

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Does Health Information Matter for Modifying Consumption? A Field Experiment Measuring the Impact of Risk Information on Fish Consumption

Jutta Roosen, Stéphan Marette, Sandrine Blanchemanche, and Philippe Verger

Working Paper 06-WP 434
March 2007 (Revised)

Center for Agricultural and Rural Development
Iowa State University
Ames, lowa 50011-1070
www.card.iastate.edu

Jutta Roosen is with the Department of Food Economics and Consumption Studies, University of Kiel, Germany. Stéphan Marette is with the UMR Economie Publique, Institut National de la Recherche Agronomique (INRA), INAPG, and is a visiting scholar at CARD, Iowa State University. Sandrine Blanchemanche and Philippe Verger are with the Met@risk Unit of INRA.

This project was supported by funding of the INRA-INSERM PRNH. The authors thank Sabine Houdart for her valuable support. The authors thank John Beghin, Helen Jensen, and Sergio Lence for their comments.

This paper is available online on the CARD Web site: www.card.iastate.edu. Permission is granted to excerpt or quote this information with appropriate attribution to the authors.

Questions or comments about the contents of this paper should be directed to Stéphan Marette, e-mail: marette@iastate.edu or marette@inapg.fr.

[^0]
Abstract

A field experiment was conducted in France to evaluate the impact of health information on fish consumption. A warning given to the treatment group revealed the risks of methylmercury contamination in fish and also gave consumption recommendations. Using difference-indifferences estimation, we show that this warning led to a significant but relatively weak decrease in fish consumption. However, consumption of the most contaminated fish did not decrease despite advice to avoid consumption of these types of fish. Accompanying questionnaires show that consumers imperfectly memorize the fish species quoted in the warning. The results point to the relatively poor efficacy of a complex health message, despite its use by health agencies around the world.

Keywords: econometrics, field experiment, fish consumption, health information, nutrition.

JEL Classification: C9, D8, I1.

1. Introduction

Public health communication programs aim at informing consumers about risks associated with particular products or types of behavior (see Modjuszka and Caswell, 2000, and Teisl et al., 2001). However, the complexity of messages may entail counterproductive confusion that thwarts the usefulness of the information.

Recently, health agencies from OECD countries such as Australia and New Zealand, Belgium, Canada, Germany, Ireland, the United Kingdom, and the United States issued warnings regarding fish consumption. Unlike other consumer warnings, the message about fish involves a complex balance between benefits (with nutritional considerations) and risks (with toxicological considerations). Intense debate about whether or not the benefits of eating fish outweigh the risks has ensued. However, an aspect overlooked in these debates concerns the difficulty in communicating (via doctors, brochures, or the Internet) about numerous fish species that vary in terms of safety or health-promoting characteristics. Knowledge about consumers' tendency to remember different fish species is essential for designing efficient health communication, because it is the specie's name that partially conveys information about the competing risks and benefits.

The purpose of this paper is to evaluate the impact of health information on fish consumption. The risk considered in this paper is posed by methylmercury contamination. A field experiment was conducted in France involving 206 households with at least one child under 15 years of age, since methylmercury risk is particularly important to mitigate in young children. Over five months, we followed the fish consumption of all individuals of these households, who were randomized into treatment and control groups. Only the treatment group received a
message based on some existing messages given in other countries and revealing risks of methylmercury with consumption recommendations.

This field experiment allows us to measure the impact of information and to compare consumption shifts for both treatment and control groups. Because no advisory about risks linked to fish has been communicated to the general public in France, we proceeded by employing a field experiment rather than by observing purchase data in a real market setting. Because of the potential costs to society from inefficient regulation, the following experiment was designed to give evidence on which to base communication by taking into account the consumers' reaction to information.

Results show that the health warning led to a relatively weak decrease in fish consumption. The difference-in-differences estimator points out that this decrease is statistically significant. However, the consumption of the most contaminated fish did not decrease despite advice to completely avoid consumption of these types of fish. In addition, numerous consumers from the treatment group did not comply with the recommendation to limit fish consumption to two servings a week. Supplementary questionnaires show that consumers imperfectly memorize the fish species cited in the recommendation. In particular, only tuna that is largely consumed in France was memorized by a significant percentage (50\%) of the women who received the information, while other fish rarely consumed were memorized by a minority ($<10 \%$). The results point to the relatively poor efficacy of this regulatory instrument, a health message of "high" complexity, despite its use in several OECD countries.

Our approach precisely traces the effect of information on fish consumption by following the same households over five months. This paper directly tackles several issues raised by the U.S. National Academies, which recently mentioned that "research is needed to develop and evaluate
more effective communication tools for use when conveying the health benefits and risks of seafood consumption..."(National Academies, 2006, p. 12).

The contribution of this paper is empirical with regulatory implications. This study improves knowledge about consumers' reaction to recommendations about methylmercury by precisely controlling both consumed species and the revelation of information. Despite numerous studies about anglers' reaction to local advisories, studies are missing in Europe and in OECD countries regarding consumers' sensitivity to fish recommendations (Jakus et al., 2002). In particular, our paper differs from Shimshack et al. (2007), who did focus on the impact of the 2002 U.S. message on purchasing behaviors without much precision about species and fresh fish. Our methodology allows us to follow up fresh/canned fish consumption with numerous details on the 20 most consumed fish in France.

Our approach also adds to the economic literature by evaluating the lasting effect of a warning (four months after its revelation) and by tracking species recollection. In the recent literature, Jin and Lesley (2003) have shown that placards signalling the health inspections of restaurants in Los Angeles have an impact on consumers' choice and hygiene efforts by restaurants. Conversely, Sloan et al. (2002) have shown that information campaigns did not have a significant effect on the reduction of consumption of a dangerous product such as cigarettes. Compared to the relative simplicity of nutrient labelling on cigarettes/food packages or restaurant grading in Los Angeles, the health message in our study was relatively long and it combined scientific information and consumption advice like that used in other OECD countries. In our study, the limited ability of consumers to recall fish species rarely consumed partially explains the limited impact of a medical warning given to women and not posted on the food package.

Moreover, our econometric estimation showed a lower impact of the information four months after its revelation compared to the first month following the revelation.

The paper continues with a brief presentation of risks linked to fish consumption. In the following sections, we describe the field experiment and discuss the results. The paper concludes with a discussion of the implications for public health policy.

2. Fish consumption, health risks, and regulatory decisions

Safety and nutrition linked to fish consumption have become an increasing public health concern in recent years (Caswell, 2006). In particular, methylmercury, an organic form of mercury, is a toxic compound that alters fetal brain development when there is significant prenatal exposure (EFSA, 2004). Children of women who consume large amounts of fish before and during pregnancy are particularly vulnerable to the adverse neurological effects of methylmercury (Budtz-Jorgensen et al., 2002). A high level of methylmercury is concentrated in long-lived, predatory fish, such as tuna, shark, and swordfish (Mahaffey, Clickner, and Bodurow, 2004).

The regulatory choice of how to manage this risk is complex since the nutrients in fish are also essential to the health of a developing fetus. More precisely, omega-3 polyunsaturated fatty acids, along with iodine, selenium, and phosphorus, confer benefits to the fetus such as infant cognition and improvement in cardiovascular health. According to the European Food Safety Agency (EFSA, 2005, p. 1), "fatty fish is an important source of long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA)... There is evidence that fish consumption, especially of fatty fish (one to two servings a week), benefits the cardiovascular system and is suitable for secondary
prevention in manifest coronary heart disease. There may also be benefits in fetal development, but an optimal intake has not been established." In addition, there is still a lot of uncertainty and controversy about whether these benefits may outweigh the harm from mercury exposure.

Several countries have decided to broadcast specific advisories, including the United States, beginning in 2001 (EPA, 2004); Canada in 2002 (Health Canada, 2002); the United Kingdom in 2003 (FSA, 2003); Ireland (FSAI, 2004), Australia, and New Zealand in 2004 (FSANZ, 2004); and Germany (Deutsche Gesellschaft für Ernährung, 2002). The responsible health or food agencies of these countries have given an advisory that vulnerable groups (small children, pregnant women, and women of childbearing age) should consume fish while avoiding species at the high end of the food chain because of high levels of mercury contamination (EFSA, 2004). The broadcast and information programs, which vary among countries, generally use the Internet, mass media, or brochures distributed by gynecologists and obstetricians.

