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1 Introduction

Agriculture is subject to substantial systemic risk of crop yield losses due to widespread

natural disasters. The systemic risk has been a major obstacle for the development of private

crop insurance markets. Driven by spatially correlated weather events, crop losses are highly

correlated within a certain area. As a result, the portfolio insurance risk associated with the

crop losses has been raised far above what it would be if individual losses were independent,

as proposed by Miranda and Glauber (1997). For example, Miranda and Glauber (1997)

find that the portfolio risk faced by U.S. crop insurers is about ten times larger than that

of conventional insurance lines. Large portfolio risk requires high premium rates to cover

the cost of bearing the systemic portfolio risk unless the cost is subsidized. Some national

governments, such as the U.S., are willing to provide subsidies and reinsurance for crop

insurance policies so that they are affordable to farmers. In this way, the cost of bearing the

systemic risk has been transferred to governments. For those countries where there are no

government subsidies, private crop insurers would have to charge high premiums, in order to

hold large enough reserves for the potential systemic loss or purchase expensive international

reinsurance. In this way, the cost of bearing the systemic risk is actually passed onto farmers

eventually. Consequently, farmers are either buying extremely expensive insurance to get

insured, or being exposed to huge crop loss risks.

Systemic risk in agriculture has made crop insurance markets not so effective or indepen-

dent as other insurance lines, imposing negative impacts on the welfare of farmers as well as

the development of farm sector. To be able to provide crop insurance, private insurers need

instruments to transfer the systemic portfolio insurance risk, either in terms of government

subsidies or high premium rates. Without sufficient subsidies, crop insurance is losing its

effect as farmers would hardly be willing to pay the extremely high premiums. Then in
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the face of a shock that causes large yield losses, farmers would have to resort to survival

strategies that could undermine their resilience and food security in the long-run. As a

result, farmers are trapped in chronic destitution and agriculture remains underdeveloped.

Even if government subsidization is available, farm sector is still affected by the systemic

risk because the funds used as subsidies could be allocated to other development activities

if there were no systemic risk. Therefore, if the systemic risk could be managed with more

efficient tools, farm sector would be substantially benefited from it with improved farmers’

welfare and enhanced agricultural development.

This document proposes a potential solution for the systemic risk problem in agriculture.

To better deal with the systemic risk, a central question is that whether the systemic risk

in agriculture is inherently non-diversifiable as its name suggests, or it is just because the

risk pool is too small to be diversified, that is, the so-called systemic risk can in fact become

diversifiable if the risk pool is large enough. Some studies have investigated the effectiveness

of diversifying the systemic risk by enlarging the risk pool. Wang and Zhang (2013) suggest

that the correlation of crop yields is observed to be decreasing with distance, so risk pooling

is effective and a private crop insurance market is possible in the U.S.. However, this study

ignores an important feature of systemic risk in agriculture — the risk is state-dependent.

Specifically, the correlation of crop yields tends to be much stronger during extreme weather

than in normal years (Goodwin, 2001). Therefore, the assumption of linear correlation of

crop yields does not seem appropriate because it may understate the magnitude of systemic

risk in extreme years. To measure the state-dependent systemic risk more correctly, Xu et

al. (2010) and Okhrin, Odening, and Xu (2012) apply copulas to model the correlation of

crop yields. However, these two studies have found that the risk pool is not large enough to

support a viable private index-based insurance within Germany and China, respectively.

2



To consider a large enough risk pool, we propose an investigation of the diversification

effect across multiple crops and multiple countries. If there was evidence that systemic

risk cound be diversified within the pool, then creating such a risk pool would bring many

benefits to farm sector and agriculture. First, the risk pooling would facilitate the optimal

use of crop insurance. As the risks in the pool were no longer being systemic, insurers

would be able to effectively pool the risk and reduce the insurance costs of all the individual

participants. Then the funds used to subsidize the insurance costs could be redirected

to other agricultural development activities. In addition, as the systemic risk could be

diversified in the pool, insurers would no longer need to hold large reserves by charging

extremely high premiums. Then with low premium rates farmers would be able and willing

to purchase crop insurance that helps them avoid being exposed to large yield losses risk.

With the risk pool established across the world, it would help reduce vulnerability, improve

resilience, and increase welfare for all the farmers, as well as protect food security and human,

social, and economic development, especially for the least developed countries in the world.

The effectiveness of the risk pool described above depends on two factors. First, risk

pooling across crops and countries has the ability to remove the systemic nature of risks in

the pool, that is, risks are diversifiable in the risk pool. Second, there are many enough

participants so that the systemic risk in the pool can be well-diversified because of law of

large numbers. In this proposal, we attempt to perform a preliminary study on two large

agricultural producing countries the U.S. and China and five major crops produced in these

two countries. We consider a synthetic area-yield insurance portfolio across both countries

and all crops at state/province-level as it was shown that the risk-reducing effect is the most

significant if area-yield insurance is provided at state-level (Miranda and Glauber, 1993). If

the study finds that the systemic nature of the insurance portfolio risk can be removed by
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the risk pooling across the crops and countries, the proposed study can be performed on

more crops and regions to see if systemic risk in agriculture can be finally eliminated.

To quantify the extent of area-yield insurance portfolio risk, it is essential to measure

the correlation among the area-yields. In this study, a copula-based approach is proposed to

model the joint behavior of the yield variables. As linear correlation cannot fully represent

the state-dependent correlation structure for crop yields, copulas can be a nice alternative as

they allow for greater flexibility in modeling correlations, such as tail dependence. By copula

modeling, more accurate measurements are obtained for the correlation of yield variables

as well as the risk in an insurance portfolio. Many copula models have been applied for

multivariate modeling in agriculture, including some advanced copulas such as vine copulas

and hierarchical Archimedean copulas (HAC) (Goodwin, 2012; Xu et al., 2010). Given the

potentially high dimensions, our study applies the hierarchical Kendall copula (HKC), a

recent innovation in copulas, to estimate the correlation among yield variables. Compared

to vine copulas and HAC, HKC allows for both flexibility and parsimony in modeling the

joint distribution of highly dimensional variables. The hierarchical structure of the HKC

ensures that it is parsimonious in terms of the numbers of copula parameters. Meanwhile,

the choice of the basic copula at each hierarchical level is not limited to any copula class,

which means that HKC is flexible in modeling various kinds of correlation structures, such

as asymmetric tail dependences.

The estimation of the HAC involves a sequential estimating procedure. Parameters of

the basic copulas at the lowest hierarchical level are estimated first. Parameters of the

copulas at higher levels are estimated consecutively by plugging-in the estimates of the

copula parameters from lower levels. To increase efficiency and accuracy of the estimation,

we use a Bayesian approach to takee into account estimation risk for the sequential estimation
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of the HAC parameters. This approach avoids accumulating large estimation errors at each

sequential estimating step, which is especially important given the high dimensions of the

HKC and a rather short time series of available yield observations. With the estimation

results, the systemic risk associated with an insurance portfolio can be assessed from the

predictive distribution of joint insurance losses.

The rest of the paper is organized as follows. We start with a review of previous work on

the relevance of systemic risk in crop yields and copula modeling of correlaltion structures.

The analytical model is then discussed in Section 3. Section 4 presents an application of the

model to empirical analysis. A simulation study is conducted in Section 5 to quantify the

systemic risk and diversification effect. Section 6 presents a sensitivity analysis. The last

section concludes this study and ends with a discussion about future work.

2 Literature Review

Miranda and Glauber (1997) propose that the systemic risk problem may be a serious ob-

stacle for an independent private crop insurance market to emerge. They investigate the ten

largest U.S. crop insurers and indicate that the insurers face portfolio risks from 22 to 49

times larger than if the risks were independent. They conclude that systemic risk poses a

pervasive problem for private crop insurance as the cost of maintaining adequate reserves to

cover the large systemic risk is prohibitively high, unless efficient instruments transferring

the systemic risk exist.

