear and semilog demand functions (Kling and Sexton [1990] 

detail this approach and discuss potential problems).  

A bootstrap approach seems appealing to the applied researcher. Essentially, the dis-

tribution of the random variables in equation (2) is unknown. Even if we assume that the 

stochastic term iε  is normally distributed, analytically determining the distribution of the 

random variables in equation (2) appears formidable. A bootstrap procedure, however, is 

useful here because it does not require the analytic or asymptotic distribution to construct 

confidence intervals. Instead, we will rely on the plug-in principle by using the empirical 

distribution of the random variable in place of the unknown true distribution to generate 

our confidence intervals (using computer simulations). Provided the empirical distribu-

tion contains all relevant information from the population, the bootstrap technique will 

work well.3 We will readdress the topic of a bootstrap procedure to construct bounds on 

welfare values in what follows. We will now turn our attention to the particular recreation 

demand application. 

 

Clear Lake Application 

Recently, the Iowa Department of Natural Resources became interested in improving 

water clarity at Clear Lake, which is located adjacent to the Iowa cities Clear Lake and 

Ventura in north-central Iowa. To gauge public attitudes concerning the recreational site, 

a survey was conducted. The survey effort was undertaken by researchers at Iowa State 

University (Azevedo et al. 2001) in 2000. While the survey effort consisted of a sample 

from the local population and visitors to the site, we use only the site visitors’ database in 

estimating value.  
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From the visitors’ dataset we eliminate observations from individuals who traveled 

more than five hours one way to reach Clear Lake.4 This is done to exclude those whose 

primary reason for the trip may not have been to visit Clear Lake. If the trip was not 

simply to access Clear Lake, our valuation techniques would inappropriately attribute 

value to Clear Lake. 

Site visitors were intercepted on-site from May to September of 2000. In total, 1,024 

individuals agreed to participate in the survey effort. Each participant was mailed a 

survey in October of 2000. All participants were informed that if they returned a com-

pleted survey they would receive $5. Of the deliverable surveys, 662 were returned, for a 

response rate of 66 percent. 

 

Count Data Models 

An additional complication we face in this empirical setting is the fact that the data 

was collected on-site. This is problematic, as more frequent site visitors are more likely to 

be included (endogenous stratification). Also, site users likely have higher values for this 

resource; hence. valuation estimates based on this data cannot simply be extended to the 

greater population of Iowa.  

A literature has emerged regarding correcting for the biases associated with on-site 

samples. Shaw (1988) modeled the count data by fitting a Poisson model. Englin and 

Shonkwiler (1995) fitted a negative binomial model, as it allows for overdispersion. That 

is, a characteristic of the Poisson model is that the mean equals the variance. In the 

recreation-demand setting (and many other settings it turns out), it is common to see 

many site visitors with few visits and a minority of site users with numerous visits. 

Hence, we empirically observe a low mean and high variance environment.  

Gurmu and Trivedi (1994) take this further by noting that empirics demonstrate a 

fast decay rate. That is, the negative binomial model forces a relatively fat tail distribu-

tion. A fast decay model, on the other hand, better captures recreation data, as the tail 

collapses quickly away from the mean yet preserves the overdispersion feature.  

Another issue explored in the literature is the nature of on-site samples to be endoge-

nously stratified. That is, more frequent site visitors are more likely to be included in the 

survey effort. Hence, they are overly represented in the sample. Cameron and Trivedi 
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(1990) detail a negative binomial II model to account for this bias. Sarker and Surry 

(2003) suggest that the negative binomial II model is capable of fitting a fast decay 

process as well. For this reason, we will adapt the negative binomial II model in our 

valuation efforts of Clear Lake. The specification of the negative binomial II probability 

of site visits is 

 ( ) ( )
( ) ( ) ( ) ,1

1
Pr θ

θ
θ

rr
k

k
xky k

ii −
Γ+Γ

+Γ
==  (3) 

where 
θλ

λ
+

=r (Greene 2000). The conditional mean of the distribution is .λ  The 

conditional variance is ( )1 λλ + θ . 

The parameter θ  allows for overdispersion and, under certain conditions, permits a 

fast-decay process. Traditional approaches in the travel demand literature are to model: 

( ).exp ii xβλ ′=  Cooper (2000), however, considers the application of the FFF to fitting 

the negative binomial II model. That is, more generally specify [ ]( ).exp iJi xg=λ  Creel 

(1997) applied the FFF to the travel demand setting; however, his exploration of this 

technique did not consider the implications of on-site bias. We consider the seminon-

parametric fitting of this more general expression with on-site datasets in the following 

section. 