The content and the details of the advisories vary among countries because of idiosyncratic characteristics regarding the patterns of fish consumption and the type of fish commonly caught. Most of the messages stipulate that the most contaminated fish, such as shark and swordfish, should be avoided. However, there are substantial differences regarding the advised limits of consumption for some species. ${ }^{1}$ All the messages explicitly mention the benefits of fish consumption while they differ about the details linked to the benefits, since omega- 3 and fatty fish rich in omega- 3 are not always mentioned.

Since 2001, the United States has been active in disseminating the information for childbearing and pregnant women by using the Internet, mass media, and brochures distributed

[^1]by gynecologists, obstetricians and maternity practitioners (EPA, 2004). The 2001 U.S. advisory seemed to have its intended effect, as pregnant women reduced their consumption of fish (see Oken et al., 2003 and Shimshack et al., 2007). However, the U.S. advisory raised some criticisms by doctors (e.g., Drs. Hibbeln and Golding), who argued in favor of the large benefits of omega3 fatty acids for fetuses (The Economist, 2006b). According to The Economist (2006a, p. 14), "the researchers note that American guidelines recommending that pregnant women should not eat fish because it may contain mercury have the perverse effect of cutting off those women (and their fetuses) from one of the best sources of omega-3s." From a risk management perspective, it is essential to understand how the target audience is receiving consumption advisories.

The French situation is interesting because no major diffusion of information has been decided upon yet. Some warnings, mainly for professionals, have been posted on the Web site of the Agence Française de Sécurité Sanitaire des Aliments, the French food safety agency
(AFSSA, 2002 and 2004). However, despite few articles in the popular press (see, for instance, Miserey, 2003, or Parents, 2005), no major broadcasting of information, via obstetricians, maternity hospitals, or booklets, was implemented by the health authorities. This absence of national informative campaigns suggests that in France very few childbearing women are informed on the potential risk of methylmercury exposure. In our study, only 12% of the women declared at the end of the study to have known about the mercury problem before the study (see table 7 at the end of this paper). ${ }^{2}$

[^2]
3. The experiment

The previous discussion suggests the choice of some relevant variables for the experiment in order to fit real situations and thus help the public decisionmaker. We will successively detail the sample, the experiment, the information revealed to the treatment group, and the econometric methodology used for measuring the impact of information.

3.1 The sample

As pregnancy, breastfeeding status, or being a young child are crucial indications for the risks linked to methylmercury, we focus on households with (i) at least one women between 25 and 35 years old (childbearing age) and (ii) with at least one child under 15 years of age.

We conducted the field experiment in Nantes, a large city in France close to the Atlantic Sea, from May 2005 to September 2005. A sample of 206 households in Nantes and the Loire Atlantique district (West of France) was randomly selected based on the quota method and is representative of age and socio-economic groups for the population of the city. In the sample, 9% of women are pregnant and 2% are breastfeeding women. The Loire Atlantique is a coastal district, which means that the consumption frequency of fish in this district is higher than in other French districts far from the sea (see Credoc, 1996).

We recruited by telephone households that consume seafood products at least twice a week. During the telephone call, households agreed to have a researcher come to their homes four times and to collect data in a booklet for four months.

3.2 The field experiment

A total of 206 households filled in a monthly notebook with their consumption of fish and shellfish at the individual level for May 2005, June 2005, and September 2005. Spring is a seasonal peak for fresh tuna consumption (see OFIMER, 2005b, p. 81).

The notebook allowed households to record the fish species (with a pre-definite number for the most consumed species), some details about the preparation (filet, salad, pizza, etc.) and the place of consumption (home or restaurant) for every member of the household. The purchasing receipts were also collected for checking the coherence of the consumption notebook.

Figure 1 describes the experimental design. For the purpose of comparison, information on fish consumption was collected for all members of each household under equal conditions in May. Then, the 206 households were randomized into treatment and control groups, where the treatment group was informed at the end of May 2005 (during the second visit of the interviewer) about the methylmercury risks and the omega- 3 benefits linked to fish consumption. The consumption during June 2005 and September 2005 allowed us to measure the effect of information, where the data for June and September consumption was designed to measure the short- and long-term effects of information, respectively.

Only the female household head met the researcher during the four visits and filled in additional questionnaires, since women of childbearing age are the main target of the methylmercury advisories. In addition, mothers largely influence the consumption decisions of their children, the second target group. The four visits are now detailed.
(1) During the first visit (at the end of April 2005), the notebook and the method for collecting information were explained. The interviewer filled in a questionnaire on
nutrition behavior and socio-demographic characteristics of the household. No information was given about the future reading of some nutrition messages. The interviewer explained that a payment would be given on the fourth visit only if the notebook was completed for all three months. An appointment was agreed upon for the second visit.
(2) During the second visit (end of May 2005), the interviewer collected the notebook with the recordings of fish consumption for May. The interviewer checked this notebook. Then, for the treatment group only, the brochure with the message about methymercury (detailed in appendix A and presented in the next section) was read in its entirety to the female household head by the interviewer. The brochure was given to the woman. An e-mail address and a toll-free telephone number for additional information were indicated on the brochure. A notebook for recording consumption for June was handed out. An appointment was made for the third visit.
(3) During the third visit (end of June 2005), the interviewer collected the notebook with the recording of fish consumption for June. The interviewer checked this notebook. Then, for women of the treatment group only, the researcher filled in a questionnaire on the participant's understanding of information received in the brochure and choices made. An appointment was made for a telephone call at the end of August. A notebook for recording the September consumption was given to the woman. At the end of August, during the telephone follow-up, participants were reminded that the notebook had to be filled in for September. An appointment was made for the fourth visit.
(4) During the fourth visit (end of September 2005), the interviewer collected the notebook with the recording of September consumption. The interviewer checked this notebook.

Then, for the treatment group only, the interviewer filled in an additional questionnaire on the participant's understanding of information received and choices made. All participants also received a $€ 30$ payment.

By September 2005, 201 households completed all three monthly notebooks, of which 99 were in the treatment group and 102 were in the control group. Thus, for our study, we kept 99 households in the treatment group with 400 individuals, and 102 households in the control group with 403 individuals. Children under age 6 made up 23.3% of the sample in the treatment group and 24.3% of the sample in the control group.

We now turn to the presentation of the message revealed to the treatment group during the second visit.

3.3 The message revealed to the treatment group

The message was developed based on advisories coming from health agencies in different countries as described in the previous section. While the complete message revealed to women of the treatment group is given in appendix A, it is possible to sum up the types of information delivered at different times as follows. On the first page of the brochure, the group at risk was clearly mentioned. The second page of the brochure insists on the benefits coming from fish consumption, and the existence of omega- 3 fatty acids was explicitly mentioned. Information was revealed about the existence of methylmercury.

The third page of the brochure (shown in appendix A) first recalled the group at risk and delivered the consumption advisory. ${ }^{3}$ The advisory is structured around three points, as are the U.S. Environmental Protection Agency (EPA, 2004) and Food Safety Authority of Ireland (FSAI, 2004) advisories.
(1) Point 1 of the advisory highlights that the targeted public should "limit fish and seafood to 2 meals per week." We kept the advisory to limit fish consumption to two weekly portions, following U.S. EPA (2004) or the German Nutrition Society (Deutsche Gesellschaft für Ernährung, 2002). This type of information is an efficient way to convince consumers of risks, namely consumers eating a lot of seafood products (Carrington et al., 2004). It limits the risk of exposure to high levels of mercury while reaping the benefits from regular fish consumption. In our message, this requirement concerns all species except species mentioned in point 3 below. This weekly consumption advice will provide precious information about the households' ability to comply with a recommendation likely to restrict their consumption.
(2) Point 2 of the advisory concerns four fish to "restrict to 1 meal per week." Indeed, as with most advisories, we distinguished between fish to consume up to once a week and fish to avoid (point 3). The criteria for selecting these fish were based on the mercury levels given in the first column of table $1 .{ }^{4}$ This leads us to select fish to eat up to once a week that have a mercury content between $0.2 \mathrm{mg} / \mathrm{g}$ and $0.4 \mathrm{mg} / \mathrm{g}$ (underlined in light grey in table 1). The fish to limit to once per week are grenadier, ling (and blue ling), rock salmon, and canned tuna.

