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Abstract

Cost function estimation under production uncertainty is problematic because the
relevant cost is conditional on unobservable expected output. If input demand functions
are also stochastic, then anonlinear errors-in-variables model is obtained and standard
estimation procedurestypically fail to attain consistency. But by exploiting the full
implications of the expected profit maximization hypothesis that gives rise to ex ante cost
functions, it is shown that the errors-in-variables problem can be effectively removed,
and consistent estimation of the parameters of interest can be achieved. A Monte Carlo
experiment illustrates the advantages of the proposed procedure as well as the pitfalls of

other existing estimators.

Key words: cost function, duality, expected profit maximization, nonlinear errors-in-

variables, stochastic production



PRODUCTION RISK AND THE ESTIMATION
OF EX ANTE COST FUNCTIONS

1. Introduction

Following the pioneering work of Shephard (1953), Diewert (1971), and McFadden
(1978), the cost function approach has proven very useful and popular in applied
production studies. Insofar as the hypothesis of cost minimization is correct, estimating a
cost function is usually deemed preferable to estimating a primal specification of the
technology because, by using input prices instead of input quantities on the right-hand
side of estimating equations, one removes a potential source of simultaneous equation
bias. Specifically, in the cost function framework input choices are modeled as afunction
of input prices and the output level. But, as emphasized in the recent article by Pope and
Just (1996), a problem then arises when the production technology is inherently
stochastic. Such a caseis very important in agricultural and environmental production
models, where climatic and pest factors outside of the producer’ s control affect realized
output in anontrivia fashion. When producers make their input choices prior to the
resolution of this production uncertainty, the standard cost function specification (which
is conditional on the realized output level) is not relevant. In this setting one should
instead study input choices conditional on the expected output level, i.e., estimate the
structure of an “ex ante” cost function.

Estimating ex ante cost functions turns out to be problematic because the expected
output level that isrelevant for the cost-minimization problem is not observable. Pope
and Just (1996) propose a solution that estimates the expected output level jointly with
the cost function model, and they argue that their procedure yields consistert estimation
of the parameters of the cost function. This interesting approach exploits duality to
recover the form of the production function that isimplied by the cost function being
estimated, and then uses this production function, together with observed input quantities,
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to estimate the (unobserved) expected output level. But this representing unobserved
expected output as a function of inputs introduces simultaneity in the specified model.
This simultaneity is most apparent when the cost function is equivalently represented in
terms of cost-minimizing input demands, such that input quantities appear as both |eft-
hand-side variables (the dependent variables of input demand equations) and right- hand-
side variables (as variables “ estimating” expected output). Because of this simultaneity,
Pope and Just’ s (1996) ex ante procedure needs to assume that expected output isa
deterministic function of observed input quantities. Consequently, the proposed ex ante
estimation procedure achieves consistency if input choices hold deterministically. But
when input demands are stochastic (at least as far as the econometrician is concerned), as
one would expect in any empirical application, the consistency property of estimates
obtained from the ex ante procedure is called into question.

The crux of the matter isthat, in general, in empirical applications of the ex ante cost
model one should really allow for two distinct sources of errors: the primal error due to
the stochastic production function, and input demand errors. Thejoint presence of these
sources of errorsiscrucial. As shown in this paper, the presence of these two types of
errors typically implies that the ex ante cost model that one obtains belongs to the class of
nonlinear errors-in-variables models (Y. Amemiya 1985; Hsiao 1989). Unlikein
simultaneous equations models, where the relation of interest is specified to hold between
observable variables, in an errors-in-variables model one has arelation between
unobservable variables. If the errors-in-variables model were linear, then one could
exploit a useful equivalence between linear errors-in-variables models and linear
simultaneous equations models and obtain consistent estimation procedures. Fuller
(1987) provides an extensive analysis of linear errors-in-variables models. But in fact the
ex ante cost function model is inherently nonlinear. As noted by Y. Amemiya (1985), a
nonlinear errors-in-variables model is not isomorphic to a simultaneous equations model,
and for such nonlinear errors-in-variables modelsit is notorioudly difficult to obtain
estimators that are consistent in the usual sense.

In this paper | provide an explicit characterization of the ex ante cost function

problem and detail the conditions that give rise to a nonlinear errors-in-variables problem.
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In such a setting, the ex ante procedure |eads to inconsistent estimates. Appealsto
procedures that work in a simultaneous equations setting, such as three-stage least squares
using instrumental variables, are also unlikely to produce consistent estimates. But for the
stochastic production setting of interest here, however, | am able to derive a procedure that
in fact yields consistent estimators. The procedure exploits the economic context that
makes it interesting to estimate the ex ante cost function, namely, expected profit
maximization. By appealing to behaviora implications of expected profit maximization, |
am able to effectively remove the errors-in-variables problem from the model. Because of
itssimplicity, | believe that this approach is of considerable interest for a number of
applications. My claims about the inconsistency of existing estimators of the ex ante cost
function, and the consistency of my proposed procedure that exploits the implications of
expected profit maximization, are illustrated by means of a Monte Carlo experiment.
Related implications for modeling the dual structure of stochastic production are discussed.

2. The Problem
The problem is that of estimating the parameters of the cost function corresponding
to astochastic production function. Under production uncertainty it may not be obvious
that there exists a cost function that is “dual” to the production function, but Chambers
and Quiggin (2000) provide an appealing derivation of such duality under uncertainty in
the context of the state-contingent framework. To briefly characterize this approach in a

notation that is suitable for my later analysis, suppose that there are state-contingent
production functions G(x,€;d,), where xI R" isthe vector of inputs, eisavariable
indexing the state of nature, and q,, is the vector of all parameters appearing in the (state-
contingent) production function. The functions G(x,e;q,) are assumed non-decreasing
and quasi-concavein x. For notational simplicity, consider the discrete case such that
thereare S dtates of nature, i.e, el e,e,,....es .A typica (and general) production

objective for competitive producersis expected utility maximization, which here can then
be written as
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max g
X i

S
A LU pG(x.€;0,) - WX (1)
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where pl R,, istheoutput price, wi R, denotestheinput price vector, and ¢, 1 (0,1)

o S

represents the probability of theith state of nature (suchthat g ... /. =1). The utility

i=171
function U (.) isassumed to be strictly increasing and concave, thus allowing for the
possibility that producers may be risk averse.

