
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


 
 
 
 

Testing for the Monotone Likelihood Ratio Assumption 
 
 

Jutta Roosen and David A. Hennessy 
 
 

Working Paper 03-WP 325 
February 2003 

 
 
 
 
 
 

Center for Agricultural and Rural Development 
Iowa State University 

Ames, Iowa 50011-1070 
www.card.iastate.edu 

 
 
 
 
 
 
Jutta Roosen is an assistant professor in the Unit of Agricultural Economics and invited member 
of CORE, both at the University of Louvain, Belgium. David Hennessy is a professor in the Center 
for Agricultural and Rural Development and Department of Economics at Iowa State University.  
 
The authors thank, without implication, Brent Hueth for conversations on empirical contract 
design issues and Jay Shogren for providing the auction data as well as for insightful discussions 
on value affiliation.  
 
This publication is available online on the CARD website: www.card.iastate.edu. Permission is 
granted to reproduce this information with appropriate attribution to the authors and the Center for 
Agricultural and Rural Development, Iowa State University, Ames, Iowa 50011-1070. 
 
For questions or comments about the contents of this paper, please contact Jutta Roosen, 
University of Louvain, Unit of Agricultural Economics, Place Croix du Sud 2/15, B-1348 Louvain-
la-Neuve, Belgium; Ph: +32 (0)10 47 87 07; Fax: +32 (0)10 47 36 75; E-mail: 
roosen@ecru.ucl.ac.be. Contact David Hennessy at 578C Heady Hall, Iowa State University, 
Ames, IA 50011-1070; Ph: 515-294-6171; Fax: 515-294-6336; E-mail: hennessy@iastate.edu. 
 
Iowa State University does not discriminate on the basis of race, color, age, religion, national origin, sexual 
orientation, sex, marital status, disability, or status as a U.S. Vietnam Era Veteran. Any persons having 
inquiries concerning this may contact the Director of Equal Opportunity and Diversity, 1350 Beardshear Hall, 
515-294-7612. 



 

 
 

Abstract 

Monotonicity of the likelihood ratio for conditioned densities is a common technical 

assumption in economic models. But we have found no empirical tests for its plausibility. 

This paper develops such a test based on the theory of order-restricted inference, which is 

robust with respect to the correlation structure of the distributions being compared. We 

apply the test to study the technology revealed by agricultural production experiments. 

For the data under scrutiny, the results support the assumption of the monotone likelihood 

ratio. In a second application, we find some support for the assumption of affiliation 

among bids cast in a multiple-round Vickrey auction for a consumption good. 

 

Keywords: affiliation, auction, likelihood ratio, order-restricted inference, stochastic 

order. 

 

JEL codes: C1, D8, Q0.



 

 

 

TESTING FOR THE MONOTONE LIKELIHOOD RATIO ASSUMPTION 

The monotone likelihood ratio (MLR) order has arisen in the analysis of many 

economic problems. When comparing two conditional distributions, the order asserts that 

a comparatively high outcome is always more likely under one distribution among the 

pair. The order implies simple stochastic order and is both necessary and sufficient for 

simple stochastic order on domain-conditioned distribution functions.1 This strong level 

of regularity maps into strongly regular comparative statics inferences; therefore, 

economic theorists have shown great interest in the assumption.  

The list of applications is large, and we will identify a small number to provide a 

sense of the utility of the assumption. Landsberger and Meilijson (1990) have invoked the 

assumption to establish insights on the comparative statics of portfolio allocation. In a 

parallel result, Milgrom (1981a) has established that the MLR order can characterize 

“bullish” news for an exchange-traded company. Of more direct relevance to the 

empirical contexts to be studied in this paper, Milgrom (1981a), in extending work by 

Holmström (1979), has demonstrated the pertinence of the order to mechanism design 

where parties have different information sets. The types of design issues where it arises 

include the agent remunerations problem faced by a principal as well as the design of an 

auction. The assumption is now standard in the theories of organizing (e.g., Koh 1992) 

and financing (e.g., Innes 1993) firm production under incomplete information. 

The intuition behind the assumption is that it makes a signal on an unobservable 

variable sufficiently informative to be used in a determinate manner when taking signal-

based actions. In the instances of principal-agent models, the principal typically does not 

have sufficient information to remunerate the agent in a first-best manner. For example, 

while it may be Pareto superior to condition the rewards of a risk-averse agent on effort 

rather than on production, the principal may not be able to observe the former. If effort 

shifts the distribution of production according to the MLR order, then we can be 

confident that a higher level of observed production is evidence of a higher level of agent 
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effort. If the principal writes a contract with a reward that is monotone increasing in 

production, then the agent is likely to respond with more effort, and both parties are 

better off. 

Given that the MLR assumption is often required in contexts where a relevant 

variable can only be observed after incurring monitoring costs, it is not at all surprising 

that the assumption has not been subjected to empirical scrutiny. If, however, the 

remunerated party in a principal-agent relation had no private motive for misrepresenting 

the relevant variable, then data would be available for study. So, it is typically in 

economic environments where the MLR assumption is not necessary that the data are 

available. 