[^3](3) Point 3 of the advisory identifies the "do not eat" fish, and it applies to five fish with a mercury content above $0.4 \mathrm{mg} / \mathrm{g}$ (underlined in dark grey in table 1). The fish to avoid are grouper, marlin, shark, swordfish, and fresh tuna. Note that for point 3, we followed the same philosophy as warnings in Australia, Canada, Ireland, New Zealand, the United Kingdom, and the United States, by revealing information about the most contaminated species despite their low consumption levels (see table 1 for France). Points 2 and 3 will provide precious information about the households' ability to comply with a recommendation mentioning species.

3.4 Measuring the treatment effect

The main question we seek to answer is whether the health message improves consumer behavior. We will present different statistics regarding the individual weekly consumption frequencies of the sample. ${ }^{5}$

For measuring the treatment effect, we will apply a difference-in-differences approach that goes back to the work of Card (1992) and Gruber (1994) and that has been applied to measure the impact of health information on food-away-from-home consumption in Jin and Leslie (2003). The equation for analyzing the impact of information is

$$
\begin{align*}
Y_{i}= & \beta_{0}+\beta_{1} \text { TREAT }+\beta_{2} \text { JUNE }+\beta_{3} \text { SEPT }+\delta_{1} \text { TREAT.JUNE }+\delta_{2} \text { TREAT } . S E P T \tag{1}\\
& +\beta_{4} X_{i}+\beta_{5} X_{i} \cdot \text { TREAT }+\varepsilon_{i},
\end{align*}
$$

where the dependent variable Y_{i} is the weekly consumption frequency for all months and individuals, i, in the treatment and control group. The same regressions are run for the three different categories of fish, namely, all fish, fish to limit to once per week, and fish to avoid.

Because the same explanatory variables are used in all three equations, independent regressions and the SUR estimation procedure are equivalent. We use OLS because the weekly consumption frequency is a real number calculated from observations spanning 25-35 days. A two-step estimation correcting for zero observations is used for fish to limit to once per week (fish to avoid), since 34% of the observations on fish to limit to once a week (respectively 79% of the observations of fish to be avoided) are equal to zero. ${ }^{6}$ In the estimation procedure, we accounted for clustering in household consumption by allowing for correlation of error terms between members of the same household.

Explanatory variables of equation (1) are those listed in table 2. TREAT is an indicator variable that equals unity if the individual is in the treatment group and zero otherwise. JUNE and SEPT are dummy variables equal to 1 for the corresponding months and zero otherwise. They allow us to measure seasonal differences in consumption. As the message was given at the end of May to the treatment group, JUNE and SEPT are dummy variables for observations after the information revelation. The vector X_{i} is a vector of covariates (from MALE to DEGREE in table 2) that may explain fish consumption frequencies, and the last term, X_{i}.TREAT, was included to control for differences in the treatment and control groups. ${ }^{7}$ Socioeconomic classes (SEC) are defined according to the job position of the male household head (when no male household head is present, it is replaced by that of the female household head). About a quarter of the sample are workers and in intermediate professional positions. Household incomes are

[^4]recorded as a categorical variable INCOME ranging from 1 to 8 , and DEGREE measures the educational status of the female household head.

The coefficients δ_{1} and δ_{2} in equation (1) measure the treatment effect. These estimators, labelled as the difference-in-differences estimators, can be rewritten as

$$
\begin{equation*}
\delta_{k}=\left(Y_{T}^{k}-Y_{T}^{0}\right)-\left(Y_{C}^{k}-Y_{C}^{0}\right) \tag{2}
\end{equation*}
$$

where Y^{0} denotes the weekly frequency of interest in May and month Y^{k} with $k=1$ for June and $k=2$ for September. Given that fish consumption may change over time, for example, for seasonal effects or price variations, the effect of information in the treatment group (subscript T) needs to be corrected for the concurrent change in the control group (subscript C), the counterfactual. By assuming different degrees of variation in treatment and control, spurious factors correlated with the variation can be differenced away. Further, note that the methodology does not need to integrate prices since both control and treatment group face the same price variation in the same region. What remains is the effect in the treatment group above the effect observed in the control group. These estimators δ_{1} and δ_{2} can be interpreted as follows. The decline in consumption in the treatment group in June over that of the control group is measured by δ_{1} and that for September by δ_{2}. If both parameters are negative, then the health message has been effective in reducing fish consumption. If δ_{2} is smaller in absolute value than δ_{1}, then the message is less effective in the long term than in the short term. We now turn to the results.

4. Results

Before analyzing results for the different categories of fish, we briefly examine consumption patterns as shown in table 3. The table summarizes the weekly consumption data for the three months, namely, May, June, and September. As the message concerns women and children under age 6 , the results are presented for women, male spouses, kids under 6 , and kids over 6 . Each of these sub-groups is divided according the treatment/control category. Also recall that only the treatment group received the message at the end of May. An examination of table 3 shows that despite some differences, the consumption patterns are pretty similar among the different members of a family. The main reason is that around 75% of fish consumption occurs at home (with some very tiny differences among the subgroups), so that consumption behavior is highly correlated among members of the same family. ${ }^{8}$

The results concerning the estimates of the weekly consumption frequencies for different categories of fish according to equation (1) are presented in table 4 and allow us to capture the impact of information. Recall that the explanatory variables of table 4 are detailed in table 2 . Tables 3 and 4 present results on the information effect for the different categories of fish considered in the message delivered to the treatment group.

4.1 Point 1 of the recommendation

The first lines in each block of table 3 detail the weekly consumption frequency for all fish and seafood. This allows us to measure the impact of point 1 of the recommendation ("Limit to

[^5]two meals a week"). The data show seasonal effects peaking in May and then declining. For the first lines in each block, the decline in consumption between May and June is larger for the treatment group than for the control group, which suggests that information revealed at the end of May matters. On average, weekly consumption of all fish exceeds the recommended level of two servings per week. While this may be due to some seasonality in fish consumption, data of the control group over the three months indicates that this behavior prevails over long periods.

Even if the message implies a significant reduction in fish consumption for the treatment groups, the average consumption frequencies for the treatment group in June and September are still higher than the recommended frequency of two meals in total. Despite some improvement, a vast majority of women did not comply with point 1 of the recommendation, while more kids did comply with it since their consumption is lower than that of their mothers. Before the revelation of the recommendation in May, 20% of women in the treatment group and 52% of young kids in the treatment group were consuming fish twice or less than twice a week. After the revelation of the recommendation in June, 26% of women in the treatment group and 60% of young kids in the treatment group were consuming fish twice or less than twice a week. The revelation of information slightly modifies the number of people complying with point 1 of the message.

The results from the first column in table 4 show that the treatment effect coming from the information revelation on consumption of all fish is effective in June (TREAT.JUNE) and in September (TREAT.SEPT). The coefficients on TREAT.JUNE and TREAT.SEPT are statistically significant, which means there is an information effect (see equation (2)). Because of the health message, the weekly consumption frequency decreases by 0.860 meals per week in June and only by 0.659 per week in September. The coefficient 0.860 partially explains why the revelation of information slightly modifies the number of people complying with point 1 of the
message (as previously described), as numerous households had a relatively large frequency of fish consumption. In other words, although the information reduces consumption, this decrease is not sufficient compared to the advisory. Because coefficient -0.659 is smaller in absolute value than coefficient -0.860 , this means that the message is less effective in the long term (namely, September) than in the short term (namely, June). The variable TREAT was interacted with INCOME and DEGREE. ${ }^{9}$ For the other socio-demographic variables, no significant interaction effects with TREAT were detected. Those with higher incomes do not reduce by as much their fish consumption whereas those of higher education levels reduce their fish consumption more compared to households with lower education levels. We could not identify significant effects of pregnancy or breastfeeding status.