Several studies have attempted to identify the degree of the systemic risk at different

regional levels and the possibility of spatial diversification of the systemic risk. Goodwin
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(2001) evaluates the magnitude of spatial correlation of county-level corn yields for three

major corn producing states (Illinois, Indiana, and Iowa). The author calculates the Pearson

correlation coefficients along with a cubic regression function against the great-circle distance

between each pair of counties. This work demonstrates that although the spatial correlation

of corn yields is apparent, it does decay to a considerable degree as distance increases,

suggesting the systemic risk could be diversified in a relatively large area. However, the

author also mentions that the state-dependent feature of yield variables may affact the

diversification effects.

Wang and Zhang (2003) apply a spatial statistics approach to investigate the extent of

correlations of the county-level yield losses for three major crops (corn, soybeans, and wheat)

in the US. They indicate that the correlations of yield losses for each crop fade out when

the lag distance increases and point out that the systemic risk can be diversified if the risk

pool is large enough. Therefore, the authors suggest that the risk pooling is effective and a

private crop insurance market is possible in the U.S.

While these studies imply that it might be possible to diversify the systemic risk by

increasing the trading area, they consider the systemic risk for only one crop within certain

regions but not the risk across a number of crops. By contrast, Turvey, Nayak, and Sparling

(1999) develop a theoretical model to evaluate portfolio reinsurance risks associated with

agriculture. Eight crops in Ontario are selected to compose a portfolio, which implicitly

accounts for the systemic risk across multiple crops. The joint distribution of crop yields

is estimated by the mean and standard deviations of the sample over the years from 1985

to 1997. From the simulation results for reinsurance risks, the authors conclude that the

systemic reinsurance risk is sensitive to the portfolio composition, but they do not examine

whether the systemic risk can be diversified across crops or not.
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Taking these early studies as a whole, it seems that they are all based on the assumption

that the crop yields are linearly correlated. However, Goodwin (2001) indicates that the

extent to which the yields are correlated may be state-dependent though his work is still

based on linear correlations. He examines the spatial correlations of yields in normal years

and in extreme weather years. This study shows that the spatial correlations decay as

distance increases, but showing different patterns for the two cases. In normal years a faster

decay is observed while in extreme weather years the decay is much slower, which means

that the correlation of yields seems to be stronger in extreme years. Therefore, the author

concludes that assuming the spatial correlations are linear may understate the magnitude of

the systemic risk during extreme weather events.

Given the state-dependent feature of the correlations of crop yields, copulas can be con-

sidered as an effective alternative approach to modeling the correlations because of its greater

flexibility in representing multivariate correlation structures. Copula approach was first in-

troduced to empirical finance with regard to risk management by Embrechts, McNeil, and

Straumann (1999). Recently, copulas have become a standard tool in finance and risk analy-

sis. Widespread applications of copula approach have also been done in the field of insurance

and actuarial mathematics (Junker and May, 2005; Trivedi and Zimmer, 2007).

With its increasing popularity in finance and insurance, copula approach has been adopted

by recent researches on agriculture and crop insurance. Vedenov (2008) applies Gaussian and

kernel copulas to model the correlation structure between the county-level and farm-level

yields for Iowa corn. To illustrate the flexibility of copula functions, four different distri-

butions (normal, gamma, Weibul, and nonparametric kernel density) are fitted to model

marginal distributions of yields. From the estimation results, the correlation structures

between the yields at the two different aggregation levels are not constant for different real-
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izations of the yields, which can be effectively represented by applying copula approach to

determine the correlation structure.

Zhu, Ghosh, and Goodwin (2008) use Gaussian and t copulas to define the joint yield

and price risk of corn and soybeans for one county in Iowa. The authors compare these two

types of copula functions by calculating the Akaike Information Criterion (AIC) and the

log-likelihood value, obtaining a better goodness-of-fit for the t copula than the Gaussian

copula. This imlies tail dependence in the joint distribution of the yield and price risk as the

t copula exhibits tail dependence while the Gaussian copula does not. By simulating values

of prices and yields of corn and soybeans from the proposed copulas, the authors conclude

that pooling risks across crops into a single insurance portpolio is superior to crop-specific

insurance.

Several studies also make attempts to apply Archimedean copulas to investigate the

correlation structure of multi-dimensional variables in the context of agricultural insurance.

Xu et al. (2010) use three copulas from the Archimedean copula family to determine the level

of the spatial correlations of different weather indices across regions at different aggregation

levels in Germany. This work applies respective estimates of different copula functions

to simulate the expected payoffs and buffer loads for weather-based insurance in different

trading areas. The authors conclude that the possibility to reduce the systemic risk by

increasing the trading area is limited for weather-based insurance in Germany.

Okhrin, Odening, and Xu (2012) argue that the use of exchangeable Archimedean copulas

may cause some problems when estimating a high-dimensional correlation structure. They

point out that exchangeable Archimedean copulas model the whole correlation structure with

only one parameter. Consequently, in the case of high dimensionality, they may lead to large

estimation errors and the substructure of the correlations is hidden. In addition, exchange-
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able Archimedean copulas implicitly assume the exchangeability of the order of the marginal

distributions within the copula functions. This implies that the permutation of the copula is

symmetric, which is very restrictive for many applications, especially under high-dimensional

cases. In view of these limitations, the authors employ the hierarchical Archimedean copulas

(HAC) to explore the possibility of spatial diversification of the systemic weather risk in

China. With the HAC estimates for the correlations of the weather indices for 17 regions in

China, the authors simulate the buffer loads for a hypothetical weather-based insurance and

reveals a significant spatial diversification effect on the weather risks. However, the authors

indicate that despite the considerable diversification effect, the risk premiums are still too

high for a viable private index-based insurance.

3 Econometric Framework

This section describes the framework of the copula-based approach for multivariate yield risks

modeling. To measure the systemic risk inherent in crop yields, it is essential to determine

the correlation structure among the multivariate random yield variables. The copula model is

a very useful tool to model the joint distribution of the potentially high dimensional random

yields. The joint distribution of the yield variables, which is represented by copula functions,

can capture the potentially complicated correlation structure among these variables.
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3.1 Basic copulas

The copula was first introduced by Sklar (1959). Sklar’s theorem states that if F is an

arbitrary k-dimensional joint continuous distribution function, then the associated copula is

unique and defined as a continuous function C : [0, 1]k → [0, 1] which satisfies the equation

F (x1, . . . , xk) = C [F1 (x1) , . . . , Fk(xk)] , x1, . . . , xk ∈ R, (1)

where F1(x1), . . . , Fk(xk) are the respective marginal distributions.

In this way, the joint distribution of x1, . . . , xk can be described by the marginal distri-

butions Fi and the correlation structure captured by the copula C. Note that the copula

function is flexible in the sense that the variables xi can be modeled with any kind of marginal

distributions. Marginal distributions and the copula together uniquely determine the joint

distribution. In turn, if the marginal distributions are continuous, a unique copula exists

corresponding to the joint distribution. That is,

C(u1, . . . , uk) = F
[
F−1

1 (u1), . . . , F−1
k (uk)

]
, u1, . . . , uk ∈ [0, 1] , (2)

where F−1
1 (·), . . . , F−1

k (·) are the corresponding quantile functions. Therefore, the copula can

be defined as an arbitrary multivariate distribution on [0, 1]k with all marginal distributions

being uniform.

Let c denote the density function of the copula C. Then c can be described as

c(u1, . . . , uk) =
∂kC(u1, . . . , uk)

∂u1 · · · ∂uk
, (3)

The corresponding joint density function of x1, . . . , xk can then be written as
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f(x1, . . . , xk) = c [F1(x1), . . . , Fk(xk)]
k∏
i=1

fi(xi), (4)

where f1(x1), . . . , fk(xk) are marginal density functions.

Copula families are generally composed of parametric and nonparametric copulas. Em-

pirical studies mainly apply the parametric copula because of its superioriry in simulations.

There are a large number of different parametric copula famimies. The most frequently used

parametric copulas are the Gaussian (normal) copula and the Archimedean copulas, which

imply different kinds of correlation structures.

The Gaussian copula takes the form of

CN (u1, . . . , uk | Σ) = ΦΣ

[
Φ−1(u1), . . . ,Φ−1(uk)

]
, (5)

where ΦΣ is a k-dimensional normal distribution with zero mean and correlation matrix

Σ, and Φ−1 is the inverse distribution function of the standard normal distribution. When

modeling correlations, the Gaussian copula assumes linear correlations and implies no tail

dependence.