There remains, however, the opportunity to test for conjectures on the stochastic 

relationships underlying data in situations where the private incentive to misrepresent is 

absent. If we had such data, then a direct test for the validity of the MLR assumption 

would be possible. In this paper, we develop a direct test of the MLR property and apply 

it to data from two very different contexts: one from agronomy trials and the other from 

experimental auctions. 

In agronomy trials by academic researchers, the private incentive to misrepresent the 

level of inputs used is typically absent. Agronomic inputs such as water, fertilizers, and 

chemical pesticides are tangible, while management time, care in planting, and crop 

scouting activities are less readily measured. The more measurable among these inputs 

may be reliably observed by a party with no pecuniary interest in the recorded value who 

is willing to incur the monitoring costs. In this paper, we use data from carefully 

controlled agronomy trials at a U.S. land grant university to study the relationship 

between the nitrogen input and corn (Zea mays) output. 

Milgrom and Weber (1982) extended work by Milgrom (1981b) on the structural 

role of the MLR order in auctions. They characterized equilibrium properties in 

common and private value auctions when values co-vary across bidders according to 

the affiliation property. Under this property, which is also known as multivariate 

totally positive order 2 (MTP2), large values for some of the variables make the 

other variables more likely (in the likelihood ratio sense) to be large rather than 

small. In the context of common value auctions and under the assumption of symmetry 
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among bidders, a test for the affiliation property coincides with a test for the multivariate 

extension of the MLR property across conditioned densities.2 In our second application, 

we test for evidence of affiliation in a multivariate valuation distribution where the data 

has been obtained from second-price auctions. Because of the Vickrey revelation 

principle for second-price auctions, bidders have no private incentive to bid other than 

their values. This makes auction data ideal for our test.  

After reviewing the literature on testing for stochastic order, we develop our test for 

the MLR property. As we cannot preclude the possibility that external factors generate 

correlations between distribution evaluations, the test allows for such dependence. The 

two empirical applications are then presented. We find strong support for the assumption 

of MLR order on corn yield distributions as nitrogen application changes. When studying 

auction experiments, we find limited evidence in favor of the joint hypothesis that agents 

are symmetric and valuations are affiliated. 

 

Literature Review 

In recent years, several careful tests on stochastic order have been developed, mostly 

to compare income distributions. Typically, these tests can be adapted to study a variety 

of stochastic orders. Beach and Davidson (1983) proposed a test of Lorenz curve 

dominance that explicitly acknowledges that the distribution quantiles are dependent 

random estimates of the underlying distribution.3 However, they treat the compared 

distributions as independent. Beach and Richmond (1985) applied this method to make 

Lorenz curve comparisons and to calculate a set of joint confidence intervals about 

income shares. They adopted a multiple comparison framework in which the 

distributional properties follow the studentized maximum modulus distribution. Relying 

on Pearson goodness-of-fit tests, Anderson (1996) used a different approach to infer 

stochastic dominance. Assuming independence, he derived the asymptotic covariance 

matrix of the frequency vector for the distributions being compared.  

Most of the earlier tests (Beach and Davidson 1983; Anderson 1996) are based on a 

multiple comparison approach. Partitioning the range of the random variables into a finite 

set of k exhaustive intervals, the multiple comparison approach assesses the order of the 

distributions on each of the intervals. These multiple hypotheses tests lead to a statistical 
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size bounded by Sidák’s inequality, a refinement of Bonferroni’s inequality (Savin 1984, 

pp. 834–35). This inequality states that a multivariate normal vector with mean zero and 

arbitrary correlations falls inside a k-dimensional cube centered at the origin. In the 

special case where the correlations are zero, the test statistic has the studentized 

maximum modulus distribution, a result that Richmond (1982) applied in the construction 

of simultaneous confidence intervals. Given that these tests are based on Sidák’s 

inequality, and because the correlations may not be zero, the true size of such a multiple 

comparison test is likely smaller than its nominal size. Kaur, Prakasa Rao, and Singh 

(1994) have proposed an alternative test for second-order stochastic dominance.4 The 

test, which is valid when observations of each sample are identically independently 

distributed variables, applies the intersection-union principle.  

These types of tests have been criticized because the assumption that compared 

distributions are independently distributed is often inappropriate for the context in 

question. This criticism is pertinent for income distribution comparisons that rely on 

panel data as well as for financial data where different distributions are often conditioned 

on similar information sets held by the economic agents. With this concern in mind, 

Klecan, McFadden, and McFadden (1991) introduced a test of stochastic dominance that 

is an extended version of the Kolmogov-Smirnov test. Their test does not impose a 

parametric form on the distributions. Through the assumptions of exchangeability and  

-mixing, the test does allow for some degree of statistical dependence across space and 

time. Klecan, McFaden, and McFadden derive an upper bound on the size of the test, but 

the test is likely inefficient because it does not explicitly take into account the 

dependence structure between distributions. 

Davidson and Duclos (2000) demonstrated a theorem that constructs estimates of the 

asymptotic covariance structure over successive integrals of the probability distributions, 

that is, the cumulative distribution function (cdf), its integral, and so on. They extended 

their finding to the case where the quantile of interest, for example, the poverty line, is 

random. Zheng and Cushing (2001) derived a similar, albeit more restrictive, result and 

have used it in tests of income inequality indices. Looking again at Lorenz curves, Zheng 

(2002) developed a procedure for non-simple random samples resulting from stratified 

and cluster sampling plans. He showed that treating non-simple random samples as 
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simple random samples may lead to significant bias in variance-covariance estimates of 

Lorenz curve coordinates. 