We now turn to the impact of information on the consumption of the most contaminated fish.

4.2 Fish mentioned in points 2 and 3 of the recommendation

The second lines in each block of table 3 detail the weekly consumption frequency for fish that fall under the point 2 of the recommendation ("restrict to 1 meal per week"). On average, households complied with the recommendation that these types of fish be eaten at most once a week. ${ }^{10}$ Between May and June, the information leads to a decrease in the consumption of these fish by the treatment group, while the consumption of the control group increases. This decrease

[^6]in the treatment group is explained by a statistically significant decrease of consumption of canned tuna. ${ }^{11}$

Columns 2 and 3 of table 4 explain the impact of information on the weekly consumption frequency of fish to limit to once a week based on a two-step estimation correcting for zero observations. Column 2 of table 4 shows that the message reduces significantly the likelihood of consumption with the variable TREAT.JUNE and TREAT.SEPT in the probit estimation. However, the level of consumption frequencies for those consuming is not significantly affected by the health message (see variable TREAT.JUNE and TREAT.SEPT in the truncated estimation in column 3). The information matters for deciding whether or not to consume these fish but not for deciding the consumption frequency.

The last lines in each block of table 3 detail the weekly consumption frequency for fish to be avoided. These fish are consumed very infrequently and the consumption of the treatment group does not change in June or September after the revelation of information. Moreover, the difference-in-differences model for columns 4 and 5 of table 4 does not detect an effect of the health message. Consumers do not react in terms of consumption to the recommendation advising them to avoid entirely these most contaminated fish. A plausible explanation for the lack of impact from the message comes from the episodic consumption of these fish, which does not help consumers to memorize the names of these fish.

From questionnaires, table 5 provides some indications of women's memorization of the information for the treatment group. Table 5 shows that, except for tuna, only a minority of

[^7]women was able to recall the species mentioned in the recommendation, signalling some limits to memorizing points 2 and 3 of the recommendation. The correlation between the percentage of recall at the end of June (first column of table 5) and the habit of consumption in May 2005 for the women of this study (fifth column of table 1 for the underlined fish in dark and light grey) is very high (0.82). Clearly, fish with a low level of recollection ($<20 \%$) are rarely consumed. Tuna, widely consumed in France, is recalled by around 50% of the treatment group women, with a noticeable difference between fresh and canned tuna. This significant memorization may partially explain the significant decrease of canned tuna consumption by the treatment group between May and June. There are no major changes regarding the recollections between June and September. Such results raise the issue of the relevance of mentioning species that consumers fail to remember.

Table 5 also shows that the advised frequencies mentioned in the recommendation were only correctly indicated by a minority of women (15% or less), when species were successively mentioned to these women in questions following the question about the spontaneous recall. This result means that the "complexity" introduced by the need to differentiate between points 2 and 3 in the recommendation results in very little differences in terms of memorization by women. The previous results suggest that the efficacy of the message is relatively limited.

4.3 Understanding of the message

Table 6 shows that the message was considered clear, credible, and understandable (see the first four lines). Women judge mercury content of fish as an important health matter, in particular for child health (lines 6 to 8). This judgment is somewhat less acute in September compared to June, which confirms the lower impact of the information in September compared
to June (see also TREAT.JUNE and TREAT.SEPT in the three first columns of table 4).
However, on average, the women put a higher value on the benefits of omega-3 fatty acids coming from fish consumption (9 to 10). These valuation of benefits linked to fish consumption could explain the relatively weak decrease of fish consumption after the revelation of the recommendation (an explanation that is not captured by the last lines of table 4).

The most interesting result is that only 25% of women receiving the information explicitly mentioned a modification of their fish consumption. Moreover, the fact that only 12% searched for additional information suggests a weak concern regarding this risk. Clearly, this raises the issue of diffusing health advisories when three-quarters of the treatment group are not ready to change consumption behavior. ${ }^{12}$ Figure 2 details the reasons given by the group of 75% who did not declare a modification of their consumption. The main reasons given were the fact that species mentioned in the recommendation are not consumed and that households do not feel concerned about the risk. As we selected consumers who frequently consumed fish (consuming seafood products at least twice a week), it is possible that consumers with lower consumption feel even less concerned by methylmercury risk.

5. Policy implications and conclusions

The results of this study have implications for health policy in France and in the other OECD countries using health messages. Although it is beyond the scope of our study to perform a costbenefit analysis of regulatory options by taking into account consumer and producer surplus, decisionmakers should carefully consider the following points.

The advantage of using a medical warning or recommendation for pregnant women and women of childbearing age is the transparency of the message and a transfer of responsibility from the risk manager to the consumer. The inconvenience for the policymaker is a weak impact on consumption and public health. In terms of the empirical results, this paper showed that revelation of information led to a significant but insufficient change in fish consumption. Given the limited impact, the regulatory choice of informing groups at risk should come at a relatively low cost in order to be acceptable. Another possibility for informing would be to choose a media outlet that already exists for communicating health information to pregnant women. For instance, a booklet entitled Bien manger en attendant bébé [Eating well during pregnancy], edited by CERIN (Centre de Recherche et d'Information Nutritionnelles), is largely distributed in France through the offices of gynecologists, obstetricians, and at maternity hospitals. This booklet only mentions the consumption of fatty fish (salmon, sardines, etc.) twice a week as beneficial for the development of the fetus. It would be possible to add information about methylmercury and fish consumption and a more detailed advisory for choice of fish species.

However, selecting the fish to mention in the recommendation is a tricky task. The present paper challenges the efficacy of recommendations (existing in some OECD countries), by showing that the episodic consumption of the most contaminated fish (fresh tuna, shark, swordfish, marlin, and grouper) was not modified and that, except for tuna, which is widely consumed, a vast majority of consumers did not recall the species (see table 5). An alternative message in a recommendation could be to mention only the first point of our recommendation (see appendix A), namely, "Limit fish and sea products to 2 meals per week ." This is the strategy followed in Germany (Deutsche Gesellschaft für Ernährung, 2002). Another possibility

[^8]would consist of mentioning the previous point with tuna only, since half of the women memorized tuna (see table 5). Nevertheless, these solutions seem aimed only at thwarting the poor efficacy of a recommendation rather than actually improving the nutritional outcome.

Even though this study concerns French consumers, it raises the question of the efficacy of the recommendation for women of childbearing age largely used by the United States (EPA, 2004), Canada (Health Canada, 2002), the United Kingdom (FSA, 2003), Ireland (FSAI, 2004), Australia, and New Zealand (FSANZ, 2004). First, despite idiosyncratic differences, consumption patterns are very close among western countries (see Jensen, 2006). Second, the species to avoid in these existing recommendations are scarcely consumed in the respective countries, similar to the case in France. The absence of memorization of fish to avoid (as in table 5 with the absence of spontaneous recall and the poor result regarding the frequency) is likely to be similar for these countries, with the notable exception of tuna.

As Burros (2006, p. 1) notes for the United States, "If fish sales are any guide, many people appear to understand that fish is good for them but that tuna should be eaten sparingly. Sales of canned tuna from October 2004 to October 2005 dropped 9.8\%, according to Information Resources Inc., a market research firm. But fish consumption has increased 12% since 2001, up from 14.8 pounds per person a year to 16.6 pounds per person in 2004. . Consequently, the results of the second lines of each block of table 3 that mainly came from a decrease of canned tuna consumption are "close" to what emerged (with some national specificity) in the United States after the recommendation broadcast by the EPA-FDA in 2004 (EPA, 2004). ${ }^{13}$ Eventually, according to RealMercuryFacts (2006), the U.S. recommendation resulted in some difficulties

[^9]for U.S. consumers to quote species with a high content of mercury, which is "close" to our findings in table 5.