In contrast to the Gaussian copula, the Archimedean copulas can be applied to model

joint distributions with tail dependence. The general structure of a multivariate Archimedean

copula has the following form

C (u1, . . . , uk) = φ−1 [φ (u1) + · · ·+ φ (uk)] , (6)

where φ is called the generator of the Archimedean copula and φ−1 is inverse of φ.

Two widely used multivariate Archimedean copulas are rather effective in modeling asym-

metric tail dependence. One is the Gumbel copula that implies stronger upper tail depen-
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dence and relatively weaker lower tail dependence. The cumulative density function (cdf) of

the Gumbel copula can be written as

CG (u1, . . . , uk | θ) = exp

{
−
[
(− log u1)θ + · · ·+ (− log uk)

θ
]1/θ
}
, 1 ≤ θ <∞, (7)

where θ denotes the Gumbel copula parameter. θ = 1 represents independence and θ →∞

represents perfect positive dependence. The generator and its inverse of the Gumbel copula

are

φ (u, θ) = (− log u)θ , (8)

φ−1 (u, θ) = exp
(
−u1/θ

)
.

The Gumbel copula can also be used to model strong lower-tail dependence by applying

the survival Gumbel copula. Following Sklar’s theorem, the survival copula is defined as

follows:

Let F̄ be a k-dimensional joint survival function with continuous marginal survival functions

F̄1, . . . , F̄k. Then a unique survival copula C̄ exists such that

F̄ (x1, . . . , xk) = C̄
{
F̄ (x1) , . . . , F̄k (xk)

}
, x1, . . . , xk ∈ R. (9)

The other is the Clayton copula which implies stronger lower tail dependence and rela-

tively weaker upper tail dependence. The cumulative density function (cdf) of the Clayton

copula is given by

CC (u1, . . . , uk | θ) =
[
u−θ1 + · · ·+ u−θk − (k − 1)

] −1/θ, 0 < θ <∞, (10)
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where θ denotes the Clayton copula parameter. θ → 0 represents independence and θ →∞

represents perfect positive dependence. The generator and its inverse of the Clayton copula

are

φ (u, θ) =
1

θ

(
u−θ − 1

)
, (11)

φ−1 (u, θ) = (θu+ 1)−1/θ .

Another commonly used Archimedean copula is the Frank copula. While the Gumbel and

Clayton copula only allow for positive dependence, the Frank copula can exhibit both positive

and negative dependence. However, the Frank copula does not imply any tail dependence.

The cumulative density function (cdf) of the Frank copula is given by

CF (u1, . . . , uk | θ) = −1

θ
log

[
1 +

∏k
i=1(e−θui − 1)

(e−θ − 1)k−1

]
, −∞ < θ <∞, θ 6= 0, (12)

where θ denotes the Frank copula parameter. θ → −∞ represents perfect negative depen-

dence, θ → 0 represents independence, and θ → ∞ represents perfect positive dependence.

The generator and its inverse of the Frank copula are

φ (u, θ) = −log
(
exp(−θu)− 1

exp(−θ)− 1

)
, (13)

φ−1 (u, θ) = −1

θ
[log1 + exp(−u)(exp(−θ)− 1)] .

3.2 Hierarchical Kendall copulas

The basic copulas have become popular in modeling correlations of different kinds of struc-

ture. However, they are only effective for low dimensional situations, such as pair-wise cases.
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In higher dimensions, the multivariate models for a basic copula often turn out to be inflexi-

ble and restrictive. For example, the multivariate Gaussian copula requires the specification

of the correlation matrix that can involve a large number of parameters in high dimensional

cases (n(n − 1)/2 parameters for n-dimensional cases). Furthermore, the Gaussian copula

can only model symmetric dependence, not accouting for any kind of tail dependence. The

Archimedean copulas, while allowing for asymmetric tail dependence, imply symmetry of

the permutation of variables within the copula function. That is, the order of the marginal

distributions ui is exchangeable. This restriction seems to be very strict and implausible.

In addition, the Archimedean copulas represent the multivariate correlation structure with

only one single parameter, which implies no substructure of the correlations and may lead

to large estimation errors.

Recent research has developed some advanced copula models to deal with correlations

involved with high dimensional variables. Such copula models include vine copulas and hier-

archical Archimedean copulas. A vine copula is built by decomposing the joint multivariate

density into a product of pair-copulas, which allows for considerable flexibility in high di-

mensions. However, lack of parsimony can be a problem for the vine copula in very high

dimensions. The extreme numbers of parameters in such cases (n(n − 1)/2 parameters for

n-dimensional cases) may severely affect the availability of the vine copula from a computa-

tional viewpoint. Hierarchical Archimedean copulas are much more parsimonious in terms

of the number of the parameters (n− 1 parameters for n-dimensional cases). However, they

are more restrictive at the same time in that the building blocks are restricted to the class

of Archimedean copulas, which is too strict and not appropriate in some applications.

The hierarchical Kendall copulas, a recently developed innovation, have achieved both

flexibility and parsimony when modeling the joint distribution of high dimensional variables.
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A hierarchical Kendall copula is built by a hierarchy of copulas, which ensures that it is a

parsimonious model. However, in contrast to hierarchical Archimedean copulas, the choice

of the copula at each hierarchical level is not limited to any class of copulas. In other words,

the building blocks can be copulas of arbitrary types. As hierarchical Kendall copulas share

the property of flexibility as well as parsimony, they have been considered as an extremely

useful tool for modeling the potentially complex correlation structure among a large number

of variables. Therefore, in this study we focus on the hierarchical Kendall copula model and

apply it to reveal the correlation structure of the high dimensional yield variables. More

details about this copula model are introduced as follows.

3.2.1 Kendall distribution functions

An important component of hierarchical Kendall copulas is the Kendall distribution function.

Following Genest and Rivest (1993) and Brechmann (2013), for U := (U1, . . . , Ud)
′ ∼ C,

where C is a d-dimensional copula, the Kendall distribution function K(d) is defined as

K(d)(t) := P (C(U) ≤ t), t ∈ [0, 1] . (14)

For t ∈ [0, 1], it holds that t ≤ K(d)(t) ≤ 1 for t ∈ [0, 1] and K(d)(0−) = 0. From the

definition, the Kendall distribution function is the univariate distribution function of the

random variable Z := C(U). Thus it holds that K(d)(Z) ∼ U(0, 1).

It is in general complicated to derive the Kendall distribution function in explicit form

for a given copula. A recursive formula is given by Imlahi et al. (1999):
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K(d)(t) = K(d−1)(t) +

ˆ 1

t

ˆ 1

C−1
u1

(t)

· · ·
ˆ 1

C−1
u1,...,ud−2

(t)

ˆ C−1
u1,...,ud−1

(t)

0

c(u1, . . . , ud)dud . . . du1, (15)

where K(d) denotes the Kendall distribution function of the d-dimensional copula C with the

density c and K(d−1) denotes the Kendall distribution function of the (d − 1)-dimensional

margin of the first d−1 variables. The formula is also involved with the inverse of the copula

quantile function C−1
u1,...,ur

which is defined as

C(u1, . . . , ur, C
−1
u1,...,ur

(z), 1, . . . , 1) = z, (16)

for r = 1, . . . , d− 1, and

C−1
∅ (z) := z,

for z ∈ (0, 1).

The usually high-dimensional integration and nonavailability of the copula quantile func-

tion in explicit form in equation (15) often make it not possible to determine the Kendall

distribution function explicitly. One exception is the Archimedean copulas. Barbe et al.