Following Chambers and Quiggin (1998), a reformulation of this general production

problem that exploits the notion of cost minimization takes the form

Qo

max

I
1
Y Yors Ys |
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where y1 R, (i =12,...,S) denotes state-contingent output levels, and the cost function

Yy, Yoy Y5, W;0p) iSdefined as

(Vs Yaeenr Yo W) © min{wxx| G(x,€:0)2 ¥ i =1.2,..., S}, ©)
X

assuming that the state-contingent output vector (v, Y,,...,Ys) can be produced (i.e.,
$xI R suchthat G(x,eq,)2 y,," i). Thisiswhat Chambers and Quiggin (2000) call
the “effort cost function.” Whereas c(y,,Y,,..., Ys,W;0,) iSconceptualy attractive, its
empirical implementation is problematic. But a useful simplification is possible under
the additional assumption of risk neutrality (i.e., U(.) islinear), such that the producer

problem in (2) reduces to expected profit maximization and can be written as

mVaX{ py - C(¥,wa)} (4)

where y1 R, denotes a given expected output level, q isthe vector of all relevant
parameters (which here include the parameters that describe the states of nature), and the

cost function C(y,w;q) satisfies

_ . |
Cy.wa)° min  ic(y,Y, Y5, Wi0o)
|

Ay ? vg. 5)
i=1
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The cost function C(y,w;q) iswhat Pope and Just (1996) call the “ex ante cost
function.” In their derivation expected profit-maximization is postulated outright, such

that the producer problemis written as

m)?x{E[ pG(x,e;q,) - Wxx]} (6)

where E isthe mathematical expectation operator (which is defined over the distribution
of the random variable e). By defining an “expected output” function as

9(x;q) ° E[G(x,6,0,)], where q isthe vector of all relevant parameters (which here
include parameters of the distribution of the random variable e), this expected-profit-
maximization problem can be equivalently expressed in terms of two distinct problems.
First, the producer chooses the optimal input vector to produce a given level of expected

output, that is, he or she solves

mxin{w><x| YEQG(xa)} - (7)

Let X =h(y,w;q) denote the solution to problem (7). Then the ex ante cost function is
defined as C(y,w;q) © wh(y,w;q) . Given the optimal input choices summarized by
C(y,w;q), the second step isfor the producer to choose the optimal level of expected
output that maximizes expected profit, that is, to solve the program in equation (4).?
Note that the ex ante cost function C(y,w;q), by construction, reflects the
producers’ expectations in addition to the technological properties of the stochastic
production function. For example, changesin the producers beliefs about the distribution
of the random variable e would affect the structure of this ex ante cost function. Hence,
any empirical specification of the ex ante cost function is bound to represent, in some
sense, a reduced-form function whose meaning is somewhat different from what one
ascribes, from duality, to standard cost function. But C(Yy,w;q) here does describe a
relevant cost-minimization behavior in a parsimonious way, and therefore it is often of
considerable interest to estimate its parameters. Unfortunately, C(y,w;q) is conditional
on expected (or planned) output y, which is not observable, and hence direct estimation

of the ex ante cost function is not feasible.
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3. Ex Ante Cost Function Estimation
As Pope and Just (1996) correctly note, previous applications with data that likely
were generated by a stochastic process (such as agricultural production data) have simply

ignored the problem. That is, researchers have routinely estimated C(y,w;q) , where y is

the observed (ex post or realized) output, when in fact they should have been estimating
C(y,w;q) . Thisapproach, which is here labeled as the “ standard” approach, essentially

uses observed output y asthe proxy for the unobserved expected output y. But because
y “measures’ the true variable y only with error, naive (least-square) type estimators

that ignore this problem lead to inconsistent estimates.
To overcome the inconsistency of the standard cost function approach when
production is stochastic, Pope and Just (1996) propose an alternative and original

estimation procedure that entails estimating y simultaneously with the ex ante cost
function. First, recall that if Y were observable the parameters q could be estimated
efficiently by fitting the system of ninput demand functions h y,w;q , which, by
Shephard’s lemma, are related to the ex ante cost function by h y,w;q ° N C y,w;q .
But because ¥ is not observable, Pope and Just (1996) propose to replace it by the output
level which solves

max} ¥| mingl- C(¥,wq ) +wxxg? 15 (8)

yilw p

Denote such asolution by y°. Under standard regularity conditions, by duality theory it
must bethenthat y°° g(xiq).2 Hence, this method reduces to estimating the set of input
demand equationswith y replaced by the expected output function g(x;q) . Although
this point was perhaps not emphasized enough, it was certainly articulated explicitly by
Pope and Just (1996) (e.g., in the first unnumbered equation on page 240). With such a
substitution, to allow input demands to be stochasti c one would need to write the system
of input demand equations as

x=h g(x;q),w,q +e (9)

where € isthe error vector of input demands.
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In estimating the ex ante cost model, Pope and Just (1996) recognize and address two
problems. First, as they emphasize, popular functional forms for the ex ante cost function
C(y,w;q) (such asthetranslog) do not admit a closed-form solution for the underlying
production function (i.e., an explicit solution for the problem in [8]). In such a case, the
method that they propose can be useful because it provides a procedure that constructs
g(x;q) numerically as part of the estimation algorithm. Of course, this observation
should not obscure the basic point that, in this approach, g(x;q) (whether analytically or
numerically) is being used for the unobserved expected output level y. A second
problem isthat not all parameters are estimable by using the input demand equationsin
(9). Intuitively, thisis due to the fact that with (9) oneistrying to estimate a cost function
without observing output, which means that equations (9) define a simultaneous equation
system that is not identified. To overcome this problem Pope and Just (1996, p. 240)
suggest adding an equation to the estimating system. In my notation, | would then
estimate a system of n + 1 equations given by the ninput demand equationsin (9) plus
the production function equation, that is’

y=9(x;q)+u (10)
where u isan error term induced by the random variable e (i.e., u® y- E[G(x,e;q)]).