As for identifying MLR order, Hendricks, Porter, and Wilson (1990) recognized the 

need to support their theoretical results on auctions by studying gas lease bids by 

informed and uninformed bidders. They used a Wilcoxon test to compare the distribution 

on each percentile, a procedure that does not acknowledge the dependence of distribution 

quantiles. 

Dykstra, Kochar, and Robertson (1995) were the first to develop a formal test for the 

MLR ordering. They adopted a non-parametric maximum likelihood estimator under the 

null hypothesis of equality in the probability distribution functions, and their estimator 

assumes independent random samples. Seeking a general inference platform, Dardanoni 

and Forcina (1998) proposed a uniform framework for likelihood inference on stochastic 

orders, for example, the simple stochastic order, the Lorenz order, and the MLR order. 

Their test leads, after suitable reparameterization, to a system of linear inequalities. They 

developed a maximum likelihood algorithm based on the expected information matrix, 

but this estimator relies, again, on the independence of the distributions. Using this 

estimator of the test statistic, they applied testing procedures for order-restricted inference 

that rely on results from Robertson, Wright, and Dykstra 1988. In a further extension, 

Dardanoni and Forcina (1999) adapted their earlier results to compare multiple (that is, 

more than two) distributions for the case of Lorenz curve orderings. The work of most 

direct relevance to our auction application is by Bartolucci and Forcina (2000), who 

developed a likelihood ratio statistic to test for affiliation among binary variables.  

In this paper, we develop and apply a test for the MLR order. Our methods generalize 

to the comparison of three or more distributions, and we develop the test directly in this 

more general context. Using the parameterization of Dardanoni and Forcina (1998), we 

derive a test statistic that may be written as a linear combination of inequalities. The 

asymptotic distribution of the test statistic is derived and, in contrast with Dardanoni and 

Forcina (1998), we rely on the results of the asymptotic covariance matrix of cdf’s as 

derived in Davidson and Duclos 2000. 

Davidson and Duclos extend to the dependent samples context the application by 

Chow (1989) of the central limit theorem to stochastic inference on dominance orderings 
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with independent samples. Their extension is more general than the result applied by 

Anderson (1996), who uses the asymptotic normality of cell frequency counts associated 

with two independent samples. Davidson and Duclos confine their attention to the class 

of stochastic orderings that are generated by comparing successive integrations of cdf’s. 

While the MLR property cannot be presented as such, one of the main theorems in 

Davidson and Duclos (Theorem 1) can be readily modified through a transformation to 

apply to the MLR ordering. Our approach is to make this transformation. The asymptotic 

distribution of our test statistic therefore does not require the assumption of independence 

among distributions. Dependence is likely the case for economic applications to contract 

and auction analysis because the distributions to be studied will be conditioned on 

common environments or common information sets. The derived test statistic, together 

with the covariance structure, allows us to apply directly the theory of order-restricted 

regressions to test for the MLR order. 

 

A Nonparametric Test for Stochastic Order 

Let y ~ F be a random variable whose distribution function y ~ F(y | x) is conditioned 

by the decision variable x, and whose range is limited to the arbitrarily large closed 

interval A    ⊂ � . To set up notation for the statistical test, we divide the range into a 

partition characterized by the completely ordered vector 1 2( )k, , . . . , a a a  and we let a0 = 

inf(A). The probability vector i, j  =p  1Pr ( [ ]| )j- j iy ,  x = xa a∈  denotes the conditional 

probability that y falls into the jth interval given that the decision variable takes the value 

xi. Let ,1 ,2 , ( , , , )i i i i kp p p p ′= …  with 11 1 k
j=i, k+ i, j=   p p− ∑  so that pi fully describes the 

discrete approximation of the conditional distribution. This notation allows us to describe 

the MLR order in the following manner. 

 

DEFINITION 1. Random variable 11 ( | )i+i+ ~ F yy x  is said to dominate random variable yi ~   

F(y |  xi) according to the monotone likelihood ratio order if, for any partition of the 

range, 1 1 1 1/ /  {1 2 }i, j i, j+ i+ , j i+ , j+  j , , , kp p p p≥ ∀ ∈ … . In this case, we write 1 ri+ i y y� . 
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The definition carries over to the case where more than two distributions are 

compared. If we let i = {1, 2,  …, m + 1} index the distributions of interest, then we say 

that a sequence of distributions is stochastically ordered in the MLR sense whenever 

1 1r r rm+ m  y y y� � …� . 

When testing for stochastic order among distribution functions, randomness arises 

because the sample data only imperfectly represent the underlying true population 

distribution. A testing procedure should take this randomness into account. It should also 

acknowledge the possibility of dependence through common conditioning environmental 

and economic factors. Many of the tests for stochastic orderings available in the literature 

are ill suited to model the typical economic environment because these tests suppose that 

samples are independently drawn. We overcome this problem by adapting a theorem in 

Davidson and Duclos 2000 to develop a test that takes explicit account of the covariance 

structure between conditional distributions. This allows us to derive the asymptotic 

distributions of the variables of interest. We can then apply results for order-restricted 

inference (see Robertson, Wright, and Dykstra 1988) to test for the MLR order. 

