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INTRODUCTION AND BACKGROUND

Fruit and nut growers comtributed about six billion dollars to the
United States agricultural economy in 1981, according to USDA estimates
(USDA, 1982). Citrus fruits accounted for 32 percent of that total, grapes
represented 20 percent, and apples comprised 15 percent of the total. New
York State is the second largest producer of both apples (90 million dol-
lars) and grapes (36 million dollars) in the United States. 1In 1380 there
were 74,346 acres of apples in New York, according to the 1980 New York
Orchard and Vineyard Survey. Apple production is concentrated in the
Hudson Valley and along the shores of Lake Ontario in Western New York
(Figure 1). 1In those regions, the agricultural economy is heavily depen-
dent upon the apple industry.

One of the most difficult questions facing fruit growers is when to
replace trees and vines. The reason for replacing trees and vines is
declining profitability. Declining profitability can be the result of poor
management, aging trees or vines, declining ylelds, rising costs, declining
prices, insects or diseases, several consecutive years of bad weather,
changing market conditions or some combination of these factors.

Whatever reason a grower may have for replacing an orchard or vine-
yard, the result is always a substantial investment of time and capital.
The replacement of fruit crops is unique among crops in that the grower not
only must make the initial outlay for the trees or vines, for land prepara-
tion, and for planting; but the trees or vines, once planted, must be nur-
tured and cared for for several vears until they begin to produce fruit.

In the case of standard (full size) apple trees, a new planting may require
seven years until significant production begins. During those seven years,
operating expenses of nearly $2,200 per acre, exclusive of interest
charges, accumulate in addition to the initial establishment costs of
$1,000-52,000 per acre.

The problem of replacing apples is further complicated by changing
technology. The apple industry is undergeing major tramnsformations, and
the choice among alternative planting systems and tree sizes makes the
replacement of apple orchards a uniquely challenging problem. This project
focuses on the replacement of apple trees in New York State, but the
methodology is applicable to other tree and vine crops.

Background

Apples were introduced to Wew York State by the earliest gsettlers, who
carried seedlings and seeds from their homes in Europe. Plantings were
soon widespread throughout the state, as nearly every rural household pos-
sessed a small orchard for home consumption or a large orchard for commer-
cial sales. As the settling process leveled off in the 1%th century, the
number of orchards in New York began to decline. This decline in orchard
numbers was due in large part to the increasing urbanization of the popula-
tion. Fewer home orchards were maintained, leading to increased demand for
commercial production. Commercial producers, in turn, began to feel the
pressures of competition and increased specialization. The result was that
marginal orchard sites were abandoned. Climatic and soil limitationms
became critical under competitive conditions.
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1. Distribution of the New York State Apple Industry in Acres
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The apple industry entered the 20th century with a continuing trend
toward fewer and larger orchards. Innovations were limited mainly to cul-
tural practices, disease and insect contrel, and breeding for perfection of
varieties and disease resistance. The trees were still primarily full size
trees grown on seedling rootstocks, although some experimentation with size
control was imminent.

Dwarfed fruit trees, used for ornamental purposes as well as for their
fruit, have existed for many centuries (Tukey). There was not much
interest in their use for commercial fruit production, however, until the
early nineteenth century. During the nineteenth century, research focused
on vegetative propagation of fruit trees with the goals of size control and
uniformity of tree size. As more development cccurred, it became more
difficult to classify rootstocks, and the necessity arose for
standardization of rootstock material.

Hatton, continuing an effort initiated by Wellington in 1912, accom—
plished the task of classifying and naming 16 clonal rootstocks. Since
Hatton worked in East Malling, England, the series of rootstocks that he
identified was named the "East Malling", or "EM" series. Today there are.
more than Hatton's original 16 rootstocks in the "EM" (shortened further to
"M") series, with M-9 being the most widely used dwarfing apple rootstock.

In the 1920's it was felt that the available standardized dwarfing
rootstocks could be improved upon, and to this end work was begun on a
joint project by the John Innes Horticultural Institute, then at Merton,
England, and the East Malling Research Station. The EM series of root-
stocks had proven to be susceptible to the Woolly Apple Aphid (WAA). Fruit
growers in Australia were suffering considerable damage due to the WAA and
the joint breeding project between Malling and Merton was directed at
developing a WAA-vesistant series of rootstocks. TFrom the Malling-Merton
research was born the "MM" series of size-controlling, WAA-resistant root-
stocks. MMI06 and MM11ll are the two most commonly used rootstocks of the
MM series. Trees planted on these two rootstocks are generally referred to
as "semi-dwarf" trees because in size they are somewhat smaller than a
seedling but larger than a fully dwarfed tree.

Until the 1960's, there was very little interest in tree size control
on the part of U.S. growers. European growers adopted dwarfing rootstocks
much earlier, in the interest of obtaining higher production from limited
available land. 1In the United States, land was plentiful until very re-
cently, and growers were reluctant to adopt different technolegy. In a
report based on research conducted from 1964 to 1966, Snyder concluded that
"Unless there is a decided advantage in yield and cost of production, the
gsize-controlled tree may not be competitive with the so—far higher yielding
standard apple trees” (Snyder, p.20). Thus, in the mid-1960's, growers
were beginning to plant size-controlled apple trees, but they were not yet
realizing the full potential in increased yields and decreased relative
production costs that are available from higher density (more, smaller
trees per acre) apple plantings.

- As the decade of the 1960°s came to an end, apple orchardists began to
feel the same pressures that all of agriculture was experiencing. Higher
costs, especially for labor, and product prices which were not rising as



fast as costs, began to demand greater productive efficiency. It was wide-
1y believed that the use of dwarfing rootstocks and the switch to higher
density plantings would lead to improved efficiency. More growers began to
try higher density plantings, and with more experience and greater incen-
tive to realize the potential efficiency of the new technology, higher
density apple orchards came into their own in the 1970's.

The adoption of new technology brought with it a new set of problems.

In a report published in 1974 Downy et al. concluded that
".....increased tree density on dwarfing rootstocks may result in

increased production efficiency and profitability of the apple
orchard. Analysis shows that orchard profitability tends to increase
as tree density increases. However, the investment requirements and
managerial skills necessary for successful production, increase with
tree density” (Downy et al., p-20).

The industry was recognizing that higher density apple plantings had great
potential, but that growers should exercise caution in making the jump from
standard, full-size trees to high-density planting systems. In 1974, Funt
reinforced this opinion: “The grower should be aware that planting a high
density system means more risk than planting a medium density system.
Researchers and growers have had so little experience with these systems
that some serious problems remain to be solved and cthers may not even have
been discovered." (Funt, p. 105).

In the 1980%s, growers may choose among a wide variety of alternative
apple planting systems, virtually all of which depend upon clonal root-
stocks. - Tree size control is the predominant reason for using clonal
rootstocks, but there are other advantages:

1) Disease resistance — many clonal rootstocks are bred specifically
for resistance to diseases.

2) Uniformity - with proper use of clonal rootstocks, it is possible
to obtain an orchard containing trees of nearly identical size.

3) Adaptation -~ to specific environmental problems, such as 50115
that are poorly drained or that tend to be droughty.

The size controlling characteristic of many clomal rootstocks has attained
significance in the apple industry for several reasons:

1) 1In general, better quality fruit with higher color is obtained with
‘ smaller trees. Better quality apples of superior color command
higher prices.

2) Smaller trees are easier to prune, spray, and harvest than larger
trees. '

3) Less spray material is needed, on a per acre basis, because there
is less tree volume per acre and adequate spray coverage is easier
to obtain.



4) Orchards containing smaller trees require smaller, and hence less
expensive, equipment.

5) Harvest labor is more readily avallable for trees Whlch do not
require ladders for harvesting. Harvesting efficiency is greatly
increased on smaller trees.

6) The smaller trees, with some exceptions, tend to bear fruit earlier
in their 1ife cycle, which improves cash flow and profitability.

7) Smaller trees are generally more efficient in production, im that

the maximum number of apples per number of growing points increases
with decreased tree size.

As suggested earlier, plantings based on size-controlling clonal root-
stocks tend to have the following disadvantages:

1} Monoculture - if a devastating disease or insect enters a planting,
the problem may be intensified because the rootstocks were all
cloned from the same “"parvent”.

2) More Expensive - trees on dwarfing rootstocks cost more individu—
ally, and more of them per acre are required than in a planting of
seedling trees.

3) The rootstock/scion combination must be matched to the climate and
s0il under consideration.

4) The productive life span of some of the newer rootstock/scion
_ combinations is unknown.

5) Higher density planting systems require more intensive management .
The higher the tree demsity in a planting, the more sensitive the
planting is to cultural errors and climatic situations.

6} Use of extremely dwarfing rootstocks usually involves some form of
tree support. Poles or trellis systems commonly used are rela-
tively expensive.

.Many growers have recently begun to exhibit a reluctance to establish
high density apple plantings which require support systems. This reluc-
tance is due to the relatively high cost involved in purchasing, instal-
ling, and maintaining tree support systems. Researchers have addressed
this problem by developing a tree known as the "Interstem”. Interstem trees
congist of a well anchored rootstock which is planted in the ground, a center
stem piece, and the scilon, or top part of the tree which carries fruit of the
desired cultivar. Good anchorage, provided by the rootstock used in the
interstem trees, alleviates the necessity for tree support systems. Addi-
tionally, interstem trees can, within limits, be engineered to desired size
by adjusting the length of the stem piece. A disadvantage of interstem trees

is that they cannct be planted as close as fully dwarfed trees used in other
high density systems.

There are four general planting systems being utilized by New York grow-
ers: Standard, Semi-Dwarf, Interstem, and Dwarf in descending order of tree



size. General characteristics of these systems under New York conditions are
shown in Table 1. The grower clearly has several tradeoffs to consider
regarding the size of initial investment, the years to commercial yield, the
yield at maturity, and fruit quality. Generally, the higher the initial
investment the shorter the waiting time expected until a commercial crop is
produced, the higher the expected yields and fruit quality at maturity and
the greater the managerial skills required.