If the functional specification is such that the parameter vector q isnow identified,
then the system of equations (9)-(10) can be used to estimate this parameter vector. But
although joint estimation of equations (9)-(10) is, in principle, possible, it isnow apparent
that there is still amajor unresolved issue in this setting. Specifically, the systemof n + 1
equationsin (9)-(10) entails that the (possibly stochastic) vector of input quantities x
appears on the right-hand side of all equations. This simultaneity feature was not
explicitly discussed in Pope and Just (1996). Clearly, if input choices hold
deterministicaly (suchthat e® 0 inequations[9]), then their proposed estimation
procedure will produce consistent estimates of the underlying parameters. But if one were
to allow for the realistic feature of errorsin input demands, the ex ante procedure is

unlikely to yield consistent estimates.
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Recognizing that Smultaneous equation bias might be aproblem if input demands are dlowed
to be stochadtic has led Pope and Just (1998) to implement, in arelated setting, athree-dage least
Sguares estimation procedure that usesingrumentd variables (1V). But whether or not suchan“IV
exante’ gpproach leadsto condstent estimatesis an open question because, for reasonable
specifications of the stochadtic nature of input demands, the S multaneous equations representetion
aof (9)-(10) isnot the appropriate one. Rether, when both production and input demands are
gochadtic, the modd that is obtained islikely to giveriseto an erors-invariables problem. Because
the modd isdso inherently nonlinear, estimation techniques that yied condstent estimatorsfor
smultaneous equiation models do not typicaly work here (Y. Amemiya 1985; Hsao 1989).

4. Stochastic Input Demands and the Errors-in-Variables Problem

Itisclear at this point that the stochastic nature of input demands plays a crucial role
in the properties of the ex ante estimators discussed in section 3. To gain more insights
into this problem, it is necessary to be precise about the source of these error terms. Here
| analyze in detail what McElroy (1987) has called the “additive generalized error model”
(AGEM). Thisrationalization provides an attractive and coherent explanation for
stochastic input demands and for this reason was advocated explicitly in Pope and Just’s
(1996, 1998) empirical applications. Specifically, producers are assumed to minimize
cost conditional on a production function which, in our setting, can be written as

g X- €, , wherethe vector € isparametrically known to producers. Hence, optimal

input choices are written as

x=hy,wq +e (11)
with total production costs C° w:x given by

C=C(y,w,q)+wse . (12)

By assuming that the vector €, while parametrically known to producers, is
unobservable to the econometrician, the deterministic input demand setting at the
producer level trandlates naturally into an internally consistent stochastic input demand
setting for the purpose of estimation (McElroy 1987).
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Although clearly appealing from an economic point of view, the AGEM rationalization
for stochastic input demands, in conjunction with the assumed stochastic production
structure, turns out to create a problem for the ex ante estimation procedure. Specifically,
although one can find the expected output function g(.;q) dual to the cost function being
used (by solving [8], say), the argument of this function that is relevant for the purpose of

computing expected output y cannot be observed. In other words, if one defines
X° x- €, thenthe (n+1) equation system of input demands and production function
implied by the AGEM model is

x=h g(X;q),w,q +e (13)

y=9(X,q)+u (14)
where g(X,q) ° y. Clearly, the system of equations (13) and (14) cannot be estimated
directly because X isnot observed. Indeed, the problem here is completely analogous to

the one that | have set out to solve (i.e., estimating C y,w;q when Yy isnot observed).

Thus, with stochastic input demands and stochastic production, the estimating equations
for the ex ante cost model belong to the class of nonlinear errors-in-variables models. As
mentioned earlier, such models are conceptually distinct from simultaneous equation
models, and the estimators that apply to the latter do not typically work for the former (Y.
Amemiya 1985).

Whereas the AGEM specification is useful for an explicit characterization of our
problem, it should be clear that AGEM per seisnot crucial to obtain an errors-in-
variables model. Other internally consistent rationalizations for the stochastic terms of
input demands can yield an errors-in-variables problem when stochastic input demands
are combined with a stochastic output. Consider, for example, the following alternative
rationalization for stochastic input demands: agents make decision errors. To steer clear
of making inconsistent assumptions, one needs to be explicit about the decision
framework. In particular, the assumption here is that there are “input errors’ that cannot
be avoided, but producers are aware that such errors will be committed and they know the
distribution of these errors. Thisis equivalent to saying that producers choose X, say, but

the choice x =X +e isimplemented, where € denotes a vector of input demand errors
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satisfying E[e] = 0. Of course, X is not observable whereas x is observed. But once X
isimplemented, it is X which enters the production function (in other words, input errors
here are “ productive”).

Specifically, the production function is written as G(x,e;q,) ° G(X +¢ee;q,) , and
the expected-profit-maximization problem can be written as

max{E[pG(K+e,e;q0)- wx X+ e)]} (15)
X

where the expectation operator E hereis defined over the distribution of the random
variables e and €. In this setting the relevant expected output function is

9(X;0) ° E[G(X +e,e;q,)], where again the expectation operator E is defined over the
distributionof e,e , and q isthe vector of al relevant parameters (which here include
the parameters of the distributionsof e,e ). The ex ante cost function dual to the

expected output function is therefore defined as
C(y.wa)° min{wXx| y£g(x;q)} (16)
X

and the expected-profit-maximization problemin (15) can then be gated asthe programin (4). In
this setting the sochadtic input demands equations can bewrittenas x = h y,w;q + e, where by
Shephad'slemma, h y,w;q ° N, C y,w;q . Asbefore, these demand functions cannot be
edimated directly (because y isnot obsarvable). Furthermore, trying to estimate the expected output
y smultaneoudy with input demands|eadsto asysem with the structure of equations (13)-(14).
Hence, the esimating system entailed by this decison errorsframework isisomorphic to the mode
implied by the AGEM rationdlization discussed earlier (thetrue choices X arenot observed).
Based on the foregoing, it is apparent that allowing for stochastic input demands
introduces subtle issues for the interpretation and estimation of the ex ante cost function.
Recall that the hallmark of this approach isto exploit duality to recover the expected
output function dual to the adopted specification of the ex ante cost function. But duality
relies crucially on the assumed optimizing behavior of producers, and the dual form that