This section is structured as follows. After preparing the test statistic, we derive its 

asymptotic distribution. Then we introduce the concepts of order-restricted inference that 

allow us to proceed with a one-sided test for the MLR order. 

A Presentation of Data for Hypothesis Testing 

The hypothesis to be tested involves a comparison of m + 1 conditional empirical 

distribution functions, and the data processing algorithm to be used treats the data as a 

single set. For the pi associated with the m + 1 evaluations of the conditioning variable, 

form a k×(m + 1) matrix, and denote it by p. Identify by vec(p) the (m + 1)k×1 vector 

formed by stacking the columns in p. Denote the k×k identity matrix by Ik, and denote the 

upper triangular matrix of 1’s by Tk. Observe that the inverse of the latter, 1-
kT , has 1’s on 

the diagonal and –1’s on the first upper diagonal. Also, define Dm as the m×(m + 1) 

matrix with entries di,j where, di,i  = 1, di,i+1 = –1, and di,j = 0 otherwise.  

Define 1ln ( / )i, j i, j i, k+= p p  so that i, j  is the multivariate logistic transformation of pi. 

Collect these i, j  evaluations into a k×(m + 1) matrix, and call it Θ . Note that 
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1ln ( / )i, j i, j+ =p p  1i, j i, j+−  for j < k, and 1ln ( / ) i,ki, j i, j+ =p p  for j = k. Following 

Dardanoni and Forcina (1998), the MLR order implies 

 1= ( ) ( ) 0,-
m k vecD T⊗ Θ ≥rb  (1) 

where premultiplication by matrix 1-
kT  replaces the numéraire residual probability with 

an adjacent probability in the ratios given by i, j , and where Dm generates comparisons 

across the distributions under consideration. 

Asymptotic Properties of the Test Statistic 

Davidson and Duclos (2000) present a theorem, adapted to our case as Lemma 1 in 

Appendix A, that identifies the asymptotic properties of two correlated cdf’s for two 

samples of size n. Using their result on the asymptotic properties of the cdf estimates and 

using the delta method (Lemma 2, Appendix A), we can derive the asymptotic properties 

of the statistics br. Let vector Fi have the jth ordinate Fi,j = =1 ,l Pr(  | ) = ,j
j i l iy pa x≤ ∑  

= 1, 2,  ,j k… . For the Fi associated with the m + 1 conditioning variables, form a k×(m + 

1) matrix, and denote it by F. Let vec(F) be the (m + 1)k × 1 vector that is obtained after 

stacking the columns in sequence where F1 provides the first k entries. 

 

PROPOSITION 1. Let Σ  be the covariance matrix of vec(F). Define, for {1 2 }i , , ,m∈ … , the 

k × k matrix  

 

1 2

21 2

2 3

2 32 3

3 4

3 3 4

1

1

1 0 0

1 1 0

1 0

0 0 0

i, i, 

i, i, i, 

i, i, 

i, i, i, i, 

r,i i, i, 

i, i, i, 

i, k i, k+

i, k i, k+  

  +  p p
-  

p p p

  +  p p
-  -  

p p  p p

 = 0   +  p pC -  
p   p p

  +  p p

  p p

 
 
 
 
 
 
 
 
 
 
 
 
 

…

…

…

� � � � �
…

 ,



 (2) 

and define the mk ×(m + 1)k matrix  
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1 2

2 3

1

0 0

0 0

0 0 0

r, r, 

r, r, 
r

r, m+

- C C

-C C
 =  .C

-C

 
 
 
 
 
 

…
…

� � � � �
…

 (3) 

Then the mk × 1 vector ˆ( )n −r rb b  has asymptotic normal distribution with mean zero 

and covariance matrix r r r  =   CC ′ΣΣ . 

 

The proof is provided in Appendix B. Next, we pose the hypothesis that we seek to test. 

Hypothesis Testing 

We wish to test for H0 over H1 where 

H0: br ≥ 0 (weak order); 

H1: (the distributions are not ordered in the sense of H0). 

The test is based on a distance statistic and has been developed in the context of 

order-restricted inference by Robertson, Wright, and Dykstra (1988), among others. Let 

Γ  denote a convex cone contained in v� , and let the positive definite v × v matrix V 

describe a metric. Then the distance between a vector v∈z �  and set Γ  is defined as  

 1( , ,V) = inf ( ) V ( ).d −
∈Γ ′Γ − −zz z z z z� � �  (4) 

Viewing the null and alternative hypotheses as subspaces, 0 1, vH H  ⊂� , the distance 

statistic may be written as  

 0,1 0 0 1
ˆ ˆ{ ( , ,V ) ( , ,V )}.D = n d H d H H− ∪r rb b  (5) 

The distance statistic equals zero whenever the sample value of ˆ
rb  is consistent with the 

null hypothesis. For ˆ( ) ~  (0, )a
rn N− Σr rb b , the test statistic may be described as  