It is clear that a grower contemplating orchard replacement is Faced
with a baffling array of choices. The problem is complicated still further
by the general lack of information concerning the newer planting systems.
Cost information is needed for the various rootstocks, varieties, and plant-
ing systems currently available. Of even greater importance, yield data over
the productive lives of the new planting systems. would be helpful. Unfortu-
nately, many of the planting systems are so new that no one knows their
productive lives, and the "state of the art” in the apple industry is chang-
ing so rapidly that data collected on one system may be rendered obsolete by
new systems before a complete data set is, obtained.

Objectives

The general objective of this research is to analyze the two orchard
replacement questions for apples grown in New York State:

1) When should the current orchard be replaced?
2) With what system should the current orchard be replaced?
In meeting the general objective, two subobjectives are also met:

1) The development of a user-friendly, easily—accessible computer model

which can answer the two questions for an individual grower's
orchard.

2) Use of the model developed to analyze the replacement decision under
various economic and pomological conditions.

With these objectives in mind, the rest of this report includes a
review of the theoretical framework for developing the replacement model;
a step by step presentation of the model; sensitivity analysis on selected
variables using the model; and a summary, conclusions, and statement of the
limitations of the decision model.



Table 1. Characteristics of The Four Apple Planting Systems Commonly
Found in New York State

Required

Planting Initial Years to Mature Annual

Density Investment Commercial Yield Per Fruit
System TreesfAcre Per Acre Production Acre (bu.) Quality®
Standard 27-121 $1,200-2,200 7 -8 300 - 800 4
Semi-Dwarf 100-200 $1,800~2,800 5~ 6 500 - 1,000 3
Interstem  150-300 $1,900-2,900 4 -5 600 ~ 1,200 2
Dwarf 300-500 $§3,300-5,500 3 -4 600 - 1,200 i

# = highest quality fruit

1
4 - lowest quality fruit
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THEORETICAL BASIS OF THE REPLACEMENT MODEL

The apple grower censidering replacement of a block or an orchard of
trees faces a unique type of investment decision. The grower can choose to
retain the current planting for a few move years and ccllect a stream of
revenue which will presumably be either constant or decreasing, at least in
real dollars. Alternatively, the grower may choose to establish a new
‘planting of trees of the same or of a different type. If the cholee is
replacement, there will be a period of years during which there is a net
cash outflow. since the new trees must be maintained prior to beginning
their productive lives. Thus, the grower must somehow choose between
retaining the current stream of net cash inflows cor making a large initial
cash outlay, followed by a few years of expeunses with little cash inflow,
until finally the new trees come into full production.

The first problem iies in making the comparison between current dol-
lars and future dollars. This problem has been approached by utilizing the
concept of discounting. Using discounting, a stream of annual cash flows,
whether net inflows or net outflows, can be converted to a net present

value. Algebraically, the net preseat value of a stream of cash flows is
defined as:

(1) A =
T

C
t , Wwhere

I o~

0 (—1 +Tt)t

Ci¢ = the cash flow in vesr 1,
Ty = the rate of interest {discount) in vear i,
t =0, 1, 2, 3, ..... ., T, and

=3
i

the last year of the planning horizon.

The net present value equation has several implications. Most serious
consideration must be given to vy, the discount rate. The determination
of ry is made by an individual and is based upon the assumption that a
dollar today is worth more than a doilar tomorrow. Aside from pure time
preference, a dollar in the future is worth less than a dollar today for
two important reasons.

First. there iIs an opportunity cost associated with giving up current
doliars for future dollars. There are always other ways Lo use money cur—
rently held. Tt can be used for current consumption or it can be invested
for some rate of return, but in either case the cost of lost opportunity
must be comsidered when deciding whether or not to make an investment.

Secondly, there is always some degree of risk associated with any
postponement of current consumption or investment. An orchard is probably
less risky than drilling wildcat oil weils, and it is not as safe an
investment as U.S. goverament bonds. An individual, in determining a dis-
count rate, should chcose the rate of veturn from an investment which in
his or her best judgement has a risk factor similar to that of an orchard.
For example, if the rate of return om a particular Blue Chip stock were 11
percent and the analyst felt that the chances of an orchard failing entire-
ly were about the same as those for the Blue Chip stock, then 11 percent
would be that person's discount rvate.



It should also be noted that ry can be different for each year t.
This may be due to changes in perceptions regarding the opportunities
available in future years, or it may be due to an idea that orchards might
be more or less risky investments in a few years. It may also be an
adjustment for expected future rates of inflation.

This introduces ancther aspect of rp., If ry is a discount rate
which is inflation-free, then it is called a "real” discount rate. If r¢
includes some expected inflation, it is referred to as a "nominal” discount
rate. Algebraically:

1+ 1 +
(2) 1+rp= _ T orr o= e

et -1, where,
1+ i 1+ iy

Ty = real discount rate,

nominal discount rate, and

s
]

rate of inflation.

If real cash flows are being used in an investment analysis, the real dis-
count rate should be employed; if nominal cash flows are utilized, the
nominal rate of discount is correct. In this analysis, real discount rates
are used with real cash flows. Adjustment is made for risk in the sensi-
tivity analysis by varying yields and quality.

One further observation on the net present value formula is that as t
becomes larpe, the cash flows in periods farther in the future are dis-
counted more heavily. The implication for orchard replacement is that, the
sooner an orchard can generate a positive cash flow, and the larger the '
positive cash flows, the more valuable that orchard will be, ceteris
paribus. :

When one has determined the expected stream of cash flows for each of
several alternative orchard planting systems, and a rate of discount has
been established; a choice must be made among the alternatives. One method
of doing this is to employ the net present value (NPV} concept. A choice
is made by computing the NPV over the expected life of each alternative,
and rejecting those alternatives for which the NPV is negative using the
chosen discount rate.

Another means of evaluating alternative investments which enjoys wide
popularity among business executives and which could be applied to the
selection of the best among many orchard planting systems is the Internal
Rate of Return (IRR) method. The IRR approach is considered by many people
to be easier to visualize than the NPV method since it 1is not necessary to
prespecify a discount rate.

The IRR method involves finding the rate of discount such that net
present value is equal to zero. IRR is computed for each alternative
investment, and only those investments with IRR higher than some
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predetermined rate, in this case the inflation-free opportunity cost of
capital are considered. Algebraically:
T Ce

(3) A= 3 -t
t=0 (1 + IRR)t

where A = net present value = 0
€, = cash flow in year t,
IRR = the rate of discount,

0, 1, 2, 3, ...., T, and

t
T

[

the last year of the planning horizon.
The solution can only be found by trial and error.
The IRR rule has the following limitations (Brealey and Myers):

1) 1If positive and negative cash flows alternate, year to year, the
IRR rule gives either a meaningless rate of return or multiple
rates of return, depending upon the magnitude of the various cash.
flows. Sometimes there is no IRR at all.

2) 1If, as with apple orchard replacement, the investment projects are
mutually exclusive, the IRR rule cannot necessarily be used
directly to rank the investments or choose between them. The IRR
criterion is misleading, since at some discount rates it will lead
to selection of the investment which does not have the highest NPV

3) Finally, another problem with the IRR decision criterion occurs
when one cannot make the assumption that interest rates are con-
stant over time. When interest rates are not constant, there is
not a unigue IRR. ' '

The use of NPV avoids all of the aforementioned pitfalls. Changes in
signs in the cash flows do not affect the validity of the final result; it
is capable of handling multiple rates of discount; and investments that are
mutually exclusive can be ranked merely by choosing the one with the highest
net present value. TFor all of the above reasons, the IRR approach is dis-
carded as an alternative in this analysis.

The problem of orchard replacement is not entirely solved, however,
with the choice of the NPV method of evaluating alternative orchard planting
systems. Analysts, for the last 20 years, have been unable to apply the
net present value approach directly to the problem of timing of orchard
replacement.

Direct application of the NPV rule depends upon the ability to accept
investments (planting systems) for which the computed NPV is zero or posi-
tive. For example, if a grower with vacant land were presented with several
alternative new orchards having different expected cash flows but equal
expected productive lives, the NPV criterion could be applied directly, and
the choice could be made to plant the orchard with highest NPV.
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If, however, the situation involved an established orchard of age 25,
the added dimension of timing is introduced and the problem becomes one of
replacement. The replacement problem invclves answering two questions: When
to replace, and with what? Assume for the moment that the appropriate
replacement orchard has already been chosen, and that only the gquestion of
when to replace remains unanswered. In this case, direct application of the
NPV criterion would suggest a comparison of the NPV over the remaining years
of economic life of the established orchard with the NPV of the replacement
orchard. NPV cannot be used directly because there are two distinct time
horizons. The established orchard has relatively few years left in its
economic life, whereas the replacement orchard has a full economic 1life
ahead. Unless the two time horizons are equal, the NPV criterion will not
be able to fairly choose between keeping the established orchard and replac-—
ing with a new orchard.

Average Annualized Net Revenue

A procedure is needed for fairly comparing the stream of expected cash
flows from the current orchard with the stream of expected cash flows from
the replacement orchard. Economists have utilized a methodology which con~
verts the stream of expected cash flows from the replacement orchard into
“"average annualized net revenues"” (AANR). The AANR method was first applied
to the orchard replacement problem in a report on cling peach tree replace-
ment by Faris. Faris and Reed published a circular for the purpose of aid-
ing growers in making the cling peach tree replacement decision based on the
earlier work by Faris. The concept was also utilized by Perrin and Proctor
in a guide for the replacement of apple trees, by Khera and Crowe in what
is perhaps the most definitive work on apple tree replacement to date, and
by Gerling, also in the context of apple tree replacement.

There are two ways in which the AANR approach is used. 1In the first
case, employed by Perrin and Proctor, Gerling, and Khera and Crowe, AANR is
calculated by setting a lifespard for the replacement orchard, and then
amortizing the NPV of the orchard over its chosen 1life, using the annuity
factor. For example, if an NPV of £1,500 per acre is calculated from the
projected cash flows of a replacement orchard which is presumed tc have an
economic life of 30 years, its AANR is:

51,500 | 1= (4| = $1,500| 1 -(1.12)730
- 12

= $186 per acre with a discount rate of 12 percent. The decision rule in
this case says that if the expected net revenue next year for the current
orchard is less than $186, replace the orchard (Figure 2, point A).