one recovers can only reflect the optimizing choices of producers. If the identity between
observed input quantities and optimal producer choicesis broken, by alowing stochastic
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terms in input demands, the internal consistency of the proposed ex ante procedure is
affected. The preceding structural explanations of input demands make it clear that the

ex ante procedure does apply in a special case: that of nonstochastic input demands. If
input demands do not have error terms (e© 0), then x =X and the ex ante procedure
effectively removes the errors-in-variables problem (while still allowing for stochastic
production). Similarly, the current discussion also identifies the other specia case that
arises when production is not stochastic (u® 0). In this case, which isimplicitly assumed
In most existing empirical applications, one has y =y and the errors-in-variables
problem disappears from the cost model (while still allowing for stochastic input
demands).® But with the joint presence of error termsin input demand equations and in
the producti on equation, exploiting duality does not eliminate “unobserved” variables and

the ex ante cost model is still affected by an errors-in-variables problem.

5. A “Full Information” Solution

Existing econometric results on the consistency of estimators for the nonlinear
errors-in-variables problem are rather discouraging for the purpose of estimating the
parameters of the ex ante cost function. The standard instrumental variable approach that
applies to nonlinear simultaneous equation models fails to achieve consistency in the
usual sense. Y. Amemiya (1985) has investigated the use of an aternative notion of
asymptotic convergence that applies when error variances (of the unobservable variable)
are small and sample sizes are large. But such an asymptotic theory may not apply to
typical econometric problems, where one cannot expect replicated experiments as the
sample size increases. Hausman et al. (1991) and Hausman, Newey, and Powell (1996)
also obtain a consistent estimator for a class of nonlinear errors-in-variables models when
there is asingle repeated observation on the unobserved regressor. But for the purpose of
estimating ex ante cost functions, such repeated observations on expected output are
usually not available (especialy when estimation relies on time-series data).

Fortunately, an alternative procedure to estimate the ex ante cost function suggests
itself in the context of the economic problem where the ex ante cost function is relevant.

Specifically, recal that interest in the ex ante cost function C(y,w;q) is motivated here
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by the assumption that producers solve the expected-profit-maximization problemin
equation (6). Because this expected-profit-maximization problem equivalently can be
written as (4), then from the optimality condition of problem (4) one finds the solution
y =9p,w;q), where the parametric structure of the ex ante supply function s(p,w;q)
isimplied by the structure of the ex ante cost function C(y,w;q) . This optimal expected
production level depends on the (exogenously given) output price p. If such an output
priceis observable (asisusually the case) then p provides the obvious “instrument” for
the unobserved expected output, and the function s(p,w;q) providesthe correct
nonlinear mapping for thisinstrument. Thus in this setting one can estimate the
parameters of the cost function by fitting the system of n input demand equations:

x=hs(p,wq),w,q +e . (17)

If so desired, the system of input demand functionsin (17) can be supplemented by
the expected output function equation, that is

y=s(p,w,q)+u . (18)

Note, however, that here equation (18) is not necessary in order to identify all the
parameters of the model. Unlike the ex ante input demand system in (9), the systemin
(17) typically allows for the estimation of all cost parameters (again, this is made possible
by the presence of the output price p).

The approach that | have suggested, based on the expected- profit-maximization
problem actually solved by the producer, will yield consistent estimates of the parameters
of the underlying technology because it effectively removes the errors-in-variables
problem. It bears repeating that my proposed approach does not require additional
assumptions relative to those inherent in the setting being analyzed. Specifically, the
hypothesis of expected profit maximization is already made to motivate interest in the
ex ante cost function; and, given that, the shape of the ex ante supply function s(p,w;q)
isfully determined by the cost function C(y,w;q) viathe optimality conditions for
problem (4). Although this aternative route to estimate the ex ante cost function is

reasonably straightforward, for many functional forms specifications of C(y,w;q) one

will not be able to solve explicitly for the ex ante supply function s(p,w,q) . Insucha
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case one could retrieve numericaly s(p,w,q), from a given specification for C(y,w;q),

as part of the estimation routine (in a manner similar to that implemented by Pope and
Just [1996] for their procedure).

6. A Monte Carlo Illustration: The Generalized CES Model

To illustrate the properties of the alternative estimators for the ex ante cost function,
| have constructed a Monte Carlo experiment that carefully represents all the features of
the problem being analyzed. For this purpose, | work with a cost function that admits a
closed-form solution for the dua production function. Hence, | can avoid the
complications of retrieving this function numerically as part of the estimation routine, a
computational task that featured prominently in Pope and Just (1996) but which is
peripheral to the main issue analyzed here. Specifically, | consider a generalized constant
elasticity of substitution (CES) cost function that allows for decreasing returns to scale
(such that it can be consistent with the expected-profit-maximization problem that has

been used to motivate the ex ante cost function).

6.1 Experiment Design

The AGEM specification of this CES cost function is written as

1
b g 1-s K g
C=y  aaw +a we (19)
i=1 i=1
wherea, >0 "i , é_ai =1,s >0,s * 1and b >1. Theparameter s isthe constant
i=1

Allen-Uzawa elasticity of substitution between inputs. The parameter b controls the

curvature of the cost function in y, and the condition b >1 ensures that the cost function

is (strictly) convex in y. From Shephard’s lemma, input demands consistent with this

cost function are

S

\ ls
x =a,y'w® daw?° +e i=1..n . (20)

k=1
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Consistent with the AGEM specification, the terms g are parametrically known to

the producers but are treated as random variables by the econometrician. Hence, the

parameter vector to be estimatedisq © (a,b,s) . For this particular cost function it is

verified that the (expected) production function (i.e., the solution to problem [8]) can be

derived explicitly as

S

o 1 s-1 bls-1]
gXx-€q = aapxx-§ s - (2D

i=1

Hence, equation (21) here can be used to implement the ex ante methods discussed earlier.
If producers maximize expected profit, then they will choose the level of expected
output such that the ex ante marginal cost equals output price, i.e., they will choose the

level of expected output

1 1
spwg = £ aavvl A (22)
Hence, the supply function in (22) here can be used to implement the proposed method
based on expected profit maximization.
Now the Monte Carlo experiment proceeds as follows.
A. First, | set the number of inputs at four (i.e., n =4) and the true values of the
parameters as follows:
a,=01 , a,=02 , a,=03 , a,=04 , b=12 , s =05
B. Next, | choose the design matrix of exogenous variables (the vectors of expected
output y and of input prices w), which is then held fixed throughout. Here | use an
initial sample of 25 observations taken from a recent application using agricultural
data (see the Appendix for more details). All variables are normalized to equal unity
at their sample mean.