 H0 against H1: 
1

0, 1 ˆ 0
ˆ ˆ = min ( ) ( ).rnD

−
≥

′− Σ −
r

r r r rb
b b b b� �  (6) 

Problem (6) is solved through quadratic programming and the covariance matrix is 

estimated by its sample equivalent. Test statistic D0,1 is 2χ  distributed such that 
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0,1Pr( ) =D c≥  2
l=0Pr( ) ( , , )mk

l rc w mk mk lχ ≥ − Σ∑ , and the null hypothesis is evaluated at its 

least-favorable alternative, that is, at br = 0 (Wolak 1989, p. 214). The 2χ  distribution is a 

mixture of weighted χ distributions where the 2
0χ  distribution is defined as the point mass 

at the origin. The weights given by ( , )rw mk, mk l− Σ  are the probabilities that vector br 

has exactly mk – 1 positive elements where, by definition, these probabilities sum to 1. 

The exact critical values depend explicitly on covariance matrix Σr and are difficult to 

determine for k > 0 (see Kudô 1963 for the closed-form solution formulae when 4k ≤ ). 

Following Wolak (1989), we determine these values through Monte Carlo simula-

tions. Drawing 1,000 times from the multivariate normal distribution with mean 0 and 

covariance matrix Σr, vector rb�  is computed for each draw. The weights are the 

proportions of the 1,000 draws such that rb�  has exactly l positive elements. All 

covariance matrices are estimated by their sample equivalents. 

 

Application to Production Technology 

Site-level information on the use of nitrogen and other inputs is not available to crop 

insurance companies. While these inputs are tangible and purchases of artificial sources 

of nitrogen can be documented, the inputs can be stored for future use, sold or bartered on 

secondary markets, or applied on land other than that planted under the insured crop.5 

Thus, crop insurers are posed with a moral hazard problem that can be avoided only by 

incurring prohibitively large monitoring costs. Chambers (1989) has shown that the MLR 

order plays an important role in understanding the moral hazard constraints that a crop 

insurer faces when designing a contract. Specifically, with an action-induced MLR 

dominance order and constant absolute risk aversion, the risk-neutral insurer will leave 

the grower with a positive fraction of incremental crop revenue. In this way, incomplete 

risk shifting is used to encourage input use by the grower.6 The moral hazard problem 

would appear to be particularly severe in crop agriculture. Babcock and Hennessy (1996), 

among others, have identified moral hazard as one of the main reasons for failure of 

commercial crop insurance markets in the United States and elsewhere.7 
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Data 

Data were obtained from Iowa corn plots grown by the nitrogen research team in the 

Department of Agronomy at Iowa State University during the five-year period 1987–91. 

The data previously has been described in Babcock and Hennessy (1996). Four 

geographically dispersed farms sites were involved, and ten different nitrogen application 

levels, ranging from 0 to 300 lb/acre, were applied. The rates were given in 25 lb/acre 

increments at low application rates and in 50 lb/acre increments at higher application 

rates. The data set consists of 600 observations where there are 60 observations per 

nitrogen application rate. In order to aggregate across years and sites, we correct the 

distributions by year and site factors. The details are provided in Appendix C.  

The input-conditioned empirical distributions of corn yields that we compare are the 

nine pairs of adjacent nitrogen applications rates: 0 lb/acre versus 25 lb/acre through to 

250 lb/acre versus 300 lb/acre. To form the partition of the yield range, the vectors of the 

distributions (two or more) to be compared are stacked and then divided into k + 1 = 5 

equiprobable intervals. Then, using these intervals, the empirical cdf is calculated at each 

nitrogen application rate. The number of intervals was chosen in order to ensure that each 

cell receives a strictly positive probability weight for each of the distributions being 

compared. 

Results 

Note that a rejection of H0, implying that yi+1 does not MLR dominate yi, does not 

imply that yi MLR dominates yi+1. But the comparison of distributions certainly can be 

turned around to test for the latter relationship. We do so, and consequently we report two 

sets of results. Because the random variables can be exchanged in this manner, the rb�  

vector for the test in one direction is the additive inverse of the test in the reverse 

direction. 

Table 1 presents the results when comparing two distributions. The first set of 

columns (columns 1 and 2) shows pairs of nitrogen application rates, i and i + 1, for 

which the distributions are compared. The second set of columns (columns 3 and 4) is 

labeled ri+1 i  y y� , and compares the distributions in the sense that the yield distribution 

of the higher nitrogen application level dominates the yield distribution of the lower  
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TABLE 1. Order-restricted test for the likelihood ratio order 