In the second case, used by Faris and Reed and by Bauer, Rathwell, and
King in the analysis of peach orchards, AANR is calculated for each year in
the life of the replacement orchard. The expected annual net revenue from
the current orchard is then compared to the maximum AANR from the replace-
ment orchard. The orchard should be replaced when expected net revenue for
the next year is less than the maximum AANR from the replacement orchard.
For example, if the replacement orchard has expected net revenues as
indicated, and if the discount rate is 1l percemnt, the methodology proceeds
as follows:
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Figure 2. Graphic Representation of the Average Annualized Net Revenue
: (AANR) Replacement Methodology

Net Revenue, $

Expected annual net
revenue, curreat orchard

\ Maximum AANR,
—————— f-------~--=---~--~ A~ - - Replacement orchard
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Annualized Average Revenue

Year Net Revenue @ 11 Percent Accumulated NPV
13 $1,800 §172 $ 700
14 1,000 199 1,164
- 15 800 217 1,396
16 600 227 1,563
17 400 231 1,744
18 300 232 1,790
19 200 231 1,818
20 50 229 1,824

a S

The optimum in this case is obtained in the 18th year in the life of

the orchard, at maximum AANR of $232 per acre (illustrated by Figure 2,
point B). Using this variation of the AANR approach is more critical for
peaches than for apples, since peaches can experience a pronounced yield
decline in the later years of their lives, whereas apple yields tend to
decline gradually with age.

There are drawbacks to using the AANR methodology, especially in light
of recent developments in computer technology. First, the use of AANR
assumes that a replacement orchard has already been chosen. There is no
provision within the methodology, besides exhaustive enumeration, for choos-
ing the best among several alternative orchard planting systems. This
choice must be made prior to determining the optimum replacement time, and
it would probably be made based on a comparison of net present values for
the alternative orchards. In this case, a methodology which could optimize

both the time of replacement and the replacement system simultaneously would
be superior.

Secondly, the AANR method requires comparison of an actual or expected
cash flow with an average cash flow. On the one hand, the average cash flow
figure is some distance from reality since it is used to "smooth” a lumpy
stream of cash flows over a large number of years. On the other hand, the
use of expected cash flows based on last year's experience or on the exper-
ience of other growers may be misleading if, for example, there have been a
series of extremely poor or extremely good years in the business. 1If a
grower had just experienced four very poor years, he or she may assume that
next vear's revenue will also be poor, and the AANR criterion could suggest
replacement in the year just prior to a long upswing in orchard profita-
bility.

The third problem with the AANR methed is that it is essentially a
static analysis. Tt requires viewing the entire lifespan of both the cur-
rent and the replacement orchard in a snapshot, as in Figure 2. 1In order to
more closely approach reality, a different snapshot of both the current and
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replacement orchard systems must be taken each year, under the conditions

prevailing in that year. Prices, inflation, and expectations change from

year to yvear. While no analyst can predicet the future, a dynamic decision
framework allows more flexibility in the possible course of future events.
The AANR approach only allows the grower to make the replacement decision

year by year. There is no provision for what decision should be made, for
example, five years from now.

Dynamic Programming

There is a technique available which can solve the problem of when to
replace an orchard and choose the best among several alternative replacement
planting systems, while exhibiting none of the previously discussed undesir-
able characteristics of the AANR method. This technique is known as "dyna-
mic programming”.

| Dynamic programming is a general mathematical approach that can be used
"to solve a variety of problems having certain characteristics (Hillier and
Leiberman, Bellman, and Howard). A problem that can be solved using dynamic
programming must have the following characteristics:

1) The problem can be divided into stages. In this case, the stages
are yvears in which the orchard could be replaced. A policy deci-
sion is necessary at each stage. For this problem, the policy
decigion at each year in the life of an orchard is whether or not
to replace.

2) Each stage has states associated with it. The states are usually
the wvarious conditions in which the system could exist at a given
stage. For this problem the state is the age of an orchard in a

. given year.

3) At each stage, the policy decision transforms the system into a
state associated with the next stage. With an orchard, if the
current orchard is 15 years old in year three (stage 3) then a
decision to "keep" the orchard will result in a l6-year-old
orchard in year four. If the decision is to "replace” the
orchard, the state in stage four will be a new orchard.

4) An optimal policy for all remaining stages is independent of the
policy decisions made in previous stages. This is known as the
"principle of optimality” or the "Markovian Property”. 1In the
replacement case, this means that in the current state it is
unknown which system of what age was replaced that led to the
current state.

53) The solution procedure begins at the final stage, finding the
optimal policy for each state of the last stage, working backwards
until the optimal policy is found for the first stage. The back-
ward-moving sclution procedure is based upon a recursive relation-
ship which identifies the optimal policy for each state of stage t,-
given that an optimal policy for each state at stage (t+l) exists.

A general form of this recursive relationship is:
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LY J*(yt) = max./g%n. [It(yt,ut) + J*t+1(yt+l)]

where

uy = a vector of control variables;

Yy = a vector of endogenous variables;

J*
t+1(yt+1)= the value or cost of the optimal trajectory from

to
Vel yT, where T = terminal time;

It(Yts ug) = the value or cost of implementing control

strategy ug to go from y¢ to y, .,

While the backward-moving solution procedure works well for a certain
class of problems, there are occasions when this method becomes unwieldy.
1f, for example, a problem has many stages and/or many states, which is the
case with the orchard replacement problem, the search procedure for an opti-—
mal policy for each state of each stage becomes lengthy, and vast amounts of
storage space are required for all of the information generated as the solu-
tion procedure moves toward the initial stage. This problem is referred to
as the "Curse of Dimensiocnality".

Other solution techniques have been developed for solving dynamic pro-
gramming problems of a specific type. Howard developed an approach that can
be used when the following conditions are met:

1) The same states are present in each stage.

2) TFor each decision in each state of each stage, movement to the next
stage is determined by a vector of probabilities. The wvector of
probabilities is a row of transitional probabilities from a Markov
transitional probability matrix (Hillier & Lieberman).

3) There are a large number of stages.

The Howard approach to dynamic programming uses the Policy Iteration
method for finding an optimal solution. The Policy Tteration method is a
two step procedure involving the solution of a set of simultaneous equation
rather than working backward to a final solution as described above. The
Policy Iteration method consists of a Value-Determination operation and a
Policy Improvement routine (Figure 3). The Value-Determination operation
solves the system of simultaneous equations using one chosen policy. Then
the Policy Improvement routine uses the vector of solutions to the simulta-
neous equations found in the Value Determination operation to determine a
better policy, by maximizing or minimizing the cost or contribution in each
state. The maximum or minimum cost or contribution thus found for each
state becomes a new policy, and the Value Determination operation is repeat-—
ed, followed by the Policy Improvement routine. When the iterations of
Value Determination followed by Policy Improvement converge to identical
policies for successive iterations, the optimal policy is found.
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Figure 3. The Howard Policy Iteration Approach to Dynamic Programming

Choose a Policy
Value Determination operation.

Solves a system of simultaneous
equations using chosen policy.

Policy Improvement Routine.
Chooses a better policy by maximizing
or minimizing the contribution or cost
in each state as determined by the
Value Determination operation.

Is
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No

Yes

Optimal Policy

END
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The Howard approach to dynamic programming has been applied to machin-
ery replacement (Harsh and Milligan). The orchard replacement problem also
has the characteristics necessary for solution by the Howard approach. The

full model and its specific application to orchard replacement are described
in the next section.
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THE MODEL

The proposed orchard replacement model consists of two components, which
work together to form a computerized decision aid. The first component is a
simulation model designed to produce an after—tax cash flow for each year in
the economic life of the standard, semi-dwarf, interstem, and dwarf planting
systems described previously in Table 1. The second component is a dynamic
‘programming model which uses the after-tax cash flows produced by the simula-
tor to determine the optimal replacement time and the optimal planting sys-—
tem. The model uses an infinite planning horizon, but assumes that the maxi-
mun ecconomic life of all four systems is 30 years, forcing replacement in the
beginning of the 3lst year.

The Simulation Model

The purpose of the simulation model is to gemerate an after—tax cash
flow for each of the 30 years in the life of each of the four general plant-
ing systems being analyzed. The model was programmed in an interactive,
question-and-answer mode, to enable a person with limited knowledge of compu-
ters to use it. The model is very simple to operate; however, a user desir-
ing to change all 28 input quantities for all 30 vears in the lives of all
four planting systems could find the process time consuming.1

This orchard replacement model was designed to allow maximum flexibi-
lity. Each user has the option of employing data specific to an orchard,
or of utilizing the data which is stored in the model. The stored data
describes a representative 55 acre orchard for New York State. This data set
is based on recent work by Whitaker. Necessary modifications of Whitaker's
work to meet the objectives of this analysis are the result of conversations
with growers, agricultural economists, and pomologists. It is recommended
that growers carefully analyze the stored data and modify it in such a way
that it reflects, with some accuracy, the unique characteristics of the
particular orchard under consideration.

The complete stored data set is in Childs. Input prices, packouts, and
variable costs are summarized in Table 2. The representative machinery
complement consists of two tractors (60 h.p. and 30 h.p.). These two trac-
tors are used for different operations appropriate to their relative size for
the standard, semi-dwarf, and interstem plantings, while the small tractor is
used for all operations in the dwarf planting. In addition to the tractors,
there are an herbicide sprayer, a fertilizer applicator, and two sprayers.
Also assumed are an irrigation pump, an established well, and sprinklers with
sufficient pipe. Harvest equipmert costs are included in the per bushel har-
vest cost.