Our paper shows that medical recommendations/warnings to pregnant women or women of childbearing age (via brochures or Internet) are not a panacea and that alternative tools might be considered. Mandatory labels or placards posted on the products in the supermarkets or in restaurants (see Knecht, 2006) can be an alternative or a complement to recommendations. ${ }^{14}$ For instance, a label on the package with the statement "young children and pregnant women should not eat this fish because of a high concentration of methylmercury" could be posted on the most contaminated fish (fresh tuna, shark, swordfish, marlin, and grouper) quoted in point 3 of the recommendation (see appendix A) and/or the fish of the point 2 recommendation (canned tuna, rock salmon, grenadier, and ling). Such a label posted directly on the fish package would circumvent the difficulties surrounding the memorization of the different species from the recommendation. ${ }^{15}$

The labeling issue is complex since the toxic exposure depends not only on the contamination of the product but also on the amount of fish consumed. A proposal for mandatory labeling posted on canned tuna regarding mercury was recently dismissed by a court in California after intense lobbying by the canned tuna industry (Waldman, 2006). ${ }^{16}$ The battle over labeling in the United States and in Europe is not over, since supermarkets recently decided to post the FDA warning on their fish shelves (Progressive Grocer, 2006).

[^10]Beyond the previous considerations about the policy, this paper has shed light on the relatively poor efficacy of recommendations, which occurs mainly because consumers imperfectly memorize the mentioned fish species. We hope that this paper has contributed further facts for the debate in France and also in other OECD countries and will help regulatory authorities and parliaments refine their policies regarding the risks from fish consumption.

References

Adamy, J. "Testing Company Plans to Market Fish Lower in Mercury Next Year." Wall Street Journal, November 2, 2005, pp. D4.

AFSSA (Agence Française de Sécurité Sanitaire des Aliments). (2002). "Avis relatif à l'évaluation des risques sanitaires liés à l'exposition au mercure des femmes allaitantes et des jeunes enfants." Saisine n ${ }^{\circ}$ 2002-SA-0014, 22 Novembre 2002, Maison-Alfort, France.
__ . (2004). "Avis relatif à la réévaluation des risques sanitaires du méthylmercure lies à la consommation des produits de la pêche au regard de la nouvelle dose hebdomadaire tolerable provisoire (DHTP)." Saisine n²003-SA-0380, 16 Mars 2004, Maison-Alfort, France.
—_. (2006). "Communiqué de presse. Consommation de poissons et méthylmercure." Maisons-Alfort, France, le 25 juillet 2006. http://www.afssa.fr/ftp/afssa/36507-36508.pdf.

Burros, B. (2006). "Advisories on Fish and the Pitfalls of Good Intent." New York Times, February 15, 2006. p. 1, web edition.

Budtz-Jorgensen, E., N. Keiding, P. Grandjean, and P. Weihe. (2002). "Estimation of Health Effects of Prenatal Methylmercury Exposure Using Structural Equations Model." Environmental Health 1(2): 145-168.

CAC (Codex Alimentarius Commission). (1991). Nineteenth, Session of CAC, Codex "Guidelines Levels for Methylmercury in Fresh or Processed Fish and Fish Products." Section 6.3, Volume 1A-1995, p 200.

Card, D. (1992). "Do Minimum Wages Reduce Employment? A Case Study of California." 1987-89. Industrial and Labor Relations Review 46(1): 38-54.

Carrington, C., B. Montwill and P. Bolger. (2004). "An Intervention Analysis for the Reduction of Exposure to Methylmercury from the Consumption of Seafood by Women of Childbearing Age." Regulatory Toxicology and Pharmacology 40:272-280.

Caswell, J. (2006). "Quality Assurance, Information Tracking and Consumer Labeling." Marine Pollution Bulletin. Forthcoming 2006.

Cohen, J. (2006). "Matters of the Heart and Mind: Risk-Risk Tradeoffs in Eating Fish Containing Methylmercury." Risk in Perspective (Harvard Center for Risks Analysis) January 2006, 14: 1-6.

Cragg, J.G. (1971). "Some Statistical Models for Limited Dependent Variables." Econometrica 39(5): 829-844.

Credoc (1996). 81 OCA-CREDOC. "Les disparités régionales de la consommation alimentaire des ménages français." Rapport n ${ }^{\circ}$ CP004. Février 1996, Paris.

Crépet, A., J. Tressou, P. Verger, and J.C. Leblanc (2005). "Management Options to Reduce Exposure to Methylmercury through the Consumption of Fish and Fishery Products by the French Population." Regulatory Toxicology and Pharmacology 42: 179-189.

Deutsche Gesellschaft für Ernährung. (2002). "Roher Fisch und Schwangerschaft". Beratungspraxis, Juli.

Economist, The. (2006a). "Food for Thought." January 21, 2006, p. 14.
——. (2006b). "The Omega Point." January 21, 2006, pp. 72-73.
EFSA (European Food Safety Authority). (2004). "Opinion of the Scientific Panel on Contaminants in the Food Chain on a Request from the Commission Related to Mercury and Methylmercury in Food." EFSA Journal (2004), 34: 1-14. http://www.efsa.eu.int (accessed February 2006).
___ (2005). "Opinion of the Scientific Panel on Contaminants in the Food Chain on a Request from the European Parliament Related to the Safety Assessment of Wild and Farmed Fish." EFSA Journal (2005), 236: 1-118. http://www.efsa.eu.int (accessed February 2006).

EPA (U.S. Environmental Protection Agency) (2004). "What You Need to Know About Mercury in Fish and Shellfish." Washington D.C. http://www.epa.gov/waterscience/fishadvice/advice.html (accessed March 2006).

FDA (U.S. Food and Drug Administration). (2001). "Mercury Levels in Commercial Fish and Shellfish." Center for Food Safety and Applied Nutrition, Washington D.C. http://www.cfsan.fda.gov/~frf/sea-mehg.html (accessed March 2006).
—_. (2005). "Mercury in Fish: Summary of Key Findings from Focus groups about Methylmercury Advisory." Center for Food Safety and Applied Nutrition, Washington D.C. http://www.cfsan.fda.gov/~dms/admehg3g.html (accessed September 2006).

FSA (U.K. Food Standards Agency). (2003). Mercury in fish: your questions answered, http://www.food.gov.uk/multimedia/faq/mercuryfish/?version=1 (accessed April 2006).

FSAI (Food Standards Authority of Ireland). (2004). FSAI Issues Guidelines on Consumption of Shark, Swordfish, Marlin and Tuna, http://www.fsai.ie/news/press/pr_04/pr20040318.asp (accessed April 2006).

FSANZ (Food Standards Australia New Zealand). (2004). "Mercury in Fish", http://www.foodstandards.gov.au/whatsinfood/mercuryinfish.cfm (accessed April 2006).

Gruber, J. (1994). "The Incidence of Mandated Maternity Benefits." American Economics Review 84(3): 622-641.

Health Canada. (2002). "Advisory-Information on mercury levels in fish." http://www.hcsc.gc.ca/english/protection/warnings/2002/2002_41e.htm (accessed March 2006).

Jakus, P., M. McGuinness, and A. Krupnick. (2002). "The Benefits and Costs of Fish Consumption Advisories for Mercury." Discussion paper 02-55. Resources for the Future, Washington DC.

JECFA (2003). "Safety Evaluation of Certain Food Additives and Contaminants." Prepared by the sixty-first meeting of the Joint FAO/WHO Expert Committee on Food Additives, Rome, World Health Organization, June 2003.

Jensen, H.H. (2006). "Changes in Seafood Consumer Preferences Patterns and Associated Changes in Risk Exposure." Marine Pollution Bulletin. Forthcoming 2006.

Jin, G.Z., and P. Lesley. (2003). "The Effect of Information on Product Quality: The Effect of Hygiene Grade Cards." Quarterly Journal of Economics 118(2): 409-451.

Knecht, B. (2006). "The Raw Truth." Wall Street Journal, March 25, 2006, pp. P1 and P6.
LCI (2006). "Femmes enceintes et nourissons evitez les poissons predateurs." http://tf1.lci.fr/infos/sciences/0,,3320138,00-femmes-enceintes-nourrissons-evitez-poissons-predateurs-.html (accessed September 2006).