Nitrogen 
Rate 

(lb/acre) Hypothesis 0 1:  i r iH y y+ �  Hypothesis 0 1:  i r iH y y +�  

 
 
 
i 

 
 
 
i + 1 

 
Distance 
Statistic, 

D0,1 

2

0,1χ  Distribution, 
Critical Values 
at α = 0.1, 0.05, 

0.01 

 
Distance 
Statistic,  

D0,1 

2

0,1χ  Distribution, 
Critical Values 
at α = 0.1, 0.05, 

0.01 

0 25 0 6.31, 7.84, 11.98 26.79*** 6.33, 7.87, 11.40 

25 50 0.11 6.39, 7.95, 11.55 21.05*** 6.29, 7.83, 11.37 

50 75 1.85 6.31, 7.85, 11.39 33.88*** 6.23, 7.87, 11.40 

75 100 0 6.34, 7.89, 11.45 8.20** 6.27, 7.81, 11.33 

100 125 0.13 6.29, 7.82, 11.34 20.38*** 6.22, 7.74, 11.23 

125 150 1.45 6.26, 7.77, 11.27 4.78 6.26, 7.78, 11.28 

150 200 4.57 6.33, 7.86, 11.27 10.99** 6.25, 7.77, 11.27 

200 250 0.36 6.33, 7.86, 11.38 9.17** 6.35, 7.89, 11.44 

250 300 7.37* 6.23, 7.74, 11.24 2.50 6.22, 7.73, 11.42 

Note:  ** and *** denote significance at the 0.05 and 0.01 levels, respectively. Parameter k has value 4. 
 

nitrogen application level. The third set of columns (columns 5 and 6) is labeled 

1ri i+ y y� , and compares the distributions in the reverse direction. Columns 3 and 5 

report the test statistic for H0 against H1. The 0.1, 0.05, and 0.01 critical values of the 2
0,1χ  

distribution are reported in columns 4 and 6, for the respective comparisons. The exact 

value depends on the covariance matrix Σr, and so the values depend on the pair of 

distributions under comparison. 

We observe in column 3 that H0 is not rejected in favor of H1 for nitrogen applications 

between 0 lb/acre and 250 lb/acre at any significance level. This provides strong evidence 

in favor of the MLR order. These results are again confirmed in the reverse comparison in 

Table 1. Here the MLR order, when comparing distributions in the direction of decreasing 

order, is rejected in favor of H1 (no order) at the 0.05 significance level in seven of the nine 

comparisons. The exceptions are for the comparison of 150 lb/acre versus 125 lb/acre and 

for the comparison of 300 lb/acre versus 250 lb/acre. In Iowa the commercial nitrogen 

application rate is typically between 100 and 200 lb/acre (Duffy and Smith 2002), and 

commercial rates have not varied much over the past 20 years. 
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In microeconomic analysis, it is common to assume that the MLR order holds globally. 

We test for this hypothesis over the economically relevant range of fertilizer applications 

from 100 to 200 lb/acre where m = 3. The hypothesis 200 150 125 100r r r y y y y� � �   generates 

the test statistic value 4.14 and is not rejected at any conventional significance level.8 

However, the reverse hypothesis, with a test statistic of 40.77, is rejected at the 1 percent 

significance level.9 

 

Application to Auctions 

Interest in the use of laboratory auctions for evaluating decision making, for 

assessing the acceptance of new products, and for understanding reactions to publicly 

posted information has grown. Many of these auctions proceed in multiple rounds and 

post the prevailing market price after every trial. This procedure allows newcomers to 

gain experience in the “market.” Concern exists that posting price information could alter 

bids when valuations are correlated in the affiliation sense. In our second application, we 

show how the test can be applied to the hypothesis of an affiliated, symmetric distribution 

of valuations, which is one of the principal assumptions underlying the standard auctions 

model. Because the affiliation property coincides with the multivariate extension of the 

MLR ordering when the bidders are symmetric, if posting the price is found to shift bid 

distributions in the MLR sense, it would provide strong evidence that the underlying 

values are drawn from an affiliated distribution. 

Testing for the property has been of interest in common value auctions under 

asymmetric information.10 In empirical studies of oil and gas lease auctions, Hendricks, 

Porter, and Wilson (1990) tested for MLR order on the bid distributions among informed 

and uninformed bidders. The test supported their assumption of an MLR dominating shift 

between bid data from informed and uninformed bidders. 

Possible value affiliation has been subject to a critical assessment in private-value, 

multiple-round Vickrey auctions with price posting after every round. As agents extract 

information on value perceptions from price formation in the market, price posting will 

allow buyers with affiliated values to update their values iteratively as evidence mounts 

to allay fears of overbidding. List and Shogren (1999) employed least-squares methods to 

ascertain how intermediate-round price information affects bidding behavior in multiple-
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round auctions. Data were drawn from auction experiments evaluating willingness to pay 

for pathogen-screened meat sandwiches. They found that posted prices (1) do not affect 

behavior of the median experience bidder, but (2) do influence the behavior of the 

median bidder among bidders unfamiliar with a product. In contrast to List and Shogren 

(1999), who tested for linear correlation between posted price and the median bid in the 

subsequent round, we apply our methods to test for the MLR order on distributions of 

bids cast in consecutive rounds.11 

Data 

We use data from a laboratory auction in which participants were asked for their 

willingness to pay to exchange a typical meat sandwich with a sandwich that has been 

carefully screened for either Campylobacter or Salmonella contamination (Shogren et al. 