(1996) derived the Kendall distribution function for a d-dimensional Archimedean copula

with generator ϕ as

K(d)(t) = t+
d−1∑
i=1

(−1)i

i!
ϕ(t)i(ϕ−1)(i)(ϕ(t)), (17)

for t ∈ (0, 1], where (ϕ−1)(i)(·) denotes the i-th derivative of ϕ−1.
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3.2.2 Definition of hierarchical Kendall copulas

Brechmann (2013) defined the Hierarchical Kendall copula from the Kendall distribution

function as following:

“Let u1, . . . , un ∼ U (0, 1) and let C0, C1, . . . , Cd be copulas of dimensions d, n1, . . . , nd,

respectively, where ni ≥ 1, i = 1, . . . , d, and n =
∑d

i=1 ni. Let K1, . . . , Kd denote the Kendall

distribution functions corresponding to C1, . . . , Cd, respectively. Define mi =
∑i

j=1 nj for

i = 1, . . . , d, and m0 = 0 as well as Ui := (umi−1+1, . . . , umi)
′

and Vi := Ki(Ci(Ui)) for

i = 1, . . . , d. Under the assumptions that

A1 : U1, . . . , Ud are mutually independent conditionally on (V1, . . . , Vd)
′
, and

A2 : the conditional distribution of Ui | (V1, . . . , Vd)
′

is the same as the conditional

distribution of Ui | Vi for all i = 1, . . . , d, that is, FUi|V1,...,Vd = FUi|Vi ∀i ∈ {1, . . . , d},

the random vector (u1, . . . , un)
′

is said to be distributed according to the hierarchical

Kendall copula CK with nesting copula C0 and cluster copulas C1, . . . , Cd if

(i) Ui ∼ Ci ∀i ∈ {1, . . . , d},

(ii) (V1, . . . , Vd)
′ ∼ C0.”

As Brechmann (2013) notes, the two assumptions can be interpreted as that, conditional

on the information of the nesting variables V1, . . . , Vd, the clusters U1, . . . , Ud are indepen-

dent of each other and also independent of other nesting variables. That is, while the

correlations within each cluster Ui are explained by the joint behavior of the random vari-

ables umi−1+1, . . . , umi for i = 1, . . . , d, the correlations among the clusters U1, . . . , Ud are

explained through the joint behavior of the unobserved factors V1, . . . , Vd, each of which has

a uniform distribution because Ci(Ui) ∼ Ki for all i = 1, . . . , d.

The above definition from Brechmann (2013) has indicated how the two-level hierarchical
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Kendall copula is built. The construction can be extended to an arbitrary number of levels.

Figure 1 is an illustration of a simple three-level hierarchical Kendall copula. For more

detailed descriptions of the general k-level hierarchical Kendall copulas, reference can be

found in Brechmann (2013).

Figure 1: Illustration of a three-level hierarchical Kendall copula
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4 Empirical Application

The empirical application in this section is a preliminary study intended to apply a copula-

based approach to examine the effectiveness of diversifying systemic risk across two countries

and five crops. The study focuses on two large agricultural producing countries, the United

States and China. Five major crops in these two countries are selected, which are corn,

cotton, rice, soybeans, and wheat. The joint distribution of the multivariate yield variables

is modeled by a hierarchical Kendall copula model.

4.1 Study area and data

The study area includes ten major producing states in the US and ten major producing

provinces in China for each crop except that only six states are available for the rice in the

US. So the US crop yield data include 46-dimensional state-level historical yields, and the

China crop yield data include 50-dimensional province-level historical yileds. The US crop

yield data, covering 44-year period from 1970 to 2013, were taken from the USDA’s National

Agricultural Statistics Service (NASS) databases. The China crop yield data, covering only

31-year period spanning from 1979 to 2009 due to the lack of data for other years, were taken

from China Statistical Yearbook.
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4.2 Detrending the yield data

Technological advancements in crop production result in a upward trend in crop yields over

time. To adjust for this trend in the histrorical yield data, an initial step is to apply a

detrending process. The observed yield data were detrended by estimating the equation:

yt = β0 + β1t+ εt, (18)

where t = 1970, . . . , 2013 for each of the US state-level yield data, t = 1979, . . . , 2009 for

each of the China province-level yield data. The corresponding yield trends were calculated

as the predicted yields from the above regression:

ŷt = β0 + β1t, (19)

Detrended yields to 2009 equivalents were generated as:

ydett = yt
ŷ2009

ŷt
. (20)

where t = 1970, . . . , 2013 for the US, t = 1979, . . . , 2009 for China. All the yield data used

in the remainder of this study is composed of the detrended 2009-equivalent yields.

4.3 Estimation

A hierarchical Kendall copula model was fitted to the detrended yield data. We adopted a

commonly used two-step procedure to estimate the parameters of the copula model. This

estimation method is called inference for margins (IFM) (Joe and Xu, 1996). In the IFM

method, the parameters of the marginal distributions are estimated first. Next, the copula
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parameters are determined given the estimated margins F̂Xi , i = 1, . . . , n. That is, we

estimate the parameters of the hierarchical Kendall copula based on the uniform variables

derived as ûji = F̂Xi(xji), j = 1, . . . , t, i = 1, . . . , n. As demonstrated by Joe (2005),

the IFM method provides consistent estimators of copula parameters, and almost loses no

efficiency but being computationally much more attractive compared to joint estimation of

the parameters of margins and copula functions.

4.3.1 Estimation of the marginal distributions

At the first step, we independently estimate the marginal distributions for each of the state

(province)-level yield variables. As crop yields tend to be negatively skewed (Ramirez, 1997),

the beta distribution has been frequently used in many studies to capture the potential

skewness for crop yields (Babcock and Hennessy, 1996; Nelson and Preckel, 1989). The beta

density function of yield variable y can be written as:

Beta(y | α, β, ymin, ymax) =
Γ(α + β)

Γ(α)Γ(β)

(y − ymin)α−1(ymax − y)β−1

yα+β−1
max

, ymin ≤ y ≤ ymax,

(21)

where Γ(·) denotes the gamma function, ymin and ymax are parameters that denote the lower

and upper limit of the feasible range for y respectively, and α and β are shape parameters.

We fitted a separate beta distribution to the historical data of each state (province)-level

yield variable yi. For each yi, the lower and upper limit were set as

ymini = 0,
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ymaxi = yUi + 1.5σi,

where yUi denotes the maximum observed yield of yi, and σi is the sample standard deviation

of yi. The shape parameters αi and βi were estimated by the maximum likelihood method.

4.3.2 Copula model selection

The second step of the IFM method involves the estimation of copula functions, which is

based on the uniform variables ui = F̂i(yi), where F̂i is the cumulative distribution func-

tion (cdf) of the estimated beta distribution for yield variable yi in the first step. Before

formal copula modeling, we show some visual patterns of the uniform variables regarding

the correlations among them (Figure 2). From the plots, we observe that while risk-pooing

across different types of crops within the US mitigates the magnitude of the systemic nature

(lower-tail dependence) of yield risks, combining the two countries (the US and China) seems

to eliminate the systemic nature of risks, leaving no tail-dependence at all.
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Figure 2: Scatter plots of the CDF of randomly paired detrended yields

Given the two geographic clusters (the US and China) and the observations above, hierar-

chical Kendall copulas are very suitable for modeling the correlations among these variables.

The nesting copula is chosen to represent the correlation between these two clusters. Within

each cluster, the correlation structure is built up by aggregating a group of variables by one

cluster copula at each hierarchical level. To reveal as much relevant information as possible

on the correlation structure as well as the substructure of the correlations, bivariate copu-

las were used as building blocks at all hierarchical levels. That is, we joined two variables
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together each time. As crop yields tend to be more highly correlated during widespread ex-

treme weather events within a certain area (Goodwin, 2001), resulting large systemic yield

losses, cluster copulas should be selected to be able to account for this strong lower-tail de-

pendence. In this study, we tried two different kinds of copulas that are effective in modeling

lower-tail dependence, the bivariate survival Gumbel copula and the bivariate Clayton cop-

ula, as the building blocks within each cluster. By contrast, we assumed no tail dependence

for the correlation between the two geographic clusters because of the long distance and so

almost uncorrelated weather patterns between the US and China. Therefore, the Gaussian

copula and the Frank copula, both of which imply tail independence, were chosen as our

alternatives for the nesting copula.