 

Seminonparametric Demand Specification 

The next issue we investigate in estimating consumer surplus in the applied setting is 

that the parametric form of demand is also unknown. The question then becomes, How 

does the researcher arrive at any particular specification?  

In the literature, researchers typically estimate several different specifications and ac-

cept the model with the best goodness-of-fit measures. However, in many instances the 

difference in goodness-of-fit measures is extremely small, yet the estimators yield con-

sumer surplus values that differ by large magnitudes. This is frustrating for the researcher 

as the assumption regarding the parametric form of demand is driving the estimates and 

may perhaps drive management decisions regarding the resource in question. 
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In this section, we will use an adaptive FFF to model trip demand by recreationists. 

The FFF is attractive as it is in a class of estimators that “…provide a second order 

approximation to an arbitrary twice differentiable function at any point” (Gallant 1981). 

The FFF we consider is 

 ( ) ( ) ( ){ }0 1 2
1

| cos sini j i j i i
j

g v j v j vθ θ θ θ η
∞

∞
=

= + ⋅ + ⋅ +∑  (4) 

where θ  is a vector of model parameters; iv  are the scaled nonstochastic explanatory 

variables; and iη  is the error term. We use ( )g∞ i  in place of y to signify that recreation 

trips are also scaled. The reason for the scaling is that cosine and sine are periodic 

functions. Thus, the range of the variables must be compressed into the [ ]0, 2π  interval. 

In practice, we cannot estimate ( )g∞ i , as it involves an infinite sum of variable 

transformations and would require infinitely many parameter estimates. So, a key ques-

tion becomes where to truncate the infinite sum. Eastwood and Gallant (1991) 

demonstrate that an adaptive rule for determining the truncation point of the infinite sum 

dominates any deterministic choice in the applied setting. It is this adoptive rule that we 

consider. Essentially, we consider truncation points 1,2,..., 1 .
2
n

J  ∈ − 
 

 Eastwood and 

Gallant (1991) suggest selecting J such that it provides the maximum F-statistic in this 

range. The adoptive truncation model for recreation trip demand is then 

 ( ) ( ) ( ){ }0 1 2
1

| cos sin .
J

J i j i j i i
j

g v j v j vθ θ θ θ η
=

= + ⋅ + ⋅ +∑  (5) 

To estimate consumer surplus, we use numerical methods to integrate the area under the 

estimated inverse demand curve.  

In our present setting, we will be estimating our model parameters with maximum 

likelihood techniques. Hence, we will extend Eastwood and Gallant’s (1991) approach to 

truncating the infinite periodic series by selecting J that maximizes the chi-square statistic.5  
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The natural question to ask is how well the seminonparametric specification allows 

us to estimate consumer surplus. In the next section, we present a bootstrap t-interval 

technique to bound our empirical welfare estimates. 

 

Model Fitting 

For exploratory purposes, we begin by fitting the linear and semilog demand specifi-

cation as presented in equation (1). Notice that these results do not account for sample 

selection bias. Hence, we only report these results for comparison purposes. As the 

models we consider to account for sample selection bias and issues we encounter in 

performing the adaptive FFF techniques are considerably more complex, it will be 

interesting to discover how different the resulting valuation estimates are. The results are 

listed in the first three columns of Table 1.  

 

TABLE 1. Travel-cost model results 
 

Linear Semilog 

Adaptive 
FFF 

J=13, A=10 
2R  0.14 0.22 0.53 

Average individual’s con-
sumer surplus 

$1,583.61 $223.50 $542.21 

Intercept 21.306* 
(5.538) 

2.812* 
(15.272) 

– 

Explicit price -0.089* 
(-5.304) 

-0.009* 
(-11.769) 

– 

Implicit price -0.003 
(-0.381) 

-0.001 
(-1.465) 

– 

Income -0.000 
(-0.280) 

0.000* 
(2.074) 

– 

Household size -0.599 
(-1.800) 

-0.0365* 
(-2.290) 

– 

Male 2.895 
(1.438) 

0.111 
(1.154) 

– 

Age 1.583 
(0.728) 

-0.128 
(-1.231) 

– 

Age2 0.045 
(0.678) 

-0.002 
(-0.647) 

– 
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Before applying the adaptive FFF, we experimented with various multi-indices. The 

multi-indices we used allowed for interaction between the explicit and implicit prices, 

prices and income, income and age, and prices and age. The longest multi-index was 3. 