C. Foreachreplication j=1,...,J, | construct a pseudo sample of optimal input
quantities by using equations (20), with the vector € generated as N O,W .
Similarly, for each replication | construct a pseudo sample of stochastic output as

y =y +u, wheretherandom term u isgenerated as N(O,f ?) . The standard
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deviation of each random variable is set to 10 percent of the corresponding mean.’

Thus, the output stochastic termisset at f = 0.1. For the covariance matrix of the
terms g | consider three cases: one with independent input demand errors W, , one
with such errors being negatively correlated W, and one with these input errors

being positively correlated W, . Specifically, the three covariance matrices for the

vector € that | consider are

2

Wiy FiWyWay  TiWyWas  TiW Wy,
2
r.w,w w rw,w rw,w .
\Ni — itV 22 i 25 33 ivv 22"V aq ' i =012
FiWpWas T WyWas W3 MWWy,

2
r inlW44 r iW22W44 r iW33W44 W44

For all cases| set w,, =001, w,, =002, w,, =003 and w,, =004. For W, | set
ro=0,for W I'set r,=-03,andfor W, I set r, =03.

D. For each covariance structure, | generate 2,000 pseudo-random sampl es of
observations (i.e., J =2,000) using 1,000 random draws and their 1,000 antithetic
counterparts.® For each sample, five models are estimated:

(i) Thetrue model consisting of four input equationsin (20). The results from this
model provide a useful benchmark for evaluating the feasible estimators.

(if) The standard model, which is the same as the true model but with y replacing ¥y .

(iii) The ex ante procedure suggested by Pope and Just (1996), consisting of five

equations (four input equations and the output equation with the structure of
equations [9]-[10]), that is

S
P = - :
X =aW:" aagXs aa W +e 1=1...n (23)
k=1 k=1
S

g L s bk
y= ag X s tu . (24)

k=1

(iv) The“1V exante’ procedure suggested by Pope and Just (1998), which
estimates equations (23) and (24) by nonlinear three-stage least squares using a

set of instrumental variables (which includes output price p).°
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(v) The new approach proposed in this paper, which uses the ex ante supply
function s(p,w;q) inlieu of the unobserved expected output Y .*° Because this
approach relies on the implications of expected profit maximization, it is
labeled “ max E[P].” Hence, here | fit the following system of four input

demand equations plus the output equation:

b 1 M“LH
b-1 N *s)V @b
k=1
1 1
poig Lo GO0
y= E aaka +Uu . (26)
k=1

6.2 Estimation
Each of the aternatives entails estimating asystem of M equationsusing T

observations.™ Thus, for each alternative the model can bewrittenas Y=f Z,q +v,

where Y isthe TM ™ 1 stacked vector of the |eft-hand-side variables, f . isanonlinear
(vector-vaued) function, Z isthe (stacked) TM ~ K matrix of all right-hand-side
variables, q isthe vector of all parameters to be estimated, and v isthe TM * 1 stacked
residual vector. The error terms are assumed to be contemporaneously correlated but
serialy independent, that is, E[wd =Y A |, where Y isthe M~ M contemporaneous
covariance matrix and | istheidentity matrix of order T. For four of the models
considered (true, standard, naive ex ante, and our new procedure) the system of interest is
treated as a standard nonlinear seemingly unrelated regression model. Iterated minimum
distance estimation is used (which converges to the maximum likelihood estimator).

Specifically, at each iteration stage the vector of parametersis found by minimizing
Y- f(Zqg) CY AL Y- f(Z.9)

where Y isthe current esti mate of the contemporaneous covariance matrix, which is
updated at each iteration step until convergence. For the IV estimator, on the other hand,
at each iteration the vector of parametersisfound by minimizing
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Y- f(zq) YA wWww 'We Y- f(Z,9)

where W isthe T™ q matrix of dl instrumental variables, and again the etimate of the

contemporaneous covariance matrix Y isupdated at each iteration step until convergence.™

6.3 Results
The results are summarized in Tables 1 to 4. Table 1 reports the average percentage
bias for each parameter, for each estimation method and for all three covariance

structures considered.”® Average percentage bias is computed as

148 qg/-q .
_a Ll 100,
N q

where dij is the estimated ith parameter in the jth replication. All five methods do a
reasonably good job at estimating the mean parameters a, . Also, the proposed new
model, based on expected profit maximization, is essentially unbiased and performs as
well as the (unfeasible) true model. It is clear, on the other hand, that both the standard
and the ex ante procedures yield estimates that are affected by considerable bias.
Specifically, the standard model gives very poor estimates of the scale parameter b (as
expected, because thisis the parameter attached to the unobserved output level). The

ex ante procedure does a better job than the standard model at estimating this scale
parameter, although the estimated b is affected by considerable biasin this case as well.
Furthermore, this ex ante model provides a much more biased estimator for the elasticity
of substitution s (for example, for the case of uncorrelated g, the ex ante estimate of s
has an average bias of 31 percent, whereas the standard model’ s biasis less than 1
percent). The IV ex ante procedure performs better than the ex ante approach, although
estimates are still affected by considerable bias.* As expected, changing the correlation
structure of the g does not affect the performance of the true model nor that of our
proposed model. It does not affect the performance of the standard model either, which is
intuitively sensible (because for the standard model it is the random term u embodied in

y, not the random vector €, that leadsto inconsistency). But changing the correlation
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structure of the g does affect the performance of the ex ante procedure; with positively
correlated g the biasin the scale parameter gets larger and the bias in the elasticity of
substitution gets smaller, whereas the opposite holds true for negatively correlated g .
The conclusions based on the average percentage bias of Table 1 are supported by the

average percentage root mean square errors (RM SE) reported in Table 2. The entries of
this table are computed as

N i 2
ié di - q; . 100 ,
N j=1

and thus account for the sampling variance of each estimator (in addition to the bias).
From Table 2 it is clear that the performance of the proposed model is comparable to that
of the true model, whereas both the standard model and the ex ante procedure yield
estimates that are far less precise.