To specify the whole hierarchical structure within each cluster, we adopt hierarchical

clustering mechanism with an appropriate metric to measure the distance between (groups

of) variables. Variables with shorter distance are aggregated at lower hierarchical level. The

distance between two variables is determined by the level of correlation between them. The

higher the correlation, the shorter the distance. As the copula parameter is increasing with

the associated (rank) correlation level for both survival Gumbel and Clayton copulas, the

distance can be measured by the value of the copula parameters. Specifically, following

Okhrin and Ristig (2012), the whole hierarchical structure was constructed in the following

recursive way. At the lowest level, a bivariate cluster copula was fitted to every possible

couple of the variables ui by the maximum likelihood method. We selected the couple

of variables (denoted as ū1 and ū2) with the highest level of correlation and denoted the

estimated bivariate copula and its parameter as C1 and θ̂1, respectively. Then we introduced

a pseudo-variable Z1 = C1

(
ū1, ū2; θ̂1

)
. At the next step, the remaining variables and the

pseudo-variable composed a new set. We proceeded in the same way considering this new
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set of variables. We chose the most highly correlated couple of variables from this new set

and obtained another pseudo-variable from the respective estimated bivariate copula. We

repeated this procedure until the whole hierarchical structure was determined.

4.3.3 Estimation of the copula parameters in the presence of estimation risk

The parameters of a Hierarchical Kendall copula with specified structure can be estimated

sequentially with the following algorithm given by Brechmann (2013). For a two-level hi-

erarchical Kendall copula CK with nesting copula C0 and cluster copulas C1, . . . , Cd, let

(uj,1, . . . , uj,n)
′
j=1,...,t be a sample of the hierarchical Kendall copula CK , where C0, C1, . . . , Cd

are copulas of dimensions d, n1, . . . , nd, respectively. Define mi =
∑i

l=1 nl for i = 1, . . . , d,

and m0 = 0. The estimates of the parameters θ0, θ1, . . . , θd of the copulas C0, C1, . . . , Cd

respectively are obtained by

(i) estimating θi based on (uj,mi−1+1, . . . , uj,mi)
′
j=1,...,t by the maximum likelihood method,

for i = 1, . . . , d, and

(ii) estimating θ0 based on the pseudo observations

v̂j,i := Ki(Ci(uj,mi−1+1, . . . , ujmi ; θ̂i); θ̂i), i = 1, . . . , d, j = 1, . . . , t, (22)

by the maximum likelihood method. This sequential procedure can be generalized to estimate

k-level hierarchical Kendall copulas by proceeding with more steps.

However, the above estimation procedure, which involves plugging-in the estimates θ̂i

from the lowest level to the highest level step by step, ignores estimation risk in general.

Given the high dimensions of the hierarchical Kendall copula applied in this study, ignoring
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estimation risk may lead to accumulating estimation errors at each sequential estimation

step, especially when we have only a short time series of available yield observations.

To increase efficiency of the estimation, we propose a different sequential approach that

takes estimation risk into account. This approach is based on Bayes’ criterion. With the same

specification as the previous algorithm, we obtain estimates of the parameters θ0, θ1, . . . , θd

by

(i) estimating θi based on (uj,mi−1+1, . . . , uj,mi)
′
j=1,...,t by the Bayesian method and ob-

taining the posterior density p(θi | uj,mi−1+1, . . . , uj,mi) for θi, for i = 1, . . . , d, and

(ii) estimating θ0 based on the pseudo observations

v̂j,i :=

ˆ
Θ

Ki(Ci(uj,mi−1+1, . . . , ujmi ; θi); θi)p(θi | uj,mi−1+1, . . . , uj,mi)dθi,

i = 1, . . . , d, j = 1, . . . , t, (23)

by the Bayesian method. This procedure can also be generalized to estimate k-level hierar-

chical Kendall copulas.

We used the proposed procedure to estimate the hierarchical Kendall copula based on

the yield data set. The cluster copulas (building blocks) and nesting copula are all bivariate

copulas. The posterior density for the bivariate copula parameter θ conditional on a sample of

two variables (u1, u2), according to Bayes’ theorem, is the product of the likelihood function

f (u1, u2 | θ) and the prior distribution π (θ) normalized by an appropriate constant:

p (θ | u1, u2) =
f (u1, u2 | θ) π (θ)´
f (u1, u2 | θ) π (θ) dθ

. (24)

Given a sample (uj,1, uj,2)
′
j=1,...,t of the variables (u1, u2), the likelihood function is given

by
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f (u1, u2 | θ) =
T∏
t=1

f (u1t, u2t | θ) =
T∏
t=1

c (u1t, u2t | θ) , (25)

where c(·, ·) is the copula density function derived by taking derivatives of the copula function

C:

c (u1, u2 | θ) =
∂2C (u1, u2 | θ)

∂u1∂u2

. (26)

For the bivariate survival Gumbel copula, the density function is derived as

c̄G (ū1, ū2 | θ) =

[
(− ln ū1)θ + (− ln ū2)θ

] 1
θ

+ θ − 1

ū1ū2

exp

{
−
[
(− ln ū1)θ + (− ln ū2)θ

]1/θ
}

[
(− ln ū1)θ + (− ln ū2)θ

] 1
θ
−2

(− ln ū1)θ−1 (− ln ū2)θ−1 , (27)

where ūi = 1− ui for i = 1, 2 are “survival variables”.

For the bivariate Clayton copula, the density function is derived as

cC (u1, u2) = (θ + 1)
(
u−θ1 + u−θ2 − 1

)− 1
θ
−2
u−θ−1

1 u−θ−1
2 . (28)

For the bivariate Frank copula, the density function is derived as

cF (u1, u2) = − θexp(−θu1)exp(−θu2)[exp(−θ)− 1]

{[exp(−θu1)− 1][exp(−θu2)− 1] + exp(−θ)− 1}2
. (29)

For the bivariate Gaussian copula, the density function is derived as

cN (v1, v2 | Σ) = |Σ|−
1
2 exp{− [Φ−1(v1),Φ−1(v2)]

′
(Σ−1 − I) [Φ−1(v1),Φ−1(v2)]

2
}, (30)
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where ΦΣ is a 2-dimensional normal distribution with zero mean and correlation matrix Σ,

Φ−1 is the inverse distribution function of the standard normal distribution, and I is the

identity matrix.

To prevent any effect of prior information on the estimation results, we selected a uniform

distribution as the prior for all the bivariate Archimedean copula parameter θ’s. The bounds

were selected so that a wide range of the support for θ is covered:

Gumbel : θ ∼ U (1, 100)

Clayton : θ ∼ U (0, 100)

Frank : θ ∼ U (−1000, 1000) .

Following Smith (2011), we selected the prior for the correlation matrix of the bivariate

Gaussian copula based on a Cholesky decomposition. The correlation matrix Σ can be

decomposed as

Σ = diag(Ω)−
1
2 Ωdiag(Ω)−

1
2 , (31)

where Ω is a positive definite matrix. And the matrix Ω can be decomposed as

Ω = RR
′
, (32)

where R = {ri,j} is a lower triangular Cholesky factor. To ensure the decompositions are

unique, we set ri,i = 1, for i = 1, 2. Then the correlation matrix Σ can be written as

Σ =

 1 r2,1√
1+r22,1

r2,1√
1+r22,1

1

 . (33)
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We assigned a non-informative prior distribution of r2,1 as r2,1 ∼ U(−100, 100) to cover a

wide range of the support for the correlation matrix.

We used the above Bayesian models to estimate the copula parameters by simulating the

posterior distribution by Markov Chain Monte Carlo (MCMC) methods. MCMC techniques

avoid explicit evaluation of the rather complex integrals that is hardly possible in this study.

For each of the copula Bayesian models, three chains of 600,000 iterations were run from

different initial values. The first 300,000 iterations were discarded as a burn-in period.

To reduce the autocorrelation, we saved every 30th iteration of each chain. The adequate

convergence was confirmed by both the Monte Carlo error (<0.001) and the Gelman-Rubin

(1992) test (the potential scale reduction factor is 1) for all parameters.

Note that within each of the two clusters (the US and China), the Bayesian inference

for the parameters of the cluster copulas was based on all the available data. For the US,

it was based on the historical yield data covering 44 years (1970-2013), and resulted in the

pseudo observations v̂1970,us, . . . , v̂2013,us. For China, it was based on the historical yield data

covering 31 years (1979-2009), and resulted in the pseudo observations v̂1979,ch, . . . , v̂2009,ch.