The complete list of multi-indices appears in Table 2. The adaptive FFF technique 

indicated the optimal truncation length of the sequence of periodic terms was 13 (i.e., 

J=13). Results of this regression appear in column 4 of Table 1. Valuation measures were 

determined by numerically integrating the area under the demand curve between the 

individual’s choke price and the individual’s price of attending Clear Lake for the semi-

nonparametric model. For the parametric model, we used the appropriate consumer 

surplus estimate proscribed in equation (3). 

Examining the results of these exploratory regressions reveals that the adaptive FFF 

considerably improves our measure of goodness of fit. Improving goodness of fit alone is 

not surprising, as the adaptive FFF includes many more right-hand side variables in the 

regression. However, the magnitude of improvement in R-square is noteworthy.6 Before  

 

TABLE 2. Multiple indices 

k Intercept 
Explicit 

Price 
Implicit 

Price Income 
Household 

Size Male Age Age2 

k1 0 1 0 1 0 0 0 0 

k2 0 1 0 -1 0 0 0 0 

k3 0 1 1 -1 0 0 0 0 

k4 0 1 1 1 0 0 0 0 

k5 0 0 0 1 0 0 1 0 

k6 0 0 0 1 0 0 -1 0 

k7 0 1 0 0 0 0 1 0 

k8 0 1 0 0 0 0 -1 0 

k9 0 1 1 0 0 0 1 0 

k10 0 1 1 0 0 0 -1 0 

k11 0 1 0 0 0 0 0 0 
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we can analyze the valuation estimates, we must consider corrections for sample selec-

tion bias. This is where we now direct our attention. 

Essentially, to account for the on-site sample bias, we apply maximum likelihood 

techniques using the probability of site visits stated in equation (3) while simultaneously 

fitting the seminonparametric demand specification given in equation (5). For this 

application, we set J=1 and use the multi-index k1, as presented in Table 2. Results from 

this seminonparametric version of the negative binomial II model appear in Table 3 with 

the linear version of the negative binomial II model. 

The estimated parameter θ  in both models is quite small. This implies that overdis-

persion is indeed a problem, as the estimated variance is considerably larger than the 

estimated mean. This nature of overdispersion does suggest it may be appropriate 

 

TABLE 3. On-site corrected-model results 

 ( )ii xβλ ′= exp  [ ]( )iJi vgexp=λ  

Mean log-likelihood -3.68692 -3.6102263 

θ̂  1/exp(29.2) 1/exp(32.2) 

Average individual’s 
consumer surplus tba $524 

Intercept -24.9561 
(-0.838) – 

Explicit price -0.00586* 
(7.887) – 

Implicit price -0.00122 
(1.443) – 

Income 6.59E-07 
(0.383) – 

Household size -0.03706* 
(2.676) – 

Male 0.146213 
(1.588) – 

Age -0.0574* 
(4.578) – 

Age2 0.000647* 
(4.780) – 
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to generalize the statement of the probability model, as discussed in Sarker and Surry 

2003. In particular, adoption of a generalized Poisson model, which allows for a more 

flexible fast-decay process, may improve our model estimates. This adoption is outside 

the focus of the current paper. 

For the FFF estimation we do perform, the estimated value for the average individual 

in our sample is presented in column 3 of Table 3. The estimated value is $524. The 

value from the adaptive FFF without correcting for on-site bias was $542.21. Hence, we 

do see some moderation in the average estimate, as we would expect the endogenously 

stratified sample to overmeasure value from more frequent site visitors. However, we 

have not performed any test to determine any statistically significant reduction. Next, we 

discuss methods for exploring the accuracy of these valuation estimates.7 To do so, we 

suggest the aforementioned bootstrap techniques.  

 

Bootstrap t-Intervals and Percentile Intervals for Welfare Estimates 

In this section, we discuss how to implement the bootstrap t-interval technique for 

the travel cost model. To do so, we suppose we have observed a travel-cost model dataset 

with n observations. The procedure is as follows: 

 Step 1: Estimate the model parameters { }γβα ,,  through maximum likelihood 

(ML). We call the ML estimates { }γβα ˆ,ˆ,ˆ ) and obtain the residuals. Also, estimate 

.
ˆ2

ˆ
2

β
iy

c −=  

 Step 2: Take n draws (independently and with replacement giving equal likeli-

hood to each observation being selected on any draw) from the ordinary least squares 

(OLS) residuals. 