Table 3 reports the average R?, over al replications, for each equation in each

estimation method. Specifically, the R? for each equation is defined as the square of the
correlation coefficient between observed and fitted |eft-hand-side variable. This table
provides an ex post check on the signal-to-noise ratio that we have implemented in our
Monte Carlo experiment. Note that the “fit” of the various modelsis similar to that of
many empirical applications. Indeed, in some sense the experiment has been conservative
in that the magnitude of the production error that | have used is relatively large compared
with the magnitude of the input demand errors (thus, my setup is somewhat slanted in
favor of both ex ante procedures relative to the standard procedure).

Finally, Table 4 illustrates the finite-sample properties of the five estimators
considered as the sample size increases. Specifically, to get an idea of the asymptotic
convergence of the various estimators | allow the sample size to increase from 25 to 400
(each time | double the design matrix, such that the exogenous variables are multiple
repeats of those reported in the Appendix). For the true model and our proposed model it
is clear that the small-sample bias converges to zero as the sample size isincreased. On
the other hand, for the standard model, for the ex ante procedure, and for the IV ex ante
method, the bias does not seem to be influenced by the increasing sample size. In
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particular, it is clear that the ex ante procedure leads to inconsistent parameter estimates.
Indeed, the ex ante procedure arguably produces worse results than the standard
approach. Of course, the ranking of these two inconsistent esti mators likely depends on
the magnitude of the randomness of the production function relative to the randomness of
the input demand functions (recall that the errors-in-variables problem isdueto u inthe

standard model, whereasiit isdueto € in the ex ante procedure).
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TABLE 1. Average per centage biasin estimated parameters (T = 25)

Covariance structure for theg’s

Zero Negative Positive
Correlation Correlation Correlation
True mode
a, -0.0099 -0.0053 -0.0076
a, -0.0059 -0.0022 -0.0038
a, 0.0026 0.0023 0.0014
b -0.0044 -0.0008 -0.0106
s 0.0217 0.0152 0.0133
Standard
a, -0.0707 -0.0333 -0.0967
a, 0.3036 0.3294 0.2829
a, -0.0900 -0.0944 -0.0892
b -28.1709 -28.0437 -28.2886
S -0.2483 -0.2961 -0.1942
Ex ante
a, -0.9651 -1.2241 -0.6876
a, -0.3532 -0.4397 -0.2513
a, 0.9321 1.2031 0.6587
b 10.0514 3.9848 15.8727
S 31.5560 39.5238 22.9752
IV exante
a, -0.6934 -0.7120 -0.6318
a, -0.1624 -0.2754 -0.0575
a, 0.2658 0.3369 0.1881
b 6.3656 2.9518 9.7748
S 18.8045 23.6668 13.5399
max E[P]
a, 0.0001 0.0054 -0.0011
a, 0.0004 0.0019 -0.0004
a, 0.0039 -0.0003 0.0030
b 0.0023 0.0005 0.0036
S -0.0932 -0.0273 -0.0714
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TABLE 2. Percentage RM SE in estimated parameters (T = 25)

Covariance structure for theg’s

Zero Negative Positive
Correlation Correlation Correlation
True model
a, 1.9789 1.6518 1.7121
a, 1.8872 2.0389 1.5723
a, 1.6508 1.8927 1.3787
b 5.7451 1.8892 7.8247
s 12.5260 8.8782 11.0176
Standard
a, 2.0570 2.3233 1.7462
a, 1.9383 2.2543 1.6151
a, 1.6710 1.8842 1.4034
b 29.9088 29.3855 30.4255
S 13.7342 15.3372 11.7556
Ex ante
a, 2.5069 29191 2.0513
a, 2.2654 2.6728 1.8754
a, 2.2115 2.5664 1.7860
b 21.3586 16.5466 26.4365
S 34.3807 42.1902 25.8993
IV exante
a, 2.5643 2.8354 2.2131
a, 2.1008 2.4242 1.7613
a, 1.8463 2.0761 1.5461
b 18.2406 15.4823 21.0803
S 24.3597 28.9177 19.4645
max E[P]
a, 1.9967 1.9478 1.6973
a, 1.6915 1.2049 1.4824
a, 1.5558 1.2857 1.3435
b 0.1681 0.0676 0.2095
S 11.7455 7.8556 10.8120
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TABLE 3. Average R? of estimated equations (T = 25)

Covariance structure for theg’s

Zero Negative Positive
Correlation Correlation Correlation
True model
X, egn 0.81 0.81 0.81
X, egn 0.87 0.87 0.87
X; egn 0.77 0.77 0.77
X, egn 0.81 0.81 0.81
Standard
X, egn 0.61 0.61 0.61
X, egn 0.74 0.74 0.74
X, eqn 0.53 0.53 0.53
X, €gn 0.60 0.60 0.60
Ex ante
X, €qn 0.77 0.71 0.84
X, egn 0.88 0.85 0.92
X, eqn 0.83 0.79 0.88
X, egn 0.89 0.86 0.92
y egn 0.68 0.71 0.64
IV exante
X, eqn 0.78 0.72 0.85
X, egn 0.88 0.85 0.92
X egn 0.84 0.79 0.88
X, egn 0.90 0.87 0.93
y egn 0.68 0.71 0.65
max E[P]
X, eqn 0.81 0.81 0.81
X, egn 0.87 0.87 0.87
X, eqn 0.77 0.77 0.77
X, egn 0.81 0.81 0.81

y egn 0.73 0.73 0.73
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TABLE 4. Average percentage biasin estimated parameters and sample size