As we do not have the historical yield data for China before year 1979 or after year 2009,

the Bayesian inference for the parameters of the nesting copula was based on part of the

US pseudo observations and all the China pseudo observations: v̂1979,us, . . . , v̂2009,us and

v̂1979,ch, . . . , v̂2009,ch. This also demonstrates the flexibility of the hierarchical Kendall copula

model. Although the information contained in the US data before 1979 or after 2009 cannot

be used for the nesting copula, it still can be used for the cluster copulas withing the US.

With such a copula model, all the relative information in the available data can be exploited

instead of wasting some of it.

Kendall’s correlation coefficient is used in this study as a measure of association between
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the correlation level and the copula function, since it is indifferent to nonlinear monotonic

transformations. Following Nelsen (2006), the Kendall’s τ associated with Archimedean

copulas can be expressed as

Gumbel : τ = 1− 1

θ

Clayton : τ =
θ

θ + 2

Frank : τ = 1− 4

θ
+

4

θ2
´ θ

0
t

exp(t)−1
dt
.

The Kendall’s τ associated with the Gaussian copula can be written as

τ(vi, vj) =
2

π
arcsin(εij),

where εij is the (i, j) th element of the correlation matrix Σ of the Gaussian copula. Within

the U.S., the posterior mean of the Kendall’s τ associated with the cluster copulas ranges

from 0.111 to 0.698 as implied by survival Gumbel copula, and from 0.091 to 0.638 as implied

by Clayton copula. Within China, the posterior mean of the Kendall’s τ associated with the

cluster copulas ranges from 0.072 to 0.613 as implied by survival Gumbel copula, and from

0.046 to 0.575 as implied by Clayton copula. This indicates that there are certain levels of

positive correlations among the yield variables within each country.

The between-country correlations are calculated from the nesting copulas. The posterior

distribution of the Kendall’s τ associated with the nesting copulas was plotted in Figure 3.

From the graph, the posterior mean and median are very close to zero under all models. In

addition, with a posterior probability of 95%, the correlation is less than 0.151 (0.067) for

Gaussian nesting with survival Gumbel (Clayton) clustering, and less than 0.152 (0.003) for

Frank nesting with survival Gumbel (Clayton) clustering, all indicating that there is little
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positive correlation of the crop yields between the US and China. Therefore, it seems quite

possible that we could diversify the yield risks effectively across these two countries, which

has been investigated in the following simulation study.

Figure 3: The Posterior Distribution of the Kendall’s Correlation Coefficient for
the Nesting Copula
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5 Simulation Study

With the simulated copula parameters from the full posterior distribution and the estimated

Beta margins, a sample of predicted yields can be generated. The predictive distribution of

aggregated net insurance income at different coverage levels can then be obtained based on

the predicted yields. The systemic risk associated with an insurance portfolio is assessed by

the statistics of the predictive distribution of net insurance income.

According to Bayes’ Theorem, the posterior predictive distribution of a new unknown

observable ũ conditional on the observed data u is

p(ũ | u) =

ˆ
p(ũ, θ | u)dθ =

ˆ
p(ũ | θ, u)p(θ | u)dθ =

ˆ
p(ũ | θ)p(θ | u)dθ. (34)

Recall that we have independently simulated a sample of 30000 values from the posterior

distribution for each of the hierarchical Kendall copula parameters. So a sample of predicted

vectors of the uniforms can be generated by simulating the sth vector of uniforms from the

corresponding hierarchical Kendall copula with the sth simulated copula parameters, for

s = 1, . . . , 30000.

Sampling from a given hierarchical Kendall copula can be conducted with the following

algorithm provided by Brechmann (2013). To sample u1, . . . , un from a two-level hierarchical

Kendall copula CK with nesting copula C0 and cluster copulas C1, . . . Cd, we proceed by

(i) Sample v1, . . . , vd from C0.

(ii) Set zi := K−1
i (vi), where K−1

i denotes the inverse of the Kendall distribution function

Ki, for i = 1, . . . , d.

(iii) Sample u1, . . . , un from (Umi−1+1, . . . , Umi) | Ci(Umi−1+1, . . . , Umi) = zi for i =

1, . . . , d.
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This procedure can be extended for sampling from a general k-level hierarchical Kendall

copula by adding more iterations. Note that after sampling from the nesting copula C0,

simulating from each of the cluster copulas involves sampling from a general conditional

distribution U | C(U) = z. As the cluster copulas are all bivariate Archimedean copulas

in this study, we are to sample from the conditional distribution (U1, U2) | C(U1, U2) = z.

This can be accomplished by the conditional inverse method (Devroye, 1986), in which u1

is sampled from the conditional distribution U1 | C(U1, U2) = z and u2 is set to satisfy that

C(u1, u2) = z. As demonstrated by Brechmann (2013), the conditional distribution function

of U1 | C(U1, 1) = z is derived as

F1(u | C(U1, U2) = z) =

´ u
z
g1(u1)du1´ 1

z
g1(u1)du1

, u ∈ (z, 1), (35)

where g1(u1) =
´ 1

C−1
u1

(z)

´ 1

z
c(u1, C

−1
u1

(z))
∂C−1

u1
(z)

∂z
du1du2. When C is an Archimedean copula

with generator ϕ, F1(u | C(U1, U2) = z) can be written in closed form as

F1(u | C(U1, U2) = z) = 1− ϕ(u)

ϕ(z)
, u ∈ (z, 1). (36)

Therefore, u1 and u2 can be sampled with the following algorithm:

(i) Sample w from U(0, 1).

(ii) u1 = ϕ−1((1− w)ϕ(z)).

(iii) u2 = ϕ−1(ϕ(z)− ϕ(u1)).

Given the simulated vectors of uniform variates from each copula model, predicted yields

were obtained based on the estimated marginal distributions.

We consider an insurance portfolio composed of state (province)-level area yield insurance

contracts at different aggregated levels. For each state (province)-level insurance contract i,
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the indemnity paid for one unit area takes the form of

Ii = pi ∗max[λyei − yi, 0], (37)

where yi denotes the yield, yei = E(yi) denotes the expected yield, λ denotes the coverage

level, and pi denotes the base price of the crop associated with insurance contract i, which

represents the expected harvest time price at planting time. We consider two coverage levels

70% and 90% in this study. The base price is selected as the average price during the planting

month of futures contracts expiring at harvest time. The actuarially fair premium πi is equal

to the expected indemnity payment:

πi = E(Ii) = pi ∗ Emax[λyei − yi, 0] = pi ∗ E[(λyei − yi)I(yi ≤ λyei )], (38)

where I is the indicator function. The net insurance loss of insurance contract i can then be

written as

Li = Ii − πi. (39)

The aggregated net insurance loss L associated with an insurance portfolio is therefore the

weighted average of Li:

L =
∑

wiLi, (40)

where wi denotes the weight of insurance contract i, which is determined according to the

planting area in the region. Based on the simulated yields, we calculated the net insurance

losses and estimated the systemic risk inherent in insurance portfolios at different aggregated

levels.
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5.1 Diversification effect across the crops within each country

We first investigated the risk-reducing effect of diversifying among the five crops (corn, cot-

ton, rice, soybeans, and wheat) in the US. We assessed the diversification effect by comparing

the net insurance loss under three different scenarios: insuring the five crops separately, in-

suring them jointly under the estimated correlation structure, and insuring them jointly

under the assumption that the indemnities were independent of each other for the five crops

(benchmark). Table 1 presents the statistics of the distribution of net insurance income (the

opposite of net insurance loss) under the three scenarios. Recall that we used two kinds of

clustering copulas (survival Gumbel and Clayton) to model the within-country correlations.

We report the simulation results obtained from both copula models.