1994). The solicitation mechanism was a second-price, multiple-round auction where 

each group consisted of 15 bidders. The prevailing market price was posted after each 

round. The auction consisted of 10 rounds of naive bids, where subjects did not receive 

any information on the risk involved in Campylobacter/Salmonella infection. However, 

subjects were informed that the stringently screened sandwich posed a probability of 

illness that amounts to 1 in 100 million. Some summary statistics are provided in Table 2, 

where we show the median bid alongside the posted price (the second-highest bid) in 

each round. The prevailing market price varies between $1.00 and $1.38 for the sandwich 

screened for Campylobacter and between $0.63 and $1.50 for the sandwich screened for 

Salmonella.  

Results 

In our data analysis we chose k = 4. Because the conditioning variables—the posted 

prices—do not necessarily change monotonically along the sequence of trials, we 

compare only pairs of distributions (m = 1). Table 2 shows the results in the fourth and 

fifth columns. Of the 36 comparisons, we find only two rejections, one in the case of 

Campylobacter and one in the case of Salmonella. This means that a statistically 

significant MLR ordering on the distribution shift cannot be discerned for most 

comparisons. 
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TABLE 2. Auction bid distribution after price posting 

Trial Min Median Max Price 0 1: i r iH y y+ �  0 1: i r iH y y +�  

Campylobacter 

i = 1 0.05 0.50 2.00 1.00 4.72 4.34 

i = 2 0.05 0.50 1.80 1.00 4.73 6.60* 

i = 3 0.05 0.50 1.50 1.25 3.15 3.34 

i = 4 0.00 0.50 2.00 1.15 3.92 4.20 

i = 5 0.05 0.50 1.45 1.25 1.96 3.55 

i = 6 0.05 0.70 1.50 1.38 2.29 2.13 

i = 7 0.05 0.65 1.50 1.35 2.18 2.14 

i = 8 0.00 0.50 1.50 1.25 2.24 2.14 

i = 9 0.00 0.55 1.45 1.25 3.60 3.07 

i = 10 0.00 0.50 1.40 1.15   

Salmonella 

i = 1 0.08 0.50 2.00 1.50 6.25 6.77* 

i = 2 0.10 0.50 1.45 1.00 5.43 3.54 

i = 3 0.10 0.50 1.40 0.80 3.59 2.95 

i = 4 0.11 0.47 1.8 1.25 2.00 2.81 

i = 5 0.10 0.50 1.30 0.80 2.15 2.17 

i = 6 0.10 0.50 1.00 0.92 5.59 4.65 

i = 7 0.10 0.47 0.78 0.75 2.30 3.01 

i = 8 0.10 0.50 0.90 0.75 2.45 0.30 

i = 9 0.10 0.50 0.87 0.80 2.72 2.27 

i = 10 0.10 0.50 0.80 0.63   

Note:  * denotes significance at the 0.1 level. Parameter k has value 4. 
 
 

The two instances where we identify the MLR order are the comparison of trials 2 

and 3 in the instance of Campylobacter and in the case of trials 1 and 2 in the instance of 

Salmonella. For both pathogens, the price signal has shifted the distribution upwards in 

the MLR sense. That is, the price information was taken by the subjects to be a positive 

signal, “good news” in the words of Milgrom (1981a).  

Our results confirm those of List and Shogren (1999). For newcomers evaluating 

unfamiliar goods, price posting might lead to weak affiliation of the bid distribution. If 

posted prices were interpreted as informative signals on value, we would expect this to be 
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the case early in the auction. However, the affiliation effect disappears after trial 3 when 

the information-adjusted values settle to a new equilibrium. 

 

Conclusion 

In this paper, we have presented a robust procedure for testing for stochastic order 

among distributions that takes explicit account of the correlation structure of the 

distributions being compared. Using agricultural crop trials data, we applied the test to 

identify stochastic order in the likelihood ratio sense. Our results support the hypothesis 

of MLR order over a large range of input levels. We conclude that the MLR assumption 

commonly made in theoretical work is confirmed for our data set. In a second 

application, we studied private evaluations of a new good in a multiple-round Vickrey 

auction to identify some evidence in favor of the affiliated values assumption commonly 

employed in the economics of imperfect information. 

Other stochastic orders also arise in economic models. The test can be extended to 

accommodate alternative univariate stochastic orders such as the reverse hazard 

(monotone probability ratio) order, which has arisen in portfolio theory (Athey 2002) and 

elsewhere.



 

 

Endnotes 

1. Under the simple stochastic order, the compared distributions cannot intersect and 
the dominating distribution lies underneath the dominated distribution. Under the 
MLR order, the ratio of the densities, say f2(x)/f1(x) where f2(x) dominates, is 
monotone increasing where defined. Graphically, one implication of the MLR 
ordering is that the ordered densities can cross no more than once. 

2. The affiliation property is defined on lattice-structured sets. We direct the interested 
reader to Athey 2002. See Shaked and Shanthikumar 1994 (p. 132 and p. 253) on the 
relation between the multivariate MLR order and the affiliation property. It suffices 
to test for the MLR property instead of for affiliation because the standard model in 
auction theory assumes symmetry across agent strategies and beliefs so that all 
agents have the same probability function on valuations. Bartolucci and Forcina 
(2000), in contrast, have developed a likelihood ratio test for the MTP2 property on a 
distribution of binary variables. Such a test, were it extended to continuous variables, 
would make it possible to dispense with the symmetry condition in deriving the test 
hypothesis.  