T=25 T =50 T=100 T=200 T=400
True Model
a, -0.0099 -0.0053 -0.0023 -0.0011 -0.0005
a, -0.0059 -0.0016 -0.0008 -0.0004 -0.0002
a, 0.0026 0.0012 0.0006 0.0003 0.0001
b -0.0044 -0.0022 -0.0008 0.0001 -0.0004
S 0.0217 0.0111 0.0033 0.0030 0.0005
Standard
a, -0.0707 -0.0703 -0.0707 -0.0660 -0.0705
a, 0.3036 0.3069 0.3083 0.3093 0.3110
a, -0.0900 -0.0945 -0.0933 -0.0929 -0.0990
b -28.1709 -28.9322 -29.1527 -29.3885 -29.3740
S -0.2483 -0.4271 -0.4931 -0.5191 -0.5075
Ex ante
a, -0.9651 -0.9892 -0.9677 -0.9684 -0.9620
a, -0.3532 -0.3887 -0.4137 -0.4115 -0.4098
a, 0.9321 0.9380 0.9489 0.9363 0.9295
b 10.0514 8.8001 8.2177 8.0898 7.9065
S 31.5560 32.5978 33.0348 33.3495 33.3922
IV Exante
a, -0.6934 -0.5602 -0.5107 -0.4869 -0.4622
a, -0.1624 -0.0887 -0.0673 -0.0515 -0.0400
a, 0.2658 0.2351 0.2427 0.2314 0.2196
b 6.3656 3.3162 1.8069 1.0691 0.6704
S 18.8045 18.5404 17.8961 17.5097 17.2222
max E[P]
a, 0.0001 -0.0005 0.0001 0.0003 0.0000
a, 0.0004 0.0008 0.0005 0.0005 0.0000
a, 0.0039 0.0009 0.0003 0.0001 0.0001
b 0.0023 0.0012 0.0005 0.0003 0.0001
S -0.0932 -0.0276 -0.0172 -0.0088 -0.0041
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7. Further Discussion

The results of the Monte Carlo experiment provide a compelling example of the
del eterious consequences of ignoring production risk when estimating a cost function.
Indeed, these results are a bit more general in that it is not even necessary to postulate
production risk (in addition to input demand errors) in order to obtain an errors-in-
variables cost function model. The above setting would in fact be unchanged if no
production risk were present, but the error term u arose in amanner similar to the g,
that is, from an AGEM rationalization. In other words, one could postulate that the profit-
maximizing agents have a productionfunction written as y = g(x- €,q) +u, wherethe
terms € and u are known to the producer but are unobservable to the econometrician.
Defining Y=y - u, the relevant cost function for this case is also written as C(y,w;q),
where y isnot observed by the econometrician. Hence, estimation of a standard cost
function, conditional on observed output, is a problematic task for awider (and realistic)
class of problems than that of production uncertainty. But regardless of the source of the
production error u, the approach that | have suggested, based on the expected-profit-
maximization problem actually solved by producers, yields consistent estimates of the
parameters of the underlying technology.

As mentioned earlier, a practical problem is that for many flexible specifications of
C(y,w;q) one cannot solve explicitly for the ex ante supply function s(p,w,q) . Insuch
a case one could numerically retrieve s(p,w,q) as part of the estimation routine.
Alternatively one can recognize that, in this context, it is better to specify and estimate an
expected profit function rather than an ex ante cost function. Specificaly, if the value
function of problem (6) iswrittenas P p,w;q , then under standard assumptions this
expected profit function exists and is continuous, linearly homogeneous, and convex in
(p,w) . This expected profit function is completely analogous to the standard profit
function that obtains under conditions of certainty (as analyzed, for example, by Lau
1976). Thus, instead of specifying an ex ante cost function C(y,w;q), under production
uncertainty the analysis can proceed by specifying the parametric structure of the

expected profit function P p,w;q . By Hotelling’slemma, thisimplies a coherent
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structure for the output supply function s(p,w;q) =P ,(p,w,;q) and the vector of input
demand functions x(p,w;q) =- N,P (p,w,q) , where x(p,w;q) ° h(s(p,w,q),w,q).

Hence, from a proper parametric specificationof P p,w;q (say, Lau’'s[1974]
normalized quadratic model), one can derive a coherent set of output supply and input
demand equations that can be used in estimation. Because this route essentially removes
the errors-in-variables problem, estimation of this set of equations produces consistent
estimates of all the underlying parametersthat are identified. If interest centers explicitly
on the properties of the ex ante cost function, then one can exploit duality to retrieve the

latter (numerically or analytically) from the expected profit function, i.e., by solving

C(V,w,q)=m§><{ py- P (p,wq)}. (27)

The method that | have proposed to estimate the ex ante cost function model
crucially depends on the hypothesis that the expected-profit-maximization problem in (6)
applies. But how should one estimate the parameters of the ex ante cost function
C(Y,w;q) if such an expected-profit-maximization problem does not apply? It is
important to re-emphasize, at this juncture, that the cost function C(y,w,q) isof interest
precisely because of the expected-profit-maximization problem that producers are
assumed to face. This framework could in fact be extended somewhat and still allow for
the ex ante cost function C(y,w;q) to play ameaningful role. For example, both output
price and production could be allowed to be stochastic, under some suitable restrictions,
and the method that | have proposed to estimate C(y,w;q) could be adapted to this
broader setting.*® But more generally, when price and production risks are unrestricted
and/or decision makers are risk averse, the cost function C(y,w;q) may not be of much
interest anyway and, as discussed earlier in section 2, one may need to revert to more
general cost function concepts.

8. Conclusion

Under production risk, alikely object of interest in production studies is the ex ante cost

function, as noted by Pope and Just (1996). But when input demand equations (in
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addition to the production function) are also genuinely stochastic, the ex ante procedure is
unlikely to improve over the standard estimation procedure because it does not solve the
fundamental problem that arisesin this context, that is, that the ex ante cost model
inevitably leads to a nonlinear errors-in-variables problem. It is notorioudly difficult to
obtain consistent estimators for this class of models. For the particular case of an ex ante
cost function that naturally arises in the context of the expected- profit-maximization
hypothesis, however, | have shown that it is possible to achieve consistent estimation for
the parameters of the ex ante cost function. Specifically, by exploiting the full
implications of the expected-profit-maximization hypothesis one can effectively remove
the errors-in-variables problem. The results of a carefully structured Monte Carlo
experiment provide support for my claim about the properties of various estimation
procedures. In particular, the proposed procedure to estimate the ex ante cost function
yields estimates of the underlying technological parameters that are equivalent to those of

the (unfeasible) true model.