Only variable or operating costs, such as fuel, lubrication, and repairs
and maintenance, have been included for the machinery. Fixed costs are not
included since these costs are not affected by the replacement decision. It
is assumed that no change in the machinery complement is required because of

llf the model were adapted to another computer system, with different
visual capabilities, the time required for changing all inputs to fit a
particular orchard could be reduced substantially.
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Table 2. 1980 Capital Investments, Prices, Packouts, and Variable Costs
per Acre

A. TInput Prices

Ttem - ) ) Price
. Hourly wage rate eascssascss ctevesssansesasanesen s $‘4.60
. Hourly rate fOY MOWEY ceseasonssssanosanscncsnsssss 1.79
. Herbicide 1 cost (materials} .s:veevsonvascsncacsss 5.76

. Insecticide cost {materials) ccoviosnvascaccss Cean 5.90

1

2

3

&

5. TFungicide cost {(materialsS) sseecsreccucncsecannsanss 5.60
6. Thinning spray cosl -eseoecscosoc cacsssscssssasnsaas 10.00
7. AlAY COSL coceosvnsonasossssasssssossssossnscsasves 31,00
8 Ethrel cost escesvcaccacss cosrasecaa ceessseasss e 5.50
9. FertiliZer COSL svicesvssonsscsnsssnssscasssscscsnss 53.00
10. Beehive Tental COSE seessereererercoscoarssneanenes 25,00
11. Hourly rate for small tractor «..cossstscsscscsnsns 3.25

12, Hourly rate for large Crackor ..icsseesserasaassacs 5.40

13. Hourly rate for herbicide sprayer «.cececscecasnsns .35
14, Hourly rate for tree spraver (large) «v.:cececee cees 5.90
- 15. Hourly rate for fertilizer applicator .c.occccecvces .30
16. Mousebait co8t cosossn seeocessnseseassananua ceroona 3.30

17. Irrigation water cost, $/acre=foot ceoevsercsscsess 50.00
18. Irrigation pumping cost, $/acre-foot coocovcccocss. 125.00
19. Pruning equipment cost for year .e..casecicviaacons 5.00
20. NAA materials cOSL sceccacea ceerssassareescaananns . 18.00
21. Herbicide 2 cost (materials) e et eaa 5.76

22. Hourly rate for small tree Sprayer ccceowecs. ceraes 4.00
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Table 2. eontinued

B. Planting Density Harvest Costs

System Tree Type Trees per Acre Per Bushel Harvest Cost
Standard 1 121 $1.65
Semi-Dwarf 2 218 1.55
Interstem 3 218 1.45

Duwarf 4

454 1.35

€. Investment in Planting and Development

Tree Tree

Type Removal Fumigation Preparation Purchase Planting Training Other
1 $300 5500 $240 5 485 5120 520 ] 50
2 300 500 240 1,035 120 30 50
3 300 500 240 1,145 120 30 75
4 300 500 240 2,160 120 50 1,950

D. Apple Prices, Net of Packing and Other Charges per Bushel, 1981 (New York
State Averages) '

Grade Price
Cell Pack $7.65
Bag ' 4.75
Juice 1.65
Cull .10

E. Quality Distribution, by Tree Type, as Percent of Total Yield

1 2 3 A
Cell Pack 50% 607 65% 70%
Bag 24 24 20 20
Juice 25 15 14 9

Cull i 1 1 1
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Table 3. Input Items Required to Compute After-Tax Cash Flows.

A. Cultural Operatioms: For each tree type, for each of 30 years;

No. of
Item Labor Machinery Materials Applications
1. Pruning X X
2. Mowing X b.4 X
3. Herbicide I X X X X
4, Herbicide II X X X X
5. Insecticide X X X X
6. Fungicide X X X X
7. Thinning Spray X X X
8. Stop-Drop Spray X X X
9. Ripening Agent Spray X X X
10. Fertilizer & Lime X X X
11l. Bee Hives X
12. Mousebait X X X X
13. Irrigation X X (water) X
14. N.A.A.{Sucker Control) X X X X
15. Miscellaneous X X X

B. Harvest Costs Per Bushel
C. Cultural Costs

Hourly wage rate

Hourly rate for mower

Herbicide T materials cost

Insecticide materials cost

Fungicide materials cost

Thinning spray materials cost

Stop—~drop spray material cost

. Ripening agent material cost

. Fertilizer cost

Bee hive cost (per season)

11. Hourly rate for small tractor, if appliecable
12. Hourly rate for large tractor, if applicable
13. Hourly rate for the herbicide sparyer

14. Hourly rate for tree sprayer

15. Bourly rate for fertilizer applicator

16. Mousebalt material cost

17. Irrigation water cost, $/acre foot, if applicable
18. Irrigation pumping cost, if applicable

19. Pruning equipment cost per year

20, N.A.A. (Sucker control) material cost

21. Herbicide II material cost ‘

-

it
OW WO~ W N
.
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Table 3 continued

D. Packout, percent, by tree type

1. Cell pack
2. Bags
3. Juice
4, Cull

E. Expected farm gate price (wholesale price net of packing, storage,
shipping, and handling) for each grade denoted in (IV) above.

F. Investment in Planting and Development, by tree type, including:

1. Tree removal

2. Fumigation, if mnecessary
3. Purchase of new trees

4. Planting

5. Training

6. Land preparation

7. Other

G.  Yield, by tree type, for each year in the designated 30 year
lifespan of all tree types.

H. Tax Bracket, current or expected, if change is anticipated.

I. Cost Recovery Schedule (depreciation). Operatof can choose a 5, 12,
or 25 year cost recovery period.

J. Discount Rate. This is an inflation-free discount rate. (see text)
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Figure 4. Diagramatic Representation of the Simulation Model.

HBEGIN[
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i =1 (tree type)

> i=1i+1
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" Figure 4 continued

Is Tax Yes
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> 07

No

N

Compute Cost Recovery

1

Compute After-Tax Cash Flow

.082

04

ATCFt = OPINC, DEPR = IPD (.20

-

Compute Taxable Income

TAXINCt = QPINC¢ = DEPR

N

Compute Tax

TAX, = (TAXB)(TAXINC,)

e

Compute Investment Credit

: ICRED = .1
t =t + 11— (IFD)

Compute Net Tax Paid
NTP, = TAX; ~ ICRED

e

Compute After-Tax Cash Flow
ATCF, = TAXINC, = NTP¢
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Table 4. Definition of Variables Used in the Simulation Model.

The operator selects, for each tree type: Variable
1. Input quantities for cultural operations At
a=1, «..., 28 input quantities
t =0, ...., 29 years
2. TInput prices ' CE
=1, ..., 22 input prices
3.  Harvest cost per hushel Cy
4. Percent packout, by tree type g
e =1, 2, 3, 4 quality grades
5. Expeéted farm gate price (wholesale price net of
storing, packing, shipping, and handling) for each
grade in (4) above. ‘ We
e =1, 2, 3, 4 prices by grade
6. Investment in planting and development, by tree type IPD
7. Yield, in bushels per acre, by tree type Y,
8. Tax Bracket "~ TAXB

9. Cost Recovery Schedule N o 5, 12, or 25 years
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a particular replacement decision.

Under "Investment in Planting and Development”, the "Other" category for
dwarf trees of $1,900 represents the cost of the trellis or pole support
system required for dwarf plantings, while the remaining $50 represents
miscellaneous establishment costs (Table 2C). Harvest costs are based on
Gerling, with adjustments for the fact that ladders are not required on
higher density systems, which increases the efficiency of harvest labor, and
reduces harvest costs.

It must be recognized that as orchard planting density increases, more
intensive management is required, but for most growers this is a qualitative
rather than a quantitative decision variable. Management expenses are typi-
cally included when developing production cost budgets for various crops.

The management charge is used as a means of placing a value on the operator's
managerial time, but it is seldom an actual cash flow. Since this replace-
ment model is based on actual cash flows, management charges were not
included in the analysis. '

Interest on investment is not included as a cost in the model beécause
.all cash flows are discounted within the model. The fact that interest
payments affect -after-tax cash flow can be accounted for by adjusting the
discount rate by the expected marginal tax rate to obtain an after-tax
discount rate. :

Interest on operating capital is mot included in this analysis. Indivi-
dual growers may place actual or expected interest on operating capital
expenses in the "miscellaneous” category in the model.

Inputs
The model requires the following data:

1) Quantities of inputs for all cultural operations including hours neces-—
sary for the performance of each operation (mowing, pruning, etc.), the
quantity of spray materials used for each spraying, and other inputs such
as beehive rental (Table 3A).

2) Input prices for all cultural operations including hourly charges for
labor, tractors, sprayers, and other machinery, and per unit charges
for input items (spray materials, fertilizer, etc.) (Table 3C).

3) Harvest cost, per bushel (Table 3B).

4) Percent packout for each of four grades by tree type. Determination of
percent packout involves a judgement of the average quality of fruit
that each tree type is capable of producing. The four designated

grades are cell pack, bags, juice, and culls (Table 3D).2

5) Expected farm gate price, by grade. This price should reflect the

Zrce11 Pack” here refers to Fancy or Extra Fancy grade apples. "Bags”
may be Fancy or No. 1 grades. The major difference is color. “Juice"
apples are made into juice, and “"culls"” are discarded.
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user's judgement of long—term wholesale prices, net of storing, packing,
handling, and shipping charges.

6) Total investment cost in planting and development. Components are
listed in Table 2. '

7) Yield, in bushels per acre, by tree type. In this model, the grower
has the option of changing each yield over the 30-year economic life of
each orchard, adjusting the stored yield curves to better reflect a
specific situation or of simply using the stored yield curves.

8) Tax bracket.

9) Cost recovery schedule. The operator can choose a 5, 12, or 25-year
cost recovery period.

10) Real Discount rate.

The simulation model uses all of the inputs in the previous section to
calculate after—-tax cash flow for each of the four planting systems for each
of 30 years. The calculations are shown diagrammatically in Figure 4 with
variables defined in Table 4.

While the essence of the simulation model is shown in Figure 4, one
special feature of this model is the inclusion of the effect of taxes on the
replacement decision. Taxes are included following the Economic Recovery Act
of 1981.

Orchardists have two basic choices regarding cost recovery. In the
first case, the operating expenses are treated as expenses during the non-
bearing years and are subtracted from the grower's other income. The expen-—
ses for planting and for purchase of trees in the establishment year are
depreciated from the first year of compercial production for 5, 12, or 25
years, according to grower preference.