Mahaffey, K., R. Clickner, and C. Bodurow (2004). "Blood Organic Mercury and Dietary Mercury Intake: National Health and Nutrition Examination Survey, 1999 and 2000." Environmental Health Perspective 112(5): 562-571.

Miserey, Y. (2003). "Faut-il interdire la consommation de certains poissons aux femmes enceintes? " Le Figaro 11 September 2003.

Modjuszka, E., and J. Caswell (2000). "A Test of Nutritional Quality Signaling in Food Markets Prior to Implementation of Mandatory Labeling." American Journal of Agricultural Economics 82(1): 289-309.

National Academies (2006). Committee on Nutrient Relationships in Seafood. Seafood Choices: Balancing Benefits and Risks. The National Academy Press. Washington D.C. http://www.nap.edu/catalog/11762.html--you (accessed February 2007).

OFIMER (Office National Interprofessionnel des Produits de la Mer et de L'Aquaculture). (2005a). "Le marché Français des produits de la pêche et de l'aquaculture." Année 2004. Chapter 3. La consommation. Paris. http://www.ofimer.fr/99_up99load/2_actudoc/356d1_01.pdf (accessed February 2006).

OFIMER (2005b). Office National Interprofessionnel des Produits de la Mer et de L'Aquaculture. Bilan Annuel 2004. "Consommation des produits de la pêche et de l'aquaculture." Paris. http://www.ofimer.fr/99_up99load/2_actudoc/1187d1_01.pdf (accessed June 2006).

Oken, E., K. Kleinman, W. Berland, S. Simon, J. Rich-Edwards, and M. Gillman. (2003). "Decline in Fish Consumption among Pregnant Women after a National Mercury Advisory." Obstetrics and Gynecology 102: 346-351.

Parents. 2005. "Une alimentation saine." Parents, ${ }^{\circ}$ 440. p. 84, Paris, France.
Progressive Grocer. (2006). "Whole Foods, Safeway and Wild Oats to Post Seafood Mercury Warnings." http://www.progressivegrocer.com (accessed June 2006).

RealMercuryFacts (2006). "Attitudes and Beliefs About Eating Fish: A National Opinion Survey Conducted for The Center for Food, Nutrition and Agriculture Policy." Center for Food, Nutrition, and Agriculture Policy, University of Maryland. http://www.realmercuryfacts.org/survey_findings/index.htm (accessed September 2006)

SECODIP (Société d'Etude de la Consommation, Distribution et Publicité). (2002). A French survey of Food Consumption. Paris.

Shimshack J., Ward M. and T. Beatty (2007) "Mercury Advisories: Information, Education, and Fish Consumption" Forthcoming, Journal of Environmental Economics and Management.

Sloan, F., V. K. Smith, and D. H. Taylor. "Information, Addiction, and 'Bad Choices': Lessons from a Century of Cigarettes." Economics Letters 77(2002):147-55.

Teisl, M., N. Bockstael, and A. Levy. (2001). "Measuring the Welfare Effects of Nutrition Information." American Journal of Agricultural Economics 83(1): 133-149.

Teisl, M., B. Roe, and R. Hicks. (2002). Can Eco-Labels Tune a Market? Evidence from Dolphin-Safe Labeling." Journal of Environmental Economics and Management 43:339-359.

Variyam, J.N, and J. Cawley (2006). "Nutrition Labels and Obesity." NBER Working paper 11956, Cambridge, MA.

Waldman, P. (2006). "Tuna Industry Wins Big as Judge in California Rejects Toxic Label." Wall Street Journal, May 13-14, 2006, pp. P6.

Table 1. Description of fish codified to consumers: Mercury contamination, purchases, and consumption in France

Fish	Purchases				The Present Study	
	Mean Mercury (mg/kg raw fish)	Mean Methyl mercury (mg/kg)	Market Share 2003 Volume ${ }^{\text {c }}$	$\begin{gathered} \text { \% Women } \\ \text { and Children } \\ \text { Purchasing 2002 }{ }^{\text {d }} \\ \hline \end{gathered}$	\% of Women Consuming May 2005	\% of Children Consuming May 2005
Anchovy	0.065	0.055	n.a.	15\%	7.8\%	6\%
Anglerfish/monkfish*	0.153	0.128	2\%	4\%	12\%	10\%
Cod	0.121	0.102	7\%	48\%	38.3\%	52\%
Dab	0.050	0.042	1\%	8\%	2\%	2%
Grenadier*, ${ }^{\text {b }}$	0.212	0.176	1\%	n.a.	7.3\%	8\%
Grouper**a	0.465	0.390	n.a.	n.a.	0.5\%	1\%
Hake	0.083	0.069	3\%	19\%	22\%	22\%
Hake (Alaska)	0.082	0.069	9\%	79\%	58.3\%	84\%
Halibut*	0.162	0.136	n.a.	0\%	1.5\%	1\%
Herring	0.040	0.033	n.a.	27\%	5.3\%	3\%
Ling or blue ling*, ${ }^{\text {b }}$	0.271	0.226	1\%	18\%	15.5\%	14\%
Mackerel	0.074	0.062	7\%	55\%	26\%	23\%
Marlin*,a	0.485	0.411	n.a.	n.a.	0.5\%	0.2\%
Perch	0.096	0.081	3\%	14\%	8\%	8\%
Pike*	0.099	0.083	n.a.	n.a.	3\%	2\%
Red mullet	0.136	0.114	1\%	4\%	2.4\%	1\%
Rock salmon/dogfish*	0.289	0.243	1\%	7\%	3\%	5\%
Salmon	0.034	0.029	10\%	56\%	64.6\%	64\%
Sardine	0.062	0.052	7\%	52\%	24\%	26\%
Sea bass*	0.094	0.079	1\%	3\%	9.7\%	5\%
Sea bream	0.095	0.077	1\%	3\%	7.8\%	5\%
Shark*,a	0.988	0.831	n.a.	n.a.	0.5\%	0\%
Skate*	0.156	0.131	1\%	8\%	9.7\%	7\%
Sole	0.100	0.084	2\%	11\%	23\%	24\%
Swordfish*,a	0.976	0.814	n.a.	n.a.	1.5\%	1\%
Trout	0.050	0.041	3\%	23\%	10\%	7\%
Tuna, canned*	0.329	0.277	27\%	96\%	76\%	53\%
Tuna, fresh*	0.813	0.683	2\%	7\%	40\%	34\%
Whiting	0.093	0.078	3\%	30\%	17\%	18\%
Other fish/unspecified	0.162	0.136	8\%	n.a.	39\%	31%

Sources for Mercury: Crépet et al. (2005, table 1, pp. 181-182) for methylmercury.
${ }^{(a)}$ FDA (2001) for the mercury content (with the methylmercury equal to the mercury content times 0.84).
${ }^{(b)}$ IFREMER, 1994-1998. Résultat du réseau national d'observation de la qualité du milieu marin pour les mollusques (RNO) and MAAPAR, 1998-2003. Résultats des plans de surveillance pour les produits de la mer. Ministère de l'Agriculture, de l'Alimentation, de la Pêche et des Affaires Rurales.
Sources for purchases and consumption:
${ }^{(c)}$ OFIMER (2005a). Percentage based on the sum of sold volume of fresh, frozen, and canned fish purchased by consumers (tables p. 21, 23, and 26).
${ }^{(d)}$ SECODIP (2002).
*Predatory fish listed as defined by CAC (1991) and completed by list from the Commission Regulation (EC) of March 8, 2001, No 466/2001, and by the Commission Regulation No. 78/2005 (European Commission, 2005). The five fish to avoid in the recommendation of the appendix A (point 3) are underlined in dark grey. The four fish to consume once a week in the recommendation (point 2) are underlined in light grey.