Endnotes

For example, only one of the many possible state-contingent outputs Y, is realized (and
therefore observed) for any one resolution of uncertainty.

It is assumed that C(y,w;q) is strictly convex in Y, which in turns requires the expected
output function g(X;q) to be strictly concave in X. This guarantees that the solution to
problem (4) is unique, if one exists.

Regularity conditions include that g(X;q) be quasi-concave in X, which is guaranteed by
the assumed curvature conditions for expected profit maximization [i.e., g(X;q) isconcave].

Again, if theform of g(.) that is consistent with the parameterization of C(.) isnot known,
then g(.) can be retrieved numerically.

Of course, here realized output can be written as a function of observed inputs, because in
this case input errors are productive. Hence, ¥y = g(X,q) + U, where
g(x;a) 0 E[G(x, e;qo)] (this expectation operator is defined only over the random variable

e, and hence the vector a differsfrom g because it includes parameters of the distribution
of e but not of €). But writing Yy = g(X,q) + U is not very useful in estimating the ex ante

cost function becauseitis g(X;q), and not §(X;a) , which in this setting is dual to
C(Y,w;0).

Of coursg, if €° 0, the system of N input demands would have to hold deterministically,
whereas if U° O then the output equation would need to hold deterministically. Hence such
cases are somewhat uninteresting from an empirical point of view.

Given the normalizations chosen for the exogenous variables, the mean of X is
approximately equal to a; and the mean of Y isequal to one.

For each draw | checked the regularity conditions (x - ) >0, which turned out to be
always satisfied.

| rely on four primitive instrumental variables: three input prices (deflated by the fourth input
price) and the output price (deflated by the fourth input price). | use the four primitive
variables plus their squares and cross products that, together with a constant, give atotal of
15 instruments that are used in the IV procedure.
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10.

11.

12.

13.
14.

15.

Consistent with the assumption of expected profit maximization under competition and
stochastic production, the price series used in the Monte Carlo experiment was generated as
p=C,(¥,w;q), where C;(Y,W,q) isreadily obtained from the CES cost function

specification in the text. Note that this output price seriesis used by both the IV ex ante
approach and by the procedure proposed here.

Note that the first two methods entail M = 4, whereas for the last three methods M = 5.

Thus, thisyields what is usually referred to as the nonlinear three-stage least squares
estimator (e.g., T. Amemiya 1985). As mentioned earlier, here q = 15.

Because é a, =1, only three a; parameters need to be estimated.

i=1
The performance of the IV estimator could be improved by the bias adjustment method
proposed by Y. Amemiya (1990). But such a computationally intensive method still does not
lead to consistency and in my context is bound to be inferior to the procedure | am proposing.

For example, as noted by Pope and Just (1996), in our setting output price can also be
allowed to be a random variable provided p and e are independently distributed. But then the
relevant output price for producers decision is the expected price p° E[ p] Af pis
observed (say, afutures price), the analysis of this paper carries through directly. If P isnot

observed, on the other hand, then the procedure proposed here needs to be augmented by a
model specifying how p isformed, say, by postulating “rational expectations’ (see Pesaran
1987 for a comprehensive introduction).



Appendix

Description of the Data
Ball et al. (1997) report a detailed data set pertaining to the U.S. agricultural sector
for the period 1949-1994. To implement our Monte Carlo experiment we take four input
price series from their data: labor (w,), materias (w,), energy (W), and capital (w,) .
The aggregation of input pricesin these four categories has been very common in the
applied literature (leading to the so-called “KLEM” models; see Berndt and Wood 1975

for an early example). Variables w;, w, and w, arereported directly by Ball et a.
(1997), whereas w, had to be computed from the three non-energy intermediate input

price series that they report. We did so by using Fisher’sideal index formula (with mean

values over the entire period as the base). The expected output series y was generated as

the fitted series of alinear regression of the quantity index for crop outputs, as reported
by Ball et al. (1997), on the following variables: price of crops (lagged one period), price
of livestock (lagged one period), price of the four inputs as described above (labor,
materials, energy and capital), and atime trend. Whereas the computations just described
were carried out for the entire period reported, for the purpose of our Monte Carlo
experiment we utilize only the last 25 observations. Finally, the five data series that we
utilize were scaled to equal one at the mean of the period that we use (i.e., for the period

1970-1994). The data so obtained, and used in the Monte Carlo experiment, are reported in
Table Al
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TABLE Al. Data used in the Monte Carlo experiment

y w, W, A w,
0.7587 0.4076 0.4549 0.3260 0.4446
0.7656 0.4137 0.4769 0.3397 0.4093
0.7739 0.4291 0.4985 0.3410 0.4176
0.7450 0.4987 0.6769 0.3709 0.4384
0.8026 0.5475 0.817/8 0.5463 0.4042
0.8779 0.5838 0.8364 0.5755 0.3460
0.8660 0.6495 0.8506 0.6225 0.5161
0.8997 0.7116 0.8493 0.6764 0.6261
0.9094 0.7715 0.8532 0.7145 0.6713
0.9349 0.8364 0.9401 0.9270 0.8419
0.9584 0.8820 1.0281 1.2636 1.1237
0.9854 0.8903 1.0919 1.4455 1.4533
1.0766 1.0416 1.0791 1.4508 1.6860
1.0014 0.9196 1.1315 1.4095 1.6439
1.0863 0.9969 1.1519 1.3832 1.8139
1.1295 11571 1.0834 1.3698 1.4502
1.1026 1.1394 1.0380 1.2592 1.2138
1.1055 1.0964 1.0693 1.1339 1.3617
1.0135 1.0547 1.2200 1.1423 1.2031
1.1447 1.3850 1.2874 1.1936 1.1098
1.1899 16175 1.2802 1.3550 1.1115
1.1932 1.6027 1.2831 1.3232 1.1237
1.1965 1.6334 1.2936 1.2816 1.2083
1.2147 1.8553 1.3301 1.2958 1.0642

1.2684 1.8786 1.3777 1.2534 1.3174
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