 Step 3: Form the simulated dataset according to ,ˆˆˆ **
iiiii MPy εγβα +⋅+⋅+=  

where *
iε  is the ith draw performed in Step 2. 
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 Step 4: Using the simulated trip data in Step 3, estimate by means of OLS the 

model parameters (calling them { }*** ˆ,ˆ,ˆ γβα ) and obtain the bootstrap residuals. Also, 

estimate .
ˆ2

ˆ
*

2*
*

β
iy

c −=  

 Step 5 (bootstrap within a bootstrap): Take n draws (independently and with 

replacement giving equal likelihood to each observation selected on any draw) from the 

bootstrap residuals formed in Step 4. 

 Step 6: Form the simulated dataset according to: ,ˆˆˆ *******
iiiii MPy εγβα +⋅+⋅+=  

where **
iε  is the ith draw performed in Step 5. 

 Step 7: Using the simulated trip data in Step 6, estimate by means of OLS the 

model parameters (calling them { }****** ˆ,ˆ,ˆ γβα ). Also, estimate .
ˆ2

ˆ
**

2**
**

β
iy

c −=  

 Step 8: Repeat Steps 5-7 many times, say, BB times, and calculate the standard 

error of the consumer surplus estimate as ( ) ,)(ˆˆ
1

1ˆ
2
1

1

2*****









⋅−
−

= ∑
=

n

i

cc
n

s  where ( )⋅**ĉ  is 

the mean  **ĉ  averaged over all BB trials. 

 Step 9: Calculate .
ˆ

ˆˆ
*

*
*

s
cc

t
−

=  

 Step 10: Repeat Steps 2-9 many times, say, B times, storing the simulated distri-

bution of *t ’s.  

 Step 11: Define ( )κt  such that 
( ){ }

.
# *

κ
κ

=
≤

B

tt
 Construct the corresponding 

( )1 2− λ  percent confidence interval for consumer surplus as ( ) ( ){ }.ˆˆ,ˆˆ 1 stcstc λλ −++  

The bootstrap percentile intervals approach would mimic Steps 1-4 in the foregoing 

procedure. After Step 4, we do the following. 

 Step 5b: Repeat Steps 1-4 many times, say, B times, storing the simulated distri-

butions of *c ’s. 
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 Step 6b: Order the distribution of *c ’s from smallest to largest. The ( )1 2− λ  

percent confidence interval is ( ) [ ]( ){ },, *
*1

*
* BB cc λλ −  where ( )

*
ic  is the ith order statistic. 

Among the advantages of the bootstrap t-interval procedure is that it has faster con-

vergence properties than the bootstrap percentile interval technique (Efron and Tibshirani 

1993; Shao and Tu 1995). Also, the *t ’s are asymptotically pivotal.8 Disadvantages 

relative to the bootstrap percentile interval include that the t-interval approach is compu-

tationally more intensive (the t-interval approach requires BBB ⋅  bootstrap replications 

while the percentile interval approach requires only B  replicates). Also, the percentile 

intervals are transformation-respecting while the t-intervals are not. 

 

Bias-Corrected Bootstrap Intervals for Welfare Estimates 

Another bootstrap procedure that may be relevant in bounding welfare estimates in 

the travel-cost model setting is the bias-corrected bootstrap intervals approach. As Li and 

Maddala (1999) stress, the notion of “bias correction” has been used differently in the 

bootstrap literature. Li and Maddala suggest that the bootstrap t-interval is easier to use 

and offers the same improvement as Efron’s (1979) bias-corrected bootstraps (though this 

assertion has been challenged).  

The “bias-corrected” method we will consider in this study is similar in nature to 

Killian’s (1998) bootstrap-after-bootstrap procedure. The modification to the bootstrap 

procedure previously outlined is as follows: 

 Step 5c: Repeat Steps 1-4 many times, say, B times, storing the *ĉ ’s. Calculate 

the estimate of bias as ( ).ˆˆ1

1

** ∑
=

−=Ψ
B

b
b cc

B
.  

 Step 6c (bootstrap after bootstrap): Take n draws (independently and with re-

placement giving equal likelihood to each observation selected on any draw) from the 

OLS residuals formed in Step 1.  

 Step 7c: Form the simulated dataset according to ,ˆˆˆ ****
iiiii MPy εγβα +⋅+⋅+=  

where **
iε  is the ith draw performed in Step 6c.   
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 Step 8c: Using the simulated trip data in Step 7c, estimate by means of OLS the 

model parameters (calling them { }****** ˆ,ˆ,ˆ γβα ). Also, estimate the bias corrected welfare 

measure as .
ˆ2

ˆ *

**

2**
** Ψ+−=

β
iy

c    

 Step 9c: Repeat Steps 6c-8c many times, say, BB times, storing the **ĉ ’s. 