Table 2. Descriptive statistics of sample based on individuals

	Variable Description	Treatment		Control	
		Mean	Std. dev.	Mean	Std. dev.
TREAT	Dummy variable $=1$ if in treatment group and zero if not.	1		0	
JUNE	Dummy variable $=1$ if observation in June and $=0$ if not.	0.333		0.333	
SEPT	Dummy variable $=1$ if observation in September and $=0$ if not.	0.333		0.333	
MALE	Dummy variable $=1$ if male household head, $=0$ if not	0.233		0.243	
KIDS < 6	Dummy variable $=1$ if child under age of six, $=0$ if not	0.318		0.328	
KIDS > 6	Dummy variable $=1$ if child over age of six, $=0$ if not	0.203		0.176	
AGE	Age in years	19.468	14.693	19.494	14.665
SEC1	SEC = Dummy var. indicating socioeconomic class defined by profession of	0.020		0.000	
SEC 2	male household head (female if no male	0.050		0.094	
SEC 3	household head exists)	0.218		0.107	
SEC 4	(SEC1 = Farmer; SEC2=Handcraft	0.240		0.392	
SEC 5	SEC3=Cadre superieur ;	0.180		0.117	
SEC 6	SEC4 =Intermediate Profession;	0.258		0.270	
SEC 7	SEC5=Employee; SEC6=Worker	0.000		0.000	
SEC 8	SEC7=Retired; SEC8=Student	0.000		0.007	
SEC 9	SEC9=No profession)	0.035		0.012	
INCOME	Categorical variable indicating household revenue $1=<600 €, 2=600-$ $900 €, 3=900-1200 €, 4=1200-1500$ $€, 5=1500-2300 €, 6=2300-3000 €, 7$ $=3000-6000 €, 8=$ more than $8000 €$	5.494	1.167	5.395	1.403
DEGREE	Categorical variable indicating last degree of female household head $1=$ no/primary degree, $2=$ secondary degree, $3=$ baccalaureat, $4=\mathrm{bac}+2$ years, $5=\mathrm{bac}+$ more than 2 years	3.553	1.278	3.722	1.176
No. of households		99		102	
No. of individuals		400		403	
No. of observations		1200		1209	

Table 3. Reported weekly consumption frequencies of women, men, and children by fish type (on average)

	Treatment				Control		
	May	June	Sept.	May	June	Sept.	
Female household head							
All Fish	3.23	2.82	2.83	2.93	2.82	2.65	
To limit to once a week	0.51	0.43	0.34	0.53	0.53	0.40	
Fish to avoid	0.10	0.10	0.10	0.08	0.09	0.09	
Male household head							
All Fish	2.70	2.25	2.37	2.69	2.59	2.30	
To limit to once a week	0.38	0.32	0.24	0.44	0.50	0.34	
Fish to avoid	0.08	0.10	0.08	0.08	0.07	0.11	
Children under age 6							
All Fish	2.17	1.90	2.07	2.08	2.04	2.13	
To limit to once a week	0.27	0.22	0.26	0.28	0.31	0.27	
Fish to avoid	0.04	0.04	0.05	0.05	0.05	0.07	
Children over age 6							
All Fish	2.82	2.30	2.42	2.09	2.23	2.16	
To limit to once a week	0.42	0.33	0.29	0.38	0.40	0.32	
Fish to avoid	0.07	0.07	0.09	0.03	0.03	0.05	

Table 4. Estimates of the weekly consumption frequencies

Fish categories	All fish OLS	To limit to once a week		Fish to avoid	
		Probit	Truncated	Probit	Truncated
CONSTANT	-0.328	-1.103	-0.450	-2.465***	0.519
	(0.741)	(0.754)	(1.540)	(0.662)	(0.361)
TREAT	0.240***	-0.151	0.106	0.150	0.029
	(0.165)	(0.171)	(0.364)	(0.196)	(0.081)
JUNE	-0.045	-0.089	0.135	-0.175	0.074
	(0.091)	(0.136)	(0.330)	(0.146)	(0.196)
SEPT	-0.139	-0.445***	0.080	0.208**	-0.031
	(0.096)	(0.121)	(0.294)	(0.174)	(0.058)
TREAT.JUNE	-0.860***	-0.941*	-0.630	0.746	-0.105
	(0.543)	(0.522)	(1.340)	(0.594)	(0.206)
TREAT.SEPT	-0.659**	-0.851*	-0.535	0.369	0.118
	(0.569)	(0.516)	1.377	(0.571)	(0.244)
MALE	-0.455***	-0.192***	-0.137	-0.094	0.022
	(0.085)	(0.064)	(0.243)	(0.054)	(0.033)
KIDS<6	$1.515^{* * *}$	1.119**	0.448	0.374	-0.280
	(0.510)	(0.546)	(0.998)	(0.477)	(0.480)
KIDS>6	1.135***	0.853*	0.298	0.311	-0.280
	(0.444)	(0.438)	(0.858)	(0.370)	(0.411)
AGE	$0.141^{* * *}$	0.128***	0.048	0.049*	-0.008
	(0.026)	(0.034)	(0.061)	(0.029)	(0.022)
AGE ${ }^{2}$	-0.002***	-0.002***	-0.001	-0.001	0.000
	(0.000)	(0.001)	(0.001)	(0.000)	(0.000)
SEC1	0.224	1.083**	-0.058	-0.160	-0.195
	(0.434)	(0.494)	(0.484)	(0.648)	(0.226)
SEC2	-0.390***	0.300	-0.308	0.237**	-0.079
	(0.223)	(0.236)	(0.543)	(0.204)	(0.120)
SEC3	-0.126	-0.214	-0.092	-0.150	-0.128
	(0.226)	(0.196)	(0.357)	(0.191)	(0.131)
SEC5	0.085	-0.083	-0.014	0.091	-0.055
	(0.241)	(0.190)	(0.429)	(0.221)	(0.083)
SEC6	0.024	0.078	-0.038	-0.048	-0.151
	(0.189)	0.161	(0.358)	(0.162)	(0.145)
SEC8	0.623	-1.033***	0.426	0.062	-0.107
	(0.197)	(0.198)	(0.463)	(0.316)	(0.130)
SEC9	1.481***	0.157	0.846	-0.021	0.003
	(0.790)	(0.511)	(0.917)	(0.058)	(0.016)
INCOME	-0.054**	-0.015	-0.014	0.238***	0.014
	(0.063)	(0.065)	(0.126)	(0.066)	(0.038)
DEGREE	0.194***	0.013***	0.006	0.121**	0.046
	(0.071)	(0.063)	(0.137)	(0.110)	(0.042)
INCOME.TREAT	0.186***	0.122	0.143	-0.340	-0.076
	(0.105)	(0.100)	(0.248)	(0.114)	(0.074)
DEGREE.TREAT	-0.142***	0.089	-0.140	$-2.465 * * *$	0.275*
	(0.104)	(0.095)	(0.286)	(0.662)	(0.166)
Sigma			0.537		0.275*
	-	-	(0.362)		(0.166)
No of Obs.	2272	2272	1490	2272	473
R-Square ${ }^{\text {a }}$	0.143	0.071		0.053	
No. of correct predictions		1521		1790	

Table 5. Recollection regarding fish species and the frequency of recollection of species mentioned in the message by the women in the treatment group

End of June			End of September	
Species mentioned in the message	Species recalled by the \% of women	Frequency correctly recalled by the \% of women ${ }^{\text {a }}$	Species recalled by the \% of women	Frequency correctly recalled by the $\%$ of women ${ }^{\text {a }}$
Grouper	6\%	11\%	13\%	9\%
Marlin	5\%	10\%	3\%	6\%
Shark	20\%	15\%	28\%	14\%
Swordfish	10\%	14\%	19\%	13\%
Tuna, fresh	52\%	13\%	50\%	10\%
Grenadier	4\%	10\%	4\%	10\%
Ling	6\%	10\%	4\%	14\%
Rock Salmon	4\%	13\%	10\%	13\%
Tuna, canned	44\%	26\%	43\%	27\%

[^11]Table 6. Descriptive statistics linked to the perception of the message by female household heads of the treatment group