Since we are assuming fair premiums and ignoring other transaction charges, the mean

of the net insurance income is zero for all scenarios. At 70% coverage level, the standard

deviation is decreased from $2.45/acre to $1.77/acre by insuring the five crops jointly, while

it would be decreased to $1.54/acre if assuming independence, as implied by a survival

Gumbel-clustering copula model. Under the same copula model, the minimum observed net

income, and value at risk at 1% and 5% levels (VaR(1%) and VaR(5%), respectively) have

all been improved by combining the insurance policies across the five crops, but to a much

smaller extent compared to the independence scenario unless the net losses are very low. At

90% coverage level, the results are consistent with those at 70% coverage level. These results

reveal that there is some diversification effect across multiple crops, but it is less significant

than if risks were independent among different crops. This indicates that there exist some

positive correlations of yields among these crops.

Rather similar results are obtained under a Clayton-clustering copula model, showing that

the statistics are robust. The only big difference of the results between these two copula
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models is that the Clayton model implies a much greater maximum net loss than the survival

Gumbel model for all scenarios under both coverage levels. However, the diversification effect

(DE), which is defined as the percentage of the risk diversified off with the joint insurance

portfolio, is not that different between the two copula models even for the maximum net loss,

as reported in Table 2. We calculated the DE of insuring the crops jointly with the estimated

correlations, as well as the DE of insuring jointly assuming independence for comparison. By

taking a close look at the results, we found a pattern of the gap between the DE under the

estimated correlation structure and the DE under independence assumption. For relatively

small risks, such as losses around $2/acre, the gap hardly exists. As the risks become larger,

the gap is more and more obvious. For example, for losses around $10/acre, the gap is about

10%. For losses around $50/acre, the gap becomes about 20%. When losses are more than

$100/acre, the gap almost reaches 50%. This indicates that while diversifying relatively small

risks across multiple crops is effective, it becomes more and more ineffective when risks are

expanding. This result also proves the systemic nature of the risks inherent in crop yields

within a certain area, even for different kinds of crops. In summary, diversifying the systemic

risk across multiple crops within the US works well for relatively small risks. Relatively large

risks can only be diversified partly. The larger the risks, the smaller part of them can be

diversified.
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Table 1: Statistics of simulated distribution of net insurance income over five
crops in the US, expressed in $/acre

Survival Gumbel Clayton
Std Min VaR(1%) VaR(5%) Std Min VaR(1%) VaR(5%)

CL
70%

Separately 2.45 -59.12 -10.40 -2.05 2.95 -103.64 -10.74 -1.87
Jointly 1.77 -52.66 -7.01 -1.68 2.41 -98.46 -7.42 -1.71
Jointly
(ind.)

1.54 -38.59 -6.09 -1.68 1.76 -50.75 -6.52 -1.72

CL
90%

Separately 12.47 -134.48 -52.72 -24.67 12.97 -180.92 -53.48 -25.32
Jointly 9.64 -122.73 -41.15 -18.05 10.44 -175.69 -42.40 -19.38
Jointly
(ind.)

8.01 -77.40 -32.54 -15.53 8.02 -90.28 -32.08 -15.45

Table 2: Diversification effect (DE) by combining insurance contracts across five
crops in the US

Survival Gumbel Clayton
Std Min VaR(1%) VaR(5%) Std Min VaR(1%) VaR(5%)

CL 70%
DE 0.277 0.109 0.326 0.183 0.183 0.050 0.309 0.082

DE (ind.) 0.374 0.347 0.414 0.182 0.406 0.510 0.393 0.080
CL 90%

DE 0.227 0.087 0.219 0.268 0.195 0.029 0.207 0.235
DE (ind.) 0.357 0.424 0.383 0.370 0.381 0.501 0.400 0.390

Similar results were found for the risk-reducing effect by diversifying across the five crops

in China (see Table 3 and Table 4). The risks have been decreased by combining insurance

policies. However, just the same as in the US, the diversification effect is not as significant

as if risks were independent among the crops in China. This again demonstrates the positive

correlations of crop yields resulted from correlated weather pattern within a country. The

same pattern of diversification effect has also been found in the case of China, that is,
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risks are more difficult to diversify across multiple crops if the risks are in relatively larger

scales. Thus, it would be of interest to investigate whether large risks can be diversified more

effectively across different countries.

Table 3: Statistics of simulated distribution of net insurance income over five
crops in China, expressed in $/acre

Survival Gumbel Clayton
Std Min VaR(1%) VaR(5%) Std Main VaR(1%) VaR(5%)

CL
70%

Separately1.75 -35.89 -8.07 -1.92 2.54 -96.40 -8.83 -1.85
Jointly 1.17 -31.06 -4.94 -1.72 1.98 -80.73 -5.32 -1.75
Jointly
(ind.)

0.89 -13.49 -3.78 -1.70 1.24 -30.36 -4.66 -1.81

CL
90%

Separately8.89 -94.90 -36.25 -17.80 9.87 -180.13 -38.66 -19.02
Jointly 6.79 -86.90 -29.17 -12.24 7.66 -163.15 -29.10 -12.82
Jointly
(ind.)

4.21 -34.73 -14.43 -8.14 4.68 -52.27 -15.41 -8.72

Table 4: Diversification effect (DE) of combining insurance contracts across five
crops in China

Survival Gumbel Clayton
Std Max VaR(1%) VaR(5%) Std Max VaR(1%) VaR(5%)

CL 70%
DE 0.329 0.134 0.388 0.103 0.222 0.163 0.397 0.057

DE (ind.) 0.491 0.624 0.532 0.116 0.513 0.685 0.473 0.021
CL 90%

DE 0.237 0.084 0.195 0.312 0.224 0.094 0.247 0.326
DE (ind.) 0.527 0.634 0.602 0.542 0.526 0.710 0.601 0.541
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5.2 Diversification effect across the countries

To investigate the risk-reducing effect of diversifying across the US and China, we still com-

pare the net insurance loss under different scenarios: insuring the crops in the US and China

separately, insuring the crops in these two countries jointly under the estimated correlation

structure, and insuring them jointly under the assumption that the indemnities were inde-

pendent between the US and China (benchmark). Table 5 and Table 6 shows the simulation

results for the distribution of net insurance income and the diversification effect (DE) un-

der different scenarios, respectively. Recall that we also used two kinds of nesting copulas

(Gaussian and Frank) to model the between-country correlation. Along with the two kinds

of clustering copulas, there are 4 (2 × 2) different copula models for the whole correlation

structure of all the crop yields in the two countries. We report the results obtained from all

the four copula models.

The risks have been significantly reduced by diversifying across the two countries. For

example, at 90% coverage level and with Clayton clustering copulas, the standard deviation

is decreased from $9.00/acre to $6.20/acre with Gaussian nesting copula, and to $6.10/acre

with Frank nesting copula. The minimum observed net income is increased from a loss of

$169.18/acre to a loss of $100.01/acre for Gaussian nesting, and to a loss of $81.86/acre for

Frank nesting. Value at risk at 1% (5%) of net income is improved from a loss of $35.50/acre

($15.97/acre) to a loss of $23.69/acre ($11.66/acre) for Gaussian nesting, and to a loss of

$23.43/acre ($11.65/acre) for Frank nesting. Consistent results are obtained from all other

copula models at both coverage levels. The most striking is that the diversification effect

across countries is comparable to that if risks were independent between the US and China,

in terms of all standard deviation, minimum net income, and value at risk. That is, the
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diversification effect is quite significant no matter how large the risks are. Different from

diversifying across crops, diversifying across countries seems to remove the systemic nature

of the risks associated with crop yields.

Another thing to note is that the results do not change much for different copula models.

The only big difference, as indicated before, is that the Clayton clusering model implies a

larger maximum net loss than the survival Gumbel clusering model. However, the difference

has disappeared when calculating the diversification effect. This robustness suggests that

the results would not be affected much with different kinds copula modeling, which confirms

the stability and reliability of the estimated correlations among crop yields.
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Table 5: Statistics of simulated distribution of net insurance income over the US
and China, expressed in $/acre

Survival Gumbel clustering Clayton clustering
Std Min VaR(1%) VaR(5%) Std Min VaR(1%) VaR(5%)

CL
70%

Separately1.46 -37.40 -5.93 -1.70 2.19 -89.25 -6.33 -1.73
Jointly
(Gaus-

sian
nesting)

1.09 -23.50 -4.61 -1.47 1.44 -51.44 -4.89 -1.53

Jointly
(Frank

nesting)
1.13 -25.32 -4.63 -1.44 1.35 -47.25 -4.83 -1.48

Jointly
(ind.)