- In the second case, a grower may choose to accumulate all of the orchard
operating expenses during the nonbearing years. When the orchard reaches
commercial production, the initial planting expenses and the cost of trees is
added to the accumulated operating expenses, and the total is depreciated
from the first year of commercial production for 5, 12, or 25 years, accord-
ing to grower preference. This alternative is not considered because it
would rarely be optimal under current tax laws.

If a user enters a "zero" tax bracket, there is no cost recovery, and
after-tax cash flow is equal to before-tax operating income. If a positive
tax bracket is entered by the user, the second cost recovery option is auto—
matically implemented, and the operating expenses during nonproductive
years are treated as expenses.

3Under the Economic Recovery Act, farmers have several options for cost
recovery (depreciation) on orchards. For simplicity in modeling and to use
the option most likely, in the author's judgement, to be used by farmers,
the Straight Line method of cost recovery is included in this model. Under
the Straight Line method, farmers may choose a five, 12, or 25 year cost
recovery period.
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Investment credit is defined by the Economic Recovery Act as 10 percent
of the establishment costs, and can only be taken in the first year of
commercial productlon. In the model, under any positive tax bracket,
investment credit is subtracted from the income tax bill in the first year of
commercial production. For a "zero"” tax bracket, investment credit is not
included in the analysis. :

Yields

One of the most important determinants of orchard profitability, and a
factor which must weigh heavily in the orchard replacement decision, is the
potential ability of an orchard to yield large quantities of good quality
fruit, on a sustained basis. . There is a general lack of available time
series data on orchard yields, especially for the newer planting systems.

As mentioned in the introduction, plantings using dwarfing rootstocks,
either with support systems or on interstems, are a relatively recent pheno-
menon, so that little yvield information over long periods of time is avail-
able. Most growers have subjective estimates of yieids by variety and plant-
ing system in their orchard blocks, but because of the intricacies of the
packing and storage process, exact yield records on individual blocks of
trees are usually not obtainable. There is also the problem of changing
technology. Researchers are reluctant to devote 20 or 30 years to collection
of information about a system which may be obsolete by the time the data are
collected. Data are becoming available, however.

The yield data used for this project are part of the data collected for
the 1980 New York Orchard and Vineyard Survey, published in 1982, and were
provided by Glenn Suter, Statistician in Charge, and Scott Painkter, Systems
Programmer, New York Stdte Department of Agriculture and Markets, Division of
Statistics.

The data were assembled using the form shown in Figure 3. The root-
stocks given were separated into the four broad categories de31gnated in this
project. The rootstocks designated "Standard” were placed in the "Standard”
category for the model. There were five rootstocks comprising the "semi-
dwarf" category: M-2, M-7, MM-106, MM-111, and M-26. Interstem 9/106 and
Interstem 9/111 were placed in the "Interstem” category for the model. M-9's
were placed in the "Dwarf”™ category.

Data from over 9,000 orchard blocks throughout New York State were col-
lected. Because of the form of the questionnaire and the type of information
requested, the actual number of observations available for analysis was sub-
stantially lower. Since only tree numbers by age category and total produc-—
tion by rootstock were reported, it was necessary to remove all question-
naires from the data set upon which more than one age category per rootstock
was reported. The remaining data facilitated computation of the vield/tree
in such a way that a yield figure could be matched directly with a rootstock
and age of planting. The final data set contained 3,877 observations on
standard trees, 1,090 observations for the semi-dwarf trees, 210 for inter-
‘stem, and 53 for dwarf.

In any data set of this size, there are observations which are unrealig-
tically large or small because of errors in reporting, transcribing,
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typing or measurement. For each of the three remaining data sets, all obser-
vations greater than two standard deviations from the mean yield for a plant-
ing system were removed. This operation left 3,821 observatioms for the
standard system, 999 for semi-dwarf, and 129 for the interstem planting
system. The "dwarf" data were dropped from this analysis, because there were
too few observations in some age groups of the dwarf data, and too many out-
liers to provide acceptable yield curves. For this reason, the interstem
yield curve was used for both interstem and dwarf yields.

- In order to perform Ordinary Least Squares (OLS) regression analysis on
these data, the midpoint of each of the age categories in Figure 5 was desig-
nated as the age of the trees corresponding to the reported yield in that age
category. For example, yields reported for standard trees in the seven to 11
age category were considered to be from nine year old trees. Age for the
last age category, "22+", was set at 30 years. Because of doubts about
whether zero observations in the first age category, "1-3", meant a yield of
zero or a missing observation because a grower neglected to answer the ques-—
tion, the first age category was dropped from the analysis. An OLS regres-—
sion then was run on four age categories and various numbers of observations
on yield for three planting systems.

Six functional forms were hypothesized: logarithmic, logarithmic with
a linear term, logarithmic with a quadratic term, logarithmic with a linear
and quadratic term, quadratic, and quadratic with a linear term.t Checking
the six estimated equations for significance of coefficients by comparison of
t-ratios, all of the above functional forms were eliminated except the qua-
dratic with a linear term. The quadratic with a linear term was used in
estimating all three yield functions.

There are other econometric problems associated with this estimation of
yield curves. First, there are only four data points upon which to base the
estimation of a curve covering 30 years. This problem could be alleviated by
the collection of more data over a period of years or by the addition of
perhaps cne more age category in the next orchard and vineyard survey.

Secondly, the data are not time series data collected on a representa-
tive orchard of each tree type. They are cross-sectional, representing a
wide range of climates, soils, markets and, most importantly, levels of
managerial skill. By itself, this fact is not necessarily a serious problem,
for it shows the vast diversity of ability and practices of New York apple
growers. It becomes important when taken together with the third problem,
- however, which is the fact that only one year of data was used, that
representing the 1980 harvest season.

The fourth problem is that a fundamental econometric assumption is vio-
lated by the grouping of data within age categories. Grouping data leads to
the variance of the error term in the classical linear regression model being
heteroscedastic. This means that the estimator is less efficient than an

4Though it is recognized that this "stepwise” method of choosing a func-
tional form is frowned upon by statisticians, it is also recognized that
there are very few other ways to accomplish the goal of finding the "best”
functional form when working with a hitherto unexplored data set where no
theoretical basis for function form exists. '
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estimator from ungrouped data. The problem can be solved by using a weighted
regression technique, estimating the equation:

(5) /oy y3 = « /ag + B ¥nj x; (Maddala).

Since there are other violations of the assumptions of the classical linear
regression model present in this analysis (as is the case in most econo-
metric work), it was decided that additional sophistication in the estima-
tion of the required yield curves was not necessary.

Another problem rests in the choice of an age designation for the 224"
age category. It is an open—ended category, which makes it nearly meaning-
less ecomometrically. The analyst has considerable control over the height
and general shape of estimated yield curves merely by choosing the age which
represents the last category. It was initially assumed that using yocunger
ages for the last category would move the peak of an estimated curve forward
in time, and vice versa for older ages. This experiment was tried, but the
most notable difference in the shape of the curve was to compress it, and
make the maximum yield unrealistically high. Setting the last category at 30
years was based on the opinions of researchers, extension agents, and growers
regarding the probable economic life of orchards. The 30 year age designa-~
tion also gave the most plausible results in terms of the height and general
shape of the estimated yield curves.

The three estimated yield equations are given in Table 5. A maximum was
calculated and converted to bushels per acre Efor each estimated yield
equation. In addition, a regression was run on the mean yields for each age
category. R? was extremely high for all three regressions on the means,
and all coefficients are significant at the five percent level. This could
be interpreted as a reinforcement of the validity of choosing the
linear—-quadratic functional form, but it also shows the effect of removing
the extreme variation in yield for each age category which is due to the use
of cross-sectional data. Summary data for yield per tree are contained in
Table 6 and the yield curves are in Figure 6.

The yields obtained by estimating functions from the available data
were stated in bushels per tree. This being the case, the per acre yields
are extremely sensitive to the choice of planting density for each planting
system. The planting demsities used (45 trees per acre for standard, 110
trees per acre for semi-dwarf, and 130 trees per acre for interstem) were
chosen based on conversations with pomologists regarding probable field
practices in the years represented by the data. The per acre yileld curves
for these planting densities are in Figure 7 with the resulting projected
yields per acre in Table 7.

Since there is room for considerable variation in yields per acre as a
result of the choice of planting density, the yields estimated in this
analysis were compared with those estimated by Khera and Crowe. For standard
trees, Khera and Crowe used a planting density of 58 trees per acre and
obtained a maximum yield of 850 bushels per acre at 30 years of age. This
figure is considerably higher than our maximum yields, for reasons which will
be discussed later. For semi-dwarf trees, Khera and Crowe used a density of
155 trees per acre and obtained a maximum yield of 950 bushels per acre at
age 23. This is extremely close to our results. For interstem and dwarf
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Table 6. Summary Data from Yield Functions by Age Categories and
Planting System

Planting System Age Category
4-6 7-11 12-21 22+
Age Used in Regression 5 9 17 30
Standard:
No. of Observations 30 120 624 3042
Mean Yield per Tree 3.54 6.76 10.48 13.08
Standard Deviation 5.14 4.58 6.45 7.16

Semi-Dwarf:

No. of Observations 226 412 315 46

Mean Yield per Tree 2.55 5.18 7.35 8.07
Standard Deviation 3.15 4,25 4.25 4.75

Interstem and Dwarf:
No. of Observations 75 30 19 5
Mean Yield per Tree 4.30 5.50 9.81 8.42

Standard Deviation 5.46 5.46 6.08 2.70
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Table 7. Projected Yields {Bushels per Acre) for Standard, Semi-Dwarf, and
Interstem and Dwarf Planting Systems

Tree Type
Year Standard Semi~Dwarf Interstem and Dwarf

1 0 0 0
2 G (B . 0
3 0 0 0
4 0 0 60
-5 0 120 . 150
6 60 250 400
7 116 374 615
8 240 432 689
9 269 486 759
10 297 538 ' 824
11 323 586 885
12 348 : 630 941
13 372 672 993
14 395 710 1,041
15 417 745 1,084
16 437 | 777 1,122
17 456 805 1,156
18 474 830 1,186
19 490 852 1,211
20 506 871 1,232
21 520 886 1,248
22 533 . 898 : 1,259
23 544 912 1,267
24 554 907 1,269
25 563 914 1,268
26 571 913 1,261
27 578 909 1,251
28 583 901 1,236
29 587 890 1,216
30 580 876 1,192
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trees, Khera and Crowe used a planting density of 340 trees per acre and
achieved a maximum of 1,000 bushels per acre at age 20. They were not,
however, as confident of this yield estimate as they were for their other
estimates, primarily due to the small data base for higher density systems.