 Step 10c: Order the distribution of **c ’s from smallest to largest. The ( )1 2− λ  

percent confidence interval is ( ) [ ]( ){ },, **
*1

**
* BBBB cc λλ −  where ( )

**
ic  is the ith order statistic. 

This bias-corrected approach will be slightly more computationally intensive than 

the percentile approach and considerably less intensive than the t-interval approach. The 

number of bootstrap replicates in the bias-corrected approach is .BBB +    

 

Conclusions and Extensions 

The goal of this research is to estimate accurate bounds on Clear Lake access by Io-

wans on the basis of a sample collected over the period 2000-2001. An examination of 

the literature pertaining to travel-cost models indicates that there are many issues of 

concern. First, the sample was collected on site. To assuage this issue, we adopt the 

negative binomial II model from the count data model literature. However, additional 

perils are encountered. Specifically, there do seem to be issues concerning the overdis-

persion of the empirical dataset. We suggest that further investigation into more general 

models allowing for fast decay is appropriate. 

Next, we consider the implication that in the applied setting the researcher does not 

know the underlying demand specification that has generated the data. Also, past studies 

have indicated that the functional-form parameterization imparts value on the consumer 

surplus estimate (Kling 1989). To rid ourselves of this problematic assumption, we 

consider the FFF. As the Monte Carlo evidence of Creel (1997) and Cooper (2000) 

suggest, it appears that the FFF allows us to estimate consumer surplus accurately under 

varying true model specifications. Past work in recreation demand has not considered 

gains from modifying the adaptive rule in truncating the FFF. Thus, we present an 

innovation to the literature that allows for more flexible specification of trip demand. 
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As past studies have detailed the potential for straightforward estimates of consumer 

surplus to be biased, traditional confidence intervals are certainly not appropriate (and 

perhaps neither are traditional bootstrap techniques from the recreation demand litera-

ture).9 Hence, we motivate the creation of a pivotal statistic bootstrap. The bootstrap 

technique alleviates the bias of parametric approaches. 

This study explores the applicability of combining seminonparametric techniques 

with count data models in estimating resource value. As new issues emerge in estimating 

particular parameterizations of the model, it appears that refinements to the stochastic 

specification of the probability model are appropriate with this dataset. It does appear 

likely that these refinements will yield reasonable estimates with significantly less 

structural imposition from the researcher. In addition, future research could include 

performing pseudo–Monte Carlo experiments with an empirical dataset, similar to those 

of Cooper (2000) and Creel (1997), to assess the robustness of this technique.



 

 

Endnotes 

 1.  Fundamentally, caution is appropriate because welfare estimates involve nonlinear 
transformations of the model parameters. For a discussion of this issue see Kling and 
Sexton 1990. 

2.  At this level of generality, we will not impose any distribution on the stochastic noise 
terms iε . This is consistent with the nonparametric interpretation of the bootstrap 
techniques.  

3.  For a more comprehensive discussion of the properties of bootstrap techniques, see 
Efron and Tibshirani 1993, and Shao and Tu 1995. 

4.  This is consistent with Egan and Herriges (2003). 

5.  An investigation into the asymptotic properties of this approach is warranted. 

6.  Some have confused the notion of “overfitting” in seminonparametric settings to 
imply improvements in goodness-of-fit measures. However, the concept of overfit-
ting in the seminonparametric literature actually means the fitting of equations that 
display nonlinearities not supported by the data. In general, if goodness-of-fit 
measures improve, then this suggests the data is supportive of the nonlinear estima-
tions. Hence, high goodness of fit is not indicative of “overfitting.” See, e.g., 
Jefferys et al. 2001. 

7.  This is a necessary step to statistically determine if the on-site sample corrections 
have an impact on our valuation estimates. 

8.  A statistic is “pivotal” if its distribution does not depend on the value of the popula-
tion parameter. See Hartigan 1986 for a discussion on the importance of pivotal 
statistics. 

9.  Li and Maddala (1999) point out that several applications of the bootstrap in eco-
nomic models fail to provide improvements over parametric techniques. They 
suggest that many of these findings occur because the bootstrap techniques consid-
ered do not explore techniques that offer the greatest improvements in efficiency. 
This is exactly what we do in the bootstrap methodologies explored here.
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