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Management of a Multiple Cohort Fishery:
The Hard Clam in Great South Bay

ABSTRACT

Bioeconomics to date has focused almost exclusively on lumped parameter
models where the resource is described by a single state variable defined as
hiomass. While such models are convenient mathematically they may be inappro-

priate in fisheries where recruitment and fecundity are dependent on the age
structure of the resource. :

This paper develops a reasohably general multipie cohort model and derives
conditions for optimal harvest and age structure based on a discrete time control
problem which maximizes the present value of net revenues subject to recruitment
and spawning constraints. The model is applied to the hard clam resource in
Great South Bay which is located on Long Island, New York. The steady state
optimum calls for exclusive harvesting of the younger, {and more vaiuable),

nJittleneck" cohorts; leaving the older, (and less valuable), "cherrystone" and
"chowder" cohorts to specialize in regeneration.




Management of a Multiple Cohort Fishery:
The Hard Clam in Great South Bay

1. Introduction and Overview

Most of the recent economic models of renewable resources have presumed'
that the resource in question can be adequately described by a single index or
state variable. Such a.view is consistent with much of the classical literature
in physical biology where population growth was described using the Togistic
:equation (seé A. J. Lotka, 1956). Such models may be inadequate, however, when
dealing with a resource where recruitment and fecundity are dependent on the
population's age structure; or where the revenues and costs of resource exploi-
tation vary with age at harvest.

The development of multiple cohort bioeconomic models is mathematically
complex. With regard to models of commercial fishing Colin Clark has noted:

Most fish populations, for example, consist of several different ages;

both commercial value and reproductive potential generally depend on

the age of the individual fish. These phenomena are often highly sig-

nificant in determining optimal policies. But including age structure
in the analysis introduces significant new mathematical difficulties.

Indeed, the problem of the optimal harvesting of age-distributed popu-
lations remains unsoived (Clark, 1976, p. 256).

In the next section we will develop a reasonably general multipie cohort
model which allows for a finite number of cohorts or year classes. Cohorfs
which are commercially harvested are characterized by a transition equation,
average weight, price per pound, and a stdtk dependent cost function. The re-
productive potential of adult cohorts is described by a fecundity index. Rules
for optimal harvest and age structure are derived from a discrete time control
problem which maximizes the present value of net revenues subject to recruit-
ment and spawning constraints.

In section three the model is applied to the hard clam, (Mercenaria,

mercenaria), in Great South Bay on Long Island, New York. The relevant economic



and biological processes are specified and parameters for price, cost, mortality,
and fecundity are presented. A steady state optimum is derived and its manage-
ment implications discussed.

The final section summarizes the results of the general model and the ap-
plication to the hard clam resource. Conclusions and management 1mp11cat1ons
are discuyssed, and the value of applied bioeconomic research in estimating the
gains from management, (vis-a-vis transactions costs to achieve those gains),

is noted.

II. A Muitiple Cohort Model