Khera and Crowe state that the yields quoted above are high yields
that should be obtained under good management on good sites. Our data
represent a cross section taken for the entire state of New York, and as
such are reduced by the inclusion of some very marginal orchards and
planting sites. Another fact concerning the data used in this report for
standard trees is that a large proportion (80 percent) of the standard trees
fall into the "22+" age category. This suggests that there are trees in the
sample which may be 50 years old or older. The implication of inclusion of
these older trees is lower production due to three factors:

1) The older trees have probably surpassed their peak production years and
thus tend to pull the average down.

2) A larger proportionm of the older trees were planted on marginal sites
than is currently economical, partly from ignorance of the factors
constituting a good planting site and partly because competition was not
as keen 30 years ago and high production was not egssential to survival.
This tends to reduce the yields of the older trees.

3} There may be a reduction of yields on the older trees due to differences
in managerial ability.

The foregoing reasons also relate to the choice of 30 years as the
cutoff point in the economic life of an orchard that is used in this report.
Even though the data show that a standard orchard has its yield peak at 30
yeérs, after much consultation with growers, pomologists and agricultural
economists, it was decided that 30 years would be the longest period of time
that a grower would want to keep an orchard under current conditions.

The Dynamic Programming Model

The objective maximized by the dynamic programming model is the net
present value of after—tax cash flow from the selected optimal replacement
orchard planting system. This 1is accomplished via the Howard approach to
dynamic programming introduced earlier (pp. 22-24, Figure 3).

The details of the Howard Approach are presented below:

1) Value Determination: For a chosen policy Rjp, use Pij(Kl) and
QiKlto,solve

N

6y Vi(Ry) = Que + I P;4(K1V4(RD), (i=0, 1,...,m)
J:

for the unknown V;(Ry)'s.

2) Policy Improvement: Using the current values of V;(Ry) find an
alternative policy (Rp). For each state i, find Ko that maximizes
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N
(7) Qg, * j?—-O Pj3{Kz)V;(R1)

and set dy(Rp) = the maximizing value of Ko. A new policy, Ry,

.is defined. 1If policies Ry and Ry are not equivalent, solve 6 again
using Ry. Continue iteratioms umtil two successive policies are found
to be identical.

Where:

i = the current state of the system,

j = the new state of the system in the next observed time period,

n = the current time period,

R = the policy followed,

d;(R) = k = the decision made in state i when following policy R,

Qix = the expected return in state i obtained from following

policy R,
Pj3 = the transitional probability, or the probability that the
system is now in state i and that decision k is made,
B = the discount rate,

and Vi{N{(R) = the expected long-run total discounted after-tax cash
flow for the system starting in state i and continuing
indefinitely.

The primary input to the dynamic programming model is the after-tax cash
flow (ATCF) from the simulation model. ATCF becomes § in the equations
above. Other inputs are entered by the operator and include the user’s tax
bracket, current or expected, the choice of cost recovery period, the choice
of a real discount rate, the tree type of the original orchard, and the age
of the original orchard.

The dynamic preogramming model is initialized by defining five policies,
(Figure 8):

» keep the current orchard,
replace with standard trees,
replace with semi-dwarf trees,
replace with interstem trees,
. replace with dwarf trees,

°

B Lo N e

and establishing the 120 stages necessary for solution. An initial estimate
of V in equation & is made. This initial V is designated QT by the dynamic

programmiong model and is defined in such a way that the optimal alternative

in each stage is to keep the current planting system, unless it is 30 vears

old, at which age replacement is forced.

The Value subroutine is entered next. Value finds the maximum QT at
each stage and creates a vector which shows the alternative associated with
maximum QT at each stage. This vector is defined as MAXALT. Associated
with the alternatives listed in MAXALT is a vector of immediate (one year)
after-tax cash flows. Elements of this vector, defined as SELQ, are merely
the Q's defined earlier. The next step Is to find the new vector of V's
given the matrix of transitional probabilities and the vector SELQ.
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Figure 8. Diagramatic Representation of The Dynamic Programming
Replacement Model.

BEGIN

Utilize ATCF from the simulation
model as Q.

NP

Set > alternative policies:
1. Keep current tree type,
2. Replace with tree type
3. Replace with tree type
4
5

w

. Replace with tree type
. Replace with tree type
after the current year.

o

-

There are 120 stages, with 5 alternatives
at each stage. Stages

1-30 represent tree type 1,
31-60 represent tree type 2,
61-90 represent tree type 3,
91~120 represent Lree type 4.

/

Define QT (stage, alt.) as the current
estimate of total discounted ATCF from
choosing each alternative at each stage.

L
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Figure 8 continued.

Initial QT (model startup)

QT{l, stage) Q(tree, J, J = age)

T

QT{2, stage) = Q(1, 1)
QT(BS St&ge) = Q(Z: 1).
QI{4, stage) = Q(3, 1)
QT(5, stage) = Q(4, 1)

QT for "keep” alternative is ATCF
for current tree type of age J

QT for "replace” alteranative is ATCY
for the first year of each possible new
orchard.

Ay

S - 3

Value Subroutine

Value finds the maximuam QT at each stage, and
selects the alternative corresponding to maximum QT.
Then a vector contalining the bast alternative for each
stage is created and called MAXALT.

Value now creates the "A" matrix of coefficients of
the net discounted after-tax cash flow from following
the policy in MAXALT. GElements of the "A" matrix are
determined by examining whether the best alternative at
each stage is "keep” or "replace” and by noting whether
it is possible to move from one state to the next. "A”
consists, then, of elements which are either 1, 0, or -,
where ¢ is the real discount rate.
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Figure 8 continued.

l

Value Continued

As a result of finding MAXALT and creating the matrix
A, a vector of immediate (one year) after-tax cash
flows corresponding to the best alternative in each
stage is generated. This wvector is defined as SELQ and
consists of Q (tree, age) for the "keep alternative and
Q for the selected replacement tree type for year one
if the alternative is "replace”.

Now there exists a wvector, SEL{Q, and a matrix "A".
What is desired is the new vector of QT which is
defined now as V, and corresponds to the V in Equation
3.1. Rewrite Equation 3.1) as follows, unknowns on
the left-hand side, in matrix notation:

VA = Q

A

SOLVE Subroutine

Solve inverts A, solves for V.

v = qal

Policy Subroutine

Policy sets QT = Q + o€V, Now there is an-
cther vector of QI's, defining a new policy.

is the

Return to new policy
Value No the same. as Yes
Subroutine the old

A

policy?

EXIT
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The matrix of transitiopal probabilities for this problem would consist
of only zero and one element. Given a state, and a decision (policy
alternative), there are only a few possible events which can occur. This
simplifies the development of the matrix of transitional probabilities to
the strategic placement of ones. The matrix "A" has another characteristic,
however. If equation 6 were vewritten with the probabilities substituted
. and unknowns on the left-hand side, it would be:

Vi - OLVj = QiK'

@ is the real discount rate; this equation is combined with the matrix of
transitional probabilities to form the matrix "A". Value performs this
operation. The "A" matrix appears in Figure 9.

At the end of the Value subroutine, a matrix equation of the form VA =
Q is obtained. V is unknown, and the Solve subroutine is entered at this
point. Solve inverts the A matrix, premultiplies it by the Q vector, and
thus solves for V; V = QA~l. The program then enters the subroutine
designated Policy, and a vector of QT's is defined for another iteration in
Value. See Figure 10 for a short flow chart of the entire dynamic program-—
ming model. The optimal solution is reached when two MAXALT vectors are
obtained which are identical.

Output from the Replacement Model

The dynamic programming model prints a statement telling when to
replace, and with which planting system, and shows all of the operator input
decisions {(Figure 11). There is alsc the option of printing out the 1 x 120
vector of optimal alternatives (MAXALT). The MAXALT optimagl vector in
Figure 1l can be interpreted as follows: For all of the years in the eco-
nomic life of the standard system (stages 1-30) replacement with interstem
trees is optimal. The NPV of doing so is $33,636. TFor semi-dwarf plantings
between the ages of one and eight, replacement with interstem trees is opti-~
mal, and the NPV is $33,636. For semi-dwarf trees between the ages of nine
and 29, the optimal alternative is to keep the trees, and the NPV for this
alternative ranges between $33,951 and $36,920. Replacement occurs at age 30
for the semi-dwarf system, with interstem trees. For interstem trees the
best alternative is to keep them unless they are age 30, at which age they
should be replaced with interstem trees. The NPV ranges from 534,979 to
$51,066. Dwarf trees should also be kept unless they are 30 vears old, with

an NPV of $35,572 to 5$59,415. Dwarfs should be replaced at age 30 with
interstem trees.