Variables	Definition	June	September
Clarity of the message	$1=$ not at all $\ldots .5$ = completely	$\begin{gathered} 4.50 \\ (0.75) \end{gathered}$	
Message understandable	$1=$ not at all $\ldots .5$ = completely	$\begin{gathered} 4.16 \\ (0.56) \end{gathered}$	
Credibility of the message	$1=$ not at all $\ldots .5$ = completely	$\begin{gathered} 3.85 \\ (1.02) \end{gathered}$	
Complete message	$1=$ not at all $\ldots .5$ = completely	$\begin{gathered} 3.58 \\ (1.16) \end{gathered}$	
Alarmist message	$1=$ not at all $\ldots .5$ = completely	$\begin{gathered} 3.19 \\ (1.24) \end{gathered}$	
Risk of mercury for health (for you)	How dangerous do you consider the mercury risk in fish? $1=$ no risk $. .5=$ very strong risk	$\begin{gathered} 3.52 \\ (1.00) \end{gathered}$	$\begin{gathered} 3.19 \\ (1.11) \end{gathered}$
Risk of mercury for health (for your kids)	How dangerous do you consider the mercury risk in fish? $1=$ no risk $. .5=$ very strong risk	$\begin{gathered} 3.93 \\ (1.03) \end{gathered}$	$\begin{gathered} 3.51 \\ (1.12) \end{gathered}$
Risk of mercury for health (for your spouse)	How dangerous do you consider the mercury risk in fish? $1=$ no risk $\ldots 5=$ very strong risk	$\begin{gathered} 3.47 \\ (1.24) \end{gathered}$	$\begin{gathered} 3.20 \\ (1.21) \end{gathered}$
Benefit of omega-3 (for you)	How are the benefits of the omega- 3 fatty acid in fish? $1=$ no benefit $\ldots 5=$ very strong benefits		$\begin{gathered} 3.93 \\ (0.86) \end{gathered}$
Benefit of omega-3 for your kids)	How are the benefits of the omega- 3 fatty acid in fish? $1=$ no benefit $\ldots 5=$ very strong benefits		$\begin{gathered} 3.96 \\ (0.88) \end{gathered}$
Benefit of omega-3 for your spouse)	How are the benefits of the omega- 3 fatty acid in fish? $1=$ no benefit $\ldots 5=$ very strong benefits		$\begin{gathered} 3.93 \\ (1.27) \end{gathered}$
Declaration regarding the modification of fish consumption	Did you modify your consumption of fish after the recommendation? \% of yes among the women in the treatment group		25\%
Women knowing about mercury before the study	Did you know the mercury risks before the study? \% of yes among the women		12\%
Brochure kept at the end of September	Did you keep the message sheet given at the end of May? \% of yes among the women		57\%
Complementary information	Did you search for complementary information after the message revelation? \% of yes among the women		12\%

[^12]Figure 1. The timing of the experiment

TREATMENT GROUP

Figure 2. Reasons given for explaining the absence of modification in fish consumption by 75% of women of the treatment group

APPENDIX A

[^0]: Iowa State University does not discriminate on the basis of race, color, age, religion, national origin, sexual orientation, gender identity, sex, marital status, disability, or status as a U.S. veteran. Inquiries can be directed to the Director of Equal Opportunity and Diversity, 3680 Beardshear Hall, (515) 294-7612.

[^1]: ${ }^{1}$ In particular, the limit on tuna consumption is hard to characterize because of the differences of mercury contamination between the fresh (frozen) tuna (namely, the bluefin) and the canned tuna (namely, the albacore, yellowfin, and skipjack).

[^2]: ${ }^{2}$ One year after the study reported in this paper, the French food safety agency (AFSSA) issued a press release on methylmercury (AFSSA, 2006) that led to a few articles in the popular press (see, for instance, LCI, 2006). Tuna, in particular, is not mentioned in this press release. To the best of our knowledge, no major dissemination of information via obstetricians, maternity hospitals, or booklets is planned in France.

[^3]: ${ }^{3}$ In order to avoid the duplication of fish in the recommendation, we followed Health Canada (2002) and FSANZ (2004) by not detailing any list of fatty/oily fish (salmon, sardines, or mackerel) or fish low in mercury.
 ${ }^{4}$ The thresholds of $0.4 \mathrm{mg} / \mathrm{g}$ and $0.2 \mathrm{mg} / \mathrm{g}$ were based on a computation of exposure to ensure that by following our recommendation, children were well within the tolerable level established by the Joint FAO-WHO Expert Committee on Food Additives (JECFA, 2003) and equal to $1.6 \mu \mathrm{~g}$ per kg body weight per week. The fact that children are within the tolerable level implies that childbearing women are within the JEFCA tolerable level.

[^4]: ${ }^{5}$ The weekly frequency Y for an individual is equal to $7 \cdot($ frequency for a given month)/(number of days recorded for this month), since the number of days recorded was not the same for every household.
 ${ }^{6}$ The two-step estimation consists of a probit model estimating the positive consumption frequencies and an OLS estimation of the relation between covariates augmented by the inverse Mills ratio (IMR) and the dependent variable for the positive observations. The parameter to the IMR is described as Sigma. The two-step estimation goes back to Cragg (1971) and is more general than a simplifying Tobit approach that restricts the effect of each covariate on the likelihood of a positive consumption and on the extent of the consumption to be the same.
 ${ }^{7}$ Given that the data were obtained in a randomized design assigning households into treatment and control group

[^5]: ${ }^{8}$ This implies that the targeted groups (women and children under 6) mentioned in the recommendation (see appendix 3) cannot be individually targeted in their nutrition choices and do not have a concrete sense as soon as consumption habits are studied.

[^6]: ${ }^{9}$ The estimation in column 1 of table 4 adds for a variety of controls. In particular, male household heads consume fish less frequently than do female heads. The variables Kids <6 and Kids >6 are not readily interpreted as they are confounded with the age variable that enters via a linear and quadratic term. The age variables show a parabolic curvature of the consumption frequency in age, where for total fish consumption the peak is achieved at about 35 years of age. Given the large number of dummy variables, we define the base situation as the consumption frequency of the female household head in May whose socioeconomic status is an intermediate position (SEC4=1). In comparison to households of SEC4 (intermediate professional position) few of the socioeconomic classes have a significant impact on fish consumption.

[^7]: ${ }^{10}$ Note that only six women in May were not respecting this point 2 recommendation for eating this fish (including canned tuna) no more than once a week.
 ${ }^{11}$ Results of two-tailed t tests and Wilcoxon tests for paired sample between the frequencies in May and June revealed a statistically significant decrease for canned tuna for the treatment group only, and no significant differences for grenadier, ling, or rock salmon whatever the group.

[^8]: ${ }^{12}$ Because (in September) 43% of women did not keep the message sheet, perhaps a recommendation written on a sticker for posting on the refrigerator would be kept by more women and would be more efficient in terms of

[^9]: memorization.
 ${ }^{13}$ If figures of our study are not comparable with the 9.8% slump of canned tuna in the U.S. between October 2004 and October 2005, the consumption frequency of canned tuna for the treatment group dropped 21% on average from May to June in our study, while the consumption frequency of canned tuna for the control group was almost stable.

[^10]: ${ }^{14}$ Monitoring the restaurants' placards could be very costly for the regulator.
 ${ }^{15}$ The targeting of only the most at-risk populations (young children and pregnant women or women of childbearing age) on the label should calm the fears of David Acheson, a food safety director for the U.S. FDA, who noted that "if you start labeling everything with mercury levels, there will be a concern that mercury is a bigger deal than it actually is, and all segments of population will say ‘I just don't want to take the risk'" (Adamy, 2005, p. D4).
 ${ }^{16}$ Imposing a mercury label on tuna cans may also entail risks of label proliferation, as dolphin-safe labeling is already posted on numerous cans in the U.S. and Europe (see Teisl et al., 2002).

[^11]: The five fish to avoid in the recommendation of the appendix A (point 3) are underlined in dark grey.
 The four fish to consume once a week in the recommendation (point 2) are underlined in light grey.
 ${ }^{\text {a }}$ In the case of frequencies, each fish was quoted to the women, who were asked to give a frequency among various possibilities including the reply "I do not know". These questions were asked after the question about the message and the recall (spontaneous quotation) of species.

[^12]: Average and standard deviation in parentheses for the 11 first lines.
 $\%$ of all respondents of the treatment group for the 4 last lines.