1.04 -24.47 -4.22 -1.43 1.55 -47.09 -4.80 -1.51

CL
90%

Separately8.16 -104.13 -34.93 -15.03 9.00 -169.18 -35.50 -15.97
Jointly
(Gaus-

sian
nesting)

6.02 -64.30 -23.39 -11.89 6.20 -100.01 -23.69 -11.66

Jointly
(Frank

nesting)
6.05 -60.83 -24.01 -11.68 6.10 -81.86 -23.43 -11.65

Jointly
(ind.)

5.82 -61.12 -22.38 -11.28 6.42 -110.10 -24.08 -11.81
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Table 6: Diversification effect (DE) of combining insurance contracts across the
US and China

Survival Gumbel clustering Clayton clustering
Std Min VaR(1%) VaR(5%) Std Min VaR(1%) VaR(5%)

CL
70%
DE

(Gaus-
sian

nesting)

0.281 0.405 0.259 0.159 0.287 0.410 0.247 0.108

DE
(Frank

nesting)
0.279 0.389 0.254 0.180 0.292 0.406 0.218 0.138

DE
(ind.)

0.285 0.346 0.289 0.161 0.289 0.472 0.242 0.126

CL
90%
DE

(Gaus-
sian

nesting)

0.288 0.343 0.355 0.225 0.293 0.401 0.329 0.268

DE
(Frank

nesting)
0.283 0.429 0.329 0.237 0.298 0.475 0.348 0.256

DE
(ind.)

0.287 0.413 0.359 0.249 0.287 0.349 0.322 0.261

6 A Sensitivity Analysis for the Selection of the Nest-

ing Copula

The simulation results indicate that diversifying the yield risks across countries has removed

the systemic nature of the risks. Rather than recognizing this as suggested by the historical
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yield data, it may be argued that it is because the selected nesting copulas, which repre-

sent the between-country correlation, imply no lower-tail dependence. Because of the long

geographic distance between the U.S. and China as well as the plots of the historical yields

(Figure 2), it seems reasonable to assume the weather patterns are not correlated in these

two countries and there is no tail-dependence for the correlation of the yields between the two

countries. However, to rule out the possibility that the selection of the nesting copula has

an effect on the diversification effect, we model the between-country correlation by choosing

nesting copulas that imply lower-tail dependence in this section. The simulation results are

compared to the results obtained before using nesing copulas that imply no tail dependence.

Results from using three alternative types of nesting copula with survival Gumbel clus-

tering are reported in Table 7. The Gaussian and Frank nesting copulas are the ones used

before as they imply no tail dependence. The survival Gumbel nesting copula is the one

that implies lower-tail dependence. From Table 7, the summary statistics and diversification

effect from the survival Gumbel nesting copula are almost the same as those from the other

two nesting copulas, which are also comparable to the independent case. Similar results are

found for the Clayton clustering case. As reported in Table 8, the Clayton nesting, which

implies lower-tail dependence, results in no significant differences in summary statistics and

diversification effect from the other two nesting types and the independent case.

The sensitivity analysis suggests that results obtained before are quite resilient to al-

ternative nesting copulas. Even if a nesting copula that allows for lower-tail dependence

is selected, alike diversification effect has been found and no systemic nature has been ob-

served in the yield risks between the two countries. This confirms the assumption that no

tail dependence exists for the between-country correlation and makes it convincing for the

significant diversification effect across the two countries.
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Table 7: Comparison of the simulation results from different types of nesting
copula with survival Gumbel clustering

Statistics of net insurance income Diversification effect
Std Min VaR(1%) VaR(5%) Std Min VaR(1%) VaR(5%)

CL
70%

Survival
Gumbel
nesting

1.13 -22.47 -4.77 -1.47 0.282 0.387 0.232 0.158

Gaussian
nesting

1.09 -23.50 -4.61 -1.47 0.281 0.405 0.259 0.159

Frank
nesting

1.13 -25.32 -4.63 -1.44 0.279 0.389 0.254 0.180

Ind. 1.04 -24.47 -4.22 -1.43 0.285 0.346 0.289 0.161
CL
90%

Survival
Gumbel
nesting

6.01 -60.49 -23.67 -11.79 0.285 0.343 0.324 0.235

Gaussian
nesting

6.02 -64.30 -23.39 -11.89 0.288 0.343 0.355 0.225

Frank
nesting

6.05 -60.83 -24.01 -11.68 0.283 0.429 0.329 0.237

Ind. 5.82 -61.12 -22.38 -11.28 0.287 0.413 0.359 0.249
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Table 8: Comparison of the simulation results from different nesting copulas with
Clayton clustering

Statistics of net insurance income Diversification effect
Std Min VaR(1%) VaR(5%) Std Min VaR(1%) VaR(5%)

CL
70%

Clayton
nesting

1.37 -46.23 -4.68 -1.48 0.289 0.475 0.241 0.143

Gaussian
nesting

1.44 -51.44 -4.89 -1.53 0.287 0.410 0.247 0.108

Frank
nesting

1.35 -47.25 -4.83 -1.48 0.292 0.406 0.218 0.138

Ind. 1.55 -47.09 -4.80 -1.51 0.289 0.472 0.242 0.126
CL
90%

Clayton
nesting

6.22 -91.29 -23.55 -11.71 0.283 0.454 0.333 0.249

Gaussian
nesting

6.20 -100.01 -23.69 -11.66 0.293 0.401 0.329 0.268

Frank
nesting

6.10 -81.86 -23.43 -11.65 0.298 0.475 0.348 0.256

Ind. 6.42 -110.10 -24.08 -11.81 0.287 0.349 0.322 0.261

7 Conclusions and Discussions

Systemic risk in agriculture has been inhibiting the establishment of independent private crop

insurance markets. Private insurers have to rely on subsidies or maintain prohibitively high

reserves for the large portfolio insurance risks. This has been hindering the development of

farm sector and lowering the welfare of farmers. This study has provided a potential solution

for this problem. The study takes a close look at the effectiveness of diversifying systemic risk

45



across five crops and two countries. The results have shown significant diversification effect.

In addition, diversifying across countries with a long distance seems to remove the systemic

nature of the risks. This indicates that the systemic risk can be diversifiable if the risk pool

is large enough. Thus, by including more crops and countries, it is possible to eliminate

systemic risk because of law of large numbers. One problem could be the availability or

accuracy of historical yield data in some other countries. Gathering yield data and eliciting

as much reliable information as possible from the possibly scanty data would be challenges

to solve in the future.

We apply a modern copula model, the hierarchical Kendall copula (HKC) model, to

estimate the correlations among the yield variables. The HKC is superior in that it achieves

both flexibility and parsimony when modeling correlations. The flexibility makes the HKC

model competent to represent various correlation structures. This can be useful to model

the complicated correlation structure among yield variables. However, a question may be

raised regarding how we choose the correlation structure that fits the best for the specific

problem in hand. In this preliminary study, a few alternative HKC models with different

building blocks are tried. They do not lead to much different results at this point. But

we still need some model selection criteria to figure out the most suitable one, especially if

big differences are implied from alternative models when we include more variables. The

parsimony of the HKC makes it quite efficient in modeling the correlations among high-

dimensional variables. However, as we are including more and more variables in the future,

the curse of dimensionality could be another problem that we have to deal with.

The copula-based correlation modeling methods proposed in this study could also be

applied in other financial areas to develop risk management tools and insurance products

for both agricultural and non-agricultural applications. It is easy to use the methods to
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deal with the data in other financial areas because the copula model separates the marginal

distributions and the correlation of joint variables. Thus it can be applied to variables

with arbitrary marginal distributions. The flexibility and parsimony of the copula model

also ensures that it can represent different kinds of correlation structures among potentially

high dimensional variables. Furthermore, estimation risk may play an important role for

conducting accurate and efficient risk management. It can be taken into consideration with

the proposed Bayesian approach to estimating copula functions in this study.
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