The simulation model prints out three different forms of information
pertinent to an individual grower's operation. Upon request, a budget may
be obtained, showing costs of production by component, including hours
required for each operation, labor cost, machinery cost, materials cost, and
total cost per acre, for any year in the 30 year economic life of each of
the four planting systems (Tables 8, 9, 10, and 11). The operator also has
the option of having the total costs of production, by operation, for 30
years, printed out for each system (Table 12). Finally, a schedule showing
the components of after tax cash flow as computed in the model, for 30 years
for each system can be obtained (Table 13).
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Figure 9. The "A" Matrix of Coefficients used in the Solve Siubroutine of
the Dynamic Programming Replacement Model

\state '

state 1 2 3 4 5230301 *** 60 6L °** 90 91 - °* 120
1 1 -of 0 0 02 0=l *°* 0 =t " § -t - 0
2 - 1 ~of 0 0 0 -l " 0 ~ o 0 -t °** O
3 - 0 1 =-cA 0°**0-ol° (- 0 -~ **° O
4 - o 0 0 1 - 0 =l **+ 0 =0t **° 0 =oL ***
5 - o4 6 0 0 1 * =t e 0 - 0 -t 2o« Q
30 - o{ 0 0 0 Q #2° 1 =< °» - e ) —of ** 0
31 - ¢ 0 0 0 - 0 1 - - ol 0 =L *¢ @
60 - 0 0 0 *** 0 -k - "7 0 = 20 O
61 - o 0 0 * 0 - 1 2+ 0 =L 0
90 - 0 0 0 O =** 0 - M O e~ L L I ¢
91 - i 0 0 0 0+ 0—-oal°"* 0 -t ° 0 1 0
120 ~ ol 0 0 0 0 “°* 0= *** ) =2 J —a =
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Figure 10. Summary Flow Chart of The Dynamic Programming Replacement Model

Value

MAXALT
= last MAXALT?
(Is this policy the
same as the
last one?)

YES

SOLVE

POLICY

EXIT




45

Figure 11. Sample Output from the Replacement Model

QUTPUT SPOOLING BEGINS

PLEASE ENTER THE NAME OF THE DATA FILE
CONTAINING THE ORCHARO DATA YOU WANT
USED BY THE OPTIMIZATION MGDEL.

CAT

CPTIMAL ORCHARD REPLACEMENT PROGRAM
PLEASE ENTER A NAME FCR THIS RUN

COPY RUN 1
ENTER TAX BRACKET AS A DECIMAL.. (E.G. 0.42]
» :
.25
ENTER COST RECOVERY SCHEDULE FOR ORCHARD.
FOR 5 YEAR £OST RECGVERY ENTER 5
FOR 12 YR. COST RECGVERY ENTER 12
FOR 25 YR. COST RECOVERY ENTER 25

NTER INTEREST RATE (%)

W o= M -2

ENTER TREE TYPE OF ORIGINAL ORCHARD
? Q0077

L

ENTER AGE OF CURRENT DRCHARD

?
25
REPLACE WITH INTERSTEM TREES 1 YEARS FROM NOW

CONVERGENCE 1IN 5 ITERATICNS

DO YOU WANT AN CQUTPUT DUMP FROM OPT?

YES
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Figure 11 continued

RESULT DUMP FROM ORCHARD DPTIMIZATION PROGRAM
RUN NAME: COPY RUN 1

INTEREST RATE = 3.bOOO
TAX BRACKET = 0.2500

COST RECOVERY PERICD = 5 YEARS
STATE OPTIMAL ALTERNATIVE, "vy® STATE. OPTIMAL ALTERNATEVE, Pv®

1 4 33636.11720000 2 &  33636,11724000

3 4 33636,11720000 % 4  33636,L1720Q00

5 4 33636.11720000 & 4 33636.1L720000

T 4 33636.11720000 8 4  32636.11720000

9 4 33636.11720000 1¢ %  33636.11720000
il 4 33638.11720000 12 4 3363611720000
13 4 33636,11720000 14 4  33636.11720000
15 4 33636.,11720000° 1& 4 33636.11720000
17 4 33636.11720000 18 4  33636.11720000
19 4 338636.11720000 20 4 33636.11720000
21 4 32636.11720000 - 22 4 33636,11720000
23 4 33636.11720000 24 & 336346.11720000
25 4 33636.11720000 26 4 33636.1L1720000
27 4  33636.LL720000 28 4%  33636.11720000
29 4 33636.11720000 30 4 33636.11720000
31 4 33636.11720000 3z % 336356,11720000
33 4 33636.11720000 i4 & 33636.11720000
35 4 33636.11720000 36 4 33636.11720000
37 4 33636,11720000 38 4  33636.11720000
39 L 34240,08590000 40 1 35184.00780000
41 1 35680.34370000 42 1 36094.62110000
%3 1 36411.50780000 44 1 36655.558600040
45 1 36811.71480000 46 1 36904.81250000
47 1 36920.085900400 48 1 36582.5671300400
49 I 36778.11720000 50 1 36631.88670000
51 1 36429.85550000 52 1 3&197.82030000
53 1 35922.01560000 54 1 35628.55980000Q
55 1 35304.15230000 56 1l 34975.23830000
37 1 34528.84770000C - 58 1 34291.933460000
59 1 33951.89450000 &0 4 33636,11T720000
&l 1 37297.85940000 62 1 21069.45310Q00
63 1 42550,31250000 G4 1 %4116.429T000CQ
65 1 &#5745.14450000 66 1 4761%.67970000
67 1 498924,560940000 68 1 49885.4%4140000
69 1 50676.890600600 70 1 50955.22270000
11 1 51065,21090000 T2 L 51038.52340000
73 1 50856.82810000 T4 1 50550.18360000
75 1 50103.68260000 T4 1 49$546.81250000
17 1 488565.08980000 18 1 48058.45313000
79 1 4T7202.88670000 8o 1 46238.80470000
8l 1 45182.68750000 g2 L 44065.45700000
43 1 42874.11720000 84 1 415640.11330000
85 L 4035L.01170000 a8é 1 39038.835900600
ar 1 37691.72270000 88 1 36342.30470000
8% 1 34979.34770000 S0 4  33636.13280000
9l L 39984.86720000 e 1 46831.55470000
$3 1 4B8517.90230000 S4 I 502%7.05470000
95 1 52391.5078C00C 95 1 54951.56643000
a7 1 56839.94530000 38 1 58i85.191%0000
29 1 59278.47660000 100 1 59415.5%93700Q0
101 1 59352.05860000 102 I 59115.33980000
103 1 $8693.39450000 104 1 58114.16410G00
105 1 57366.,08980009 106 1 56477.59770000
107 1 55437.63670000 108 1 54275.14450000
109 1 52979.60550000 110 1 5158052730000
111 1 50067.95700800 112 1 48471.98440000
113 1l 4678%.24950000 114 1 450322.51950000
115 1 43211.03520000 116 i #1350.17970000
117 1 29441.92190000 118 1 37518.34770000
119 1 35572.14060000 120 4 33636.13280000
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RESULTS AND SENSITIVITY

There are two groups whose interests may be served by this orchard
replacement model. Researchers in agricultural economics and pomology may
be interested in the performance of the model under varying assumptions and
the validity of its results both from a theoretical standpoint and in com-—
parison with the current farm situation. Growers will be interested in
knowing how different economic and pomological conditions or various levels
of managerial skill can affect the optimal replacement decision.

It is the consensus of pomologists, extension agents, and agricultural
economists that the apple industry trend is toward higher-density plantings.
This feeling is supported by the 1980 Orchard and Vineyard Survey, which
shows that proportionately fewer standard trees were planted in the last few
years than semi~dwarf, interstem or dwarf trees. Initially, only the more
progressive growers considered higher-density plantings, but now more grow-
ers who face the replacement decision or whe are establishing new plantings
are considering interstem or dwarf trees. In the middle 1970's, dwarf tree
plantings on trellis or pole support systems were being recommended to those
growers who wanted higher—density planting systems. When the price of poles
doubled (Norton), many growers and extension agents began to question
whether dwarf plantings with relatively expensive support systems were any
longer the best system. Interstem trees seemed to be the logical answer,

and for the past three or four years recommendations have leaned heavily
toward interstem plantings.

Experimental Design

The replacement model was run using New York State average cost, price,
production, and yield data. True to current field recommendations, the
model responded by suggesting immediate replacement with interstem planting
systems for standard trees of all ages and semi-dwarf trees younger than
nine years of age. Interstem and dwarf planting systems are kept until they
reach their final year of economic life, in this case 30 years. Replacement
with interstem planting systems was again optimal.

These results are based on New York State averages. Since each orchard
has its unique charactierstics, the important question is how sensitive is
the model to above or below average orchard management and under what con-
ditions might another system be optimal? In order to answer this question,

gensitivity analysis was conducted. A decision was made to concentrate on
the area of fruit quality and yield for several reasons:

1) Evaluating the effect upon the results of changing each input would
require toc many permutations. Input quantities were thus ruled
ocut in the interest of brevity and expense. '

2) Close scrutiny reveals that variable costs of production per acre
are not vastly different between the four planting systems. Costs

are not the determining factor in the choice of optimal replacement
orchard. ‘

3) Yield and fruit quality have been recognized by the industry,
extension agents, pomologists, and agricultural economists as the
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keye to successful apple production for many years. By varying
yield and/or percentage packout of high quality fruit, it is possi-
ble to examine several possible levels of management and their
effect upon the optimal orchard replacement decision.

4) Beyond examination of the management question, it is also possible,
to a limited extent, to analyze the effects of different levels of
risk upon the optimal replacement decision, using adjusted yield
and fruit quality levels.

In addition to testing the model for sensitivity to yield and packout
(quality), two different real discount rates were used and their effects
upon the optimal replacement decision analyzed. Except for discount rate,

the standard planting data remains constant. The following analyses were
made:

1) No change - two runs, one at three percent real discount rate, one
at seven percent real discount rate.

2) Drop vield by 10 percent - six runs, one for each real rate of dis-

count, and for yield change in semi-dwarf, interstem, and dwarf
systems.

3) Increase yield by 10 percent - six runs, one for each real rate of
discount, and for yield change in semi-dwarf, interstem, and dwarf
systems.

4) Decrease percent packout of top quality fruit by 10 percent, making
appropriate adjustments in other qualities -~ six runs, one for each
real discount rate and for packout change in semi-dwarf, interstem,
and dwarf systems.

5) Decrease percent packout of top quality fruit by 10 percent and
decrease yield by 10 percent — six runs, one for each real discount
rate and for packout change in semi-dwarf, interstem, and dwarf
systems.