3. As Lorenz curves are constructed with share data, Lorenz-curve dominance may be 
interpreted as a mean-preserving contraction in the variability of income shares. 

4. An increase in this order increases the expected value of all increasing and concave 
functions. 

5. Farmers typically rotate land through different crops in order to disrupt the 
progression of pest infestations, to replenish soil nutrients, and to rest ground from 
intensive cultivation practices. For corn in the midwestern United States, the most 
common rotations are corn-soybean and corn-corn-soybean.  

6. Were risk-neutral insurers perfectly informed, then they would have assumed all the 
risk. Thus, the equilibrium contract is not optimal but it is an information-
constrained optimum. 

7. Commercial crop insurance markets do exist in the United States, but their viability 
is underpinned by government subsidies. Also, the U.S. federal government has at 
times made crop insurance coverage a pre-requisite in determining eligibility for 
agricultural income support. 

8. The critical values are 11.95, 14.01, and 18.41 at the 0.1, 0.05, and 0.01 significance 
levels. 
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9. The critical values are 11.98, 14.05, and 18.45 at the respective significance levels 
0.1, 0.05, and 0.01. 

10. A common value auction is one in which all bidders place equal, but unknown, value 
on an asset. A private value auction is one in which bidders place different values on 
the asset. 

11. As the auctions are Vickrey, the bids reveal the valuations. Therefore, we are testing 
for the MLR ordering on conditioned distributions of valuations. 
 



 

 

 
Appendix A: Lemmas 1 and 2 

Lemma 1 is adapted from Davidson and Duclos 2000 (p. 1444) when applied to 

cdf’s. Let ˆ ( )iF y  be the empirically observed cumulative distribution corresponding to the 

true distribution Fi(y). Define function Ind( )iy y≤  as the indicator function, assuming 

value 1 when the argument is true and 0 otherwise, and let expression 

[Ind( )Ind( )]A BE y yy y ′≤ ≤  be the unconditional expectation on the product of indicator 

functions for random variables yA and yB. 

 

LEMMA 1. For { , }i A  B∈ , the statistic ˆ[ ( ) ( )]i in F y F y−  is asymptotically normal with 

mean zero and asymptotic covariance structure given by 

 ˆ ˆlim Cov[ ( ), ( )]  [Ind( )Ind( )] ( ) ( ).A B
n A B A Bn F y F y E y y F y F yy y→∞ ′ ′= ≤ ≤ −  (A.1) 

The covariance matrix ,( )i jσΣ =  may be consistently estimated from the empirical 

distribution function (Davidson and Duclos 2000, p. 1445) 

 -1
, 1

ˆ ˆInd( ) Ind( ) ( ) ( ),{ , } { , }.ˆ
A Bn

i j m  i jm m   y y F y F y i j A By ynσ = ′ ′= ≤ ≤ − ∈∑  (A.2) 

Lemma 2, below, provides the delta method (Greene 2000, p. 118), which we use to 

establish asymptotic distributions. 

 

LEMMA 2. If zn is a K × 1 sequence of vector-valued random variables such that 

( )nn z µ−  (0 , )
d

 N    → Σ , and if c(zn) is a set of J continuous functions of zn, not involving 

n, then   
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 [ ( ) ( )] [0, ( ) ( ) ]
d

nn c z c   N  C C ′− µ → µ Σ µ  (A.3) 

where C(µ) is the J × K matrix given by ( ) /c ′∂ µ ∂µ . 



 

 

 

Appendix B: Proof of Proposition 1 

The test statistic is given by -1
  ( ) ( )m k vecD T= ⊗ Θrb  where θi,j , , 1ln( / )i  j i  k p p + =  

, , 1 ,ln[( ) /(1 )]i j i j i kF F F−− −  . Hence br =  
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Because the covariance structure of the cdf’s can be estimated using Lemma 1, (B.1) will 

allow asymptotic estimation of the test-statistic moments. Noting that 

,1 ,1, {1,2, , 1}i iF p  i m= ∈ +…  and Fi,j – Fi,j–1 = pi,j, {1,2, , 1}, {2,3, , }i   m  j k∈ + ∈… … , the 

derivative of br with respect to F, /∂ ∂r Fb , may be written as the mk ×(m + 1)k matrix 

given in equation (3). The result follows upon applying Lemma 2. 

  



 

 

 

Appendix C: Method for Correcting Distributions in the Data Set 

A statistical analysis of Iowa corn yields at the state level identifies a clear time trend 

in the data because of technical progress over the period 1973–99. To control for this, we 

postulate a deterministic component of yield depending on time, as well as on-site effects 

and a random component. To account for changes in yield because of technical progress, 

the data is corrected by estimating a linear time trend for Iowa corn yields from Iowa 

average yield over the period 1973–99 (Iowa Dept. of Agriculture various). Corn yields 

are estimated to increase by 1.753 bu/acre/year where the regression R2 is 0.389 and the 

parameter to the linear time trend has a t-value of 3.986. Using the trend-corrected yield 

data, we tested for equality in means across sites. We rejected the hypothesis of equality 

at the 1 percent level, F > F1,595 = 8.61. For this reason, we proceeded by correcting for 

the mean differences across sites. 
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