6) Decrease percent packout of top quality fruit by 10 percent and
" dncrease yield by 10 percent - six runs, one for each real discount
rate and for changes in semi-dwarf, interstem, and dwarf systems.

The model was initialized for each of these 32 runs by starting with a
planting of standard trees 25 years old, using a five-year cost recovery
period and a 25 percent marginal tax bracket. The five-year cost recovery
period is the shortest allowed for orchards under the 1981 Economic Recovery
Act, and it was assumed that most growers would elect the shortest pericd
possible.

Results and Model Sensitivity

The results of the 32 optimization runs are summarized in Tables 14,
15, and 16. Examining the results of changes made on semi-dwarf trees
(Table 14), the first column on the left reveals that interstem trees are
always the optimal replacement system under all yield and packout
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combinations tested and for both real discount rates. The second column
from the left gives the net present value (NPV) of the replacement system.
This is the NPV of following the replacement policy from the year in which
the replacement was made. Columns three and four of Table 14 show the ages
at which standard trees should be replaced. The NPV is always the NFV for
replacement with interstem trees under the real discount rate ascumed, as
standard trees should be replaced regardless of the age of the current
~orchard.

For the semi-dwarf category the results are more interesting. Column
five, row one, three percent interest rate, for example, suggests that a
semi- dwarf orchard which is currently less than nine years old should be
replaced next year with interstem trees. Semi-dwarf trees aged nine years
through 29 years should be kept.

The sixth column, "NPV Range”, for semi-dwarf trees, gives the range of
the NPV of the semi-dwarf planting system under the "keep” alternative. The
NPV of any orchard at any age is calculated by summing the discounted posi-
tive and negative after—tax cash flows when following the optimal replace-
ment policy. When establishing an orchard, there is a large initial cash
outlay in the establishment year, followed by a few years during which oper-
ating expenses are incurred with no offsetting income. In the NPV calcula-
tion, these early years of negative after-tax cash flows are weighted heavi-
ly because they are discounted least. The result is that a ome year old
semi~dwarf orchard will have a lower NPV than a two year old semi-dwarf
orchard, simply because at age two there is one less negative after-tax cash
flow to be subtracted from NPV. As the model looks at established semi-
dwarf orchards which are of increasing age, NPV first becomes higher,
reaches a peak, then begins to decline. FEach subsequent stage in the
dynamic programming model represents an orchard of one year older, unless
the orchard is 30 years old, in which case the next stage represents a new
orchard of the same or of a different type. As the model advances one
stage, representing a year in the life of a particular type of orchard, the
NPV for that orchard is augmented or reduced according to whether the
orchard was producing a negative or positive after-tax cash flow in the last
stage.

The remaining four columns of Table 14 show that for both real discount
rates and under each of the yield and packout situations for the semi-dwarf
orchard, it is always optimal to keep established interstem and dwarf plant-
ings until they are 30 vears old. The major effect of increasing the real
discount rate is to reduce the absclute size of all of the NPV's and to
lower the ages of semi-dwarf plantings for which replacement is optimal.

Changing yield and packout levels for semi-dwarf trees tends to affect
only semi-dwarf plantings. Lower yields or lower quality tend to increase
the number of years after planting in which it is optimal to remove a semi-
dwarf orchard and replace it with an interstem planting. Increasing yields
or packout of high quality fruit tends to lengthen orchard age during which
it is optimal to keep semi-dwarf plantings, by allowing the "keep"” decision
for younger orchards. Yield has a greater affect upon the optimal decision
than quality. The change in ages over which replacement is optimal is
greater for adjustments in yield than for adjustments in quality mainly
because the changes in yield are a percent of yield and the changes in
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quality are a percent of a percent of yield.

Table 15 shows the results of making the same changes that were made
for semi-dwarf trees on the interstem orchard. The first column from the
left under the three percent real discount rate shows that the model is
extremely sensitive to changes in yield and quality for the interstem plant-
ing system. Reduction in yield, packout or both of only 10 percent make
replacement with the dwarf planting system optimal. With a seven percent
real discount rate, however, the interstem system is always optimal. The
high initial expense of establishing a dwarf planting outweighs the higher
quality fruit obtained during the producing years under the higher discount
rate. The second column of Table 15 shows that the NPV of the interstem
system is highly variable under both real discount rates. This is because
the interstem system is the system undergoing changes, and the changes are
reflected in NPV.

An interesting situation arises in Table 15 under the seven percent
real discount rate. When interstem yields and packout are both dropped by
10 percent, it becomes optimal to keep standard trees between the ages of 23
and 30, replacing them at age 30 with interstem trees. This is the only
situation in the entire analysis in which it is optimal to keep standard
trees of any age. The implications, aside from an illustration of model
sensitivity, are that if growers cannot obtain high yields and high quality
fruit from the newer plantings, then there are cases in which keeping old
standard trees remain optimal.

As in Table 14, the ages in which semi-dwarf plantings should be
replaced change according to which system is optimal for replacement and
changing yield and quality conditions. Worthy of note is that if yield and
top quality are both reduced by 10 percent for interstem trees, the dwarf
system becomes the optimal replacement system under the three percent real
discount rate, and interstem trees just established (one year of age) should
be removed and replaced with a dwarf planting. The implication is that,
under reduced yleld and quality conditions for interstem trees, the expense
of establishing a dwarf planting in the year immediately following esta-
blishment of an interstem planting on the same piece of land is still out~
weighed by the higher yield and quality that can be obtained from a dwarf
system.

Model sensitivity is again exhibited in Table 16, and the expected
results are obtained as changes in yield and quality are made. Under the
three percent real discount rate, the dwarf system becomes the optimal
replacement system if dwarf yields are increased 10 percent, and if packout
of top quality fruit is reduced by 10 percent but yields are increased by 10
percent. This is consistent with the results in Table 15.

Under the seven percent real discount rate, the interstem system is
always the optimal replacement system. Under both discount rates, with a
reduction in both dwarf yield and quality, it becomes optimal to replace a
newly established dwarf orchard with interstem trees. Otherwise it is
optimal to keep dwarf and interstem plantings until age 30, except when
dwarf yields are increased by 10 percent and it becomes optimal to remove a
newly established interstem planting and replace it with a dwarf planting.
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In making the replacement decision, yield, fruit quality, and the
discount rate are the crucial determinants of whether interstem or dwarf
plantings are the optimal replacement system. The higher the discount rate,
the less attractive the dwarf planting system becomes, because of its
required high initial outlay for establishment. At low real discount rates,
the tradeoffs between dwarf and interstem planting systems become dependent
upon expected differential yields and fruit quality.

SUMMARY AND CONCLUSIONS

The primary objective of this research was to develop an orchard
replacement model. It consists of a simulation model, which is capable of
modification using some or all of the data from a grower's own operation to
obtain a series of after— tax cash flows for four apple orchard planting
systems over a 30-year economic life. These after-tax cash flows are then
utilized in a dynamic programming model to choose the optimal planting
system and the optimal time of replacement, under varying assumptions
regarding the grower's tax bracket, choice of cost recovery pericd, and real
rate of discount.

-

The development of an orchard replacement model of this type has
several implications:

1) For growers, a tool now exists which enables determination of the
optimal replacement time and the optimal replacement orchard system
on an individual farm level. This is a practical, usable decision
aid which is limited mainly by the judgement of the user in the
choice of discount rate and in the estimation of managerial
ability.

2) For researchers, the model produces viable, consistent, and
believable results. This will allow the testing of new ideas and
even new products such as spray materials, and their effects upon
the optimal replacement decision.

3) This is the first application of dynamic programming to the orchard
replacement problem. Though there are some limitations to the
methodology, it is an improvement over previous orchard replacement
decision models, if only because it operates in a truly dynamic
framework. ‘

4) The effects of taxes on farm or business decisions are extremely
important. This model Includes the effects of some of the current
tax laws in its analysis.

There has been a shift in recent years in the recommendations that
pomologists and extension agents have been making to growers regarding the
best new planting system to use, whether for replacement or in the original
establishment of an orchard. The shift has been from dwarf plantings, which
require relatively expensive support systems, to interstem trees. The
results of this model show that the recommendations are generally correct;
at least the results agree with current recommendations.

If a user feels that the real discount rate should be relatively low
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- (three percent) then the question of which system, dwarf or interstem, is
optimal, depends upon yields and fruit guality. If the real discount rate
is expected to be higher (seven percent), the interstem planting system is
consistently preferable, under the many different levels of management test-
ed. These results are consistent with what one would expect to find in the
industry. The factors affecting the optimal replacement time and choice of
the optimal orchard replacement system, in declining order of importance,
are:

1) The rate of discount, in this case, the real rate of discount.
2) The expected yields which can be obtained from a planting system.

3) The expected quality of fruit which can be obtained from a planting
system as defined by percent packout of the top grade of fruit.

It is recognized that there are other factors which could have an
affect upon the optimal replacement decision. One of these is the year in
which a planting system actually begins commercial production. Obviously,
the earlier a system can be brought to commercial production, the more
profitable and the more desirable that system will be. The times at which
the four systems come into production in the model were chosen based on the
perceptions of extension agents, pomologists, and agricultural economists,
about the situation most likely to occur in the industry today, as well as
the results of previous studies (Khera and Crowe, Norton, Gerling). Indivi-
dual growers or researchers may have other opinions, and inserting these
into the model may affect the choices of the optimal system. = Of .course, -
this flexibility for each input in the model is one of the strengths of the
model.

There are some limitations with the model:

1) It does not say "how much” to replace. That decision is left to
~the grower. The analysis is constructed on a per acre basis, which
gives extreme flexibility in the size of blocks under consideration
for replacement, since an analyst can use increments or multiples
of one acre. )

2) The model does not consider financial feasibility. This is direct-
" 1y related to the first limitation (above) but it alsc concerns the
possible inability of the grower to afford a system such as the
dwarf system, since it requires such a large initial outlay.

3) Replant disease problems have not been accounted for.

In conclusion, this model should serve as an addition to the decision
tools available to farmers and as an important analytical tool to research-
ers. With some modifications, it can be adapted for use with small compu-
ters, adding to the available software for agricultural use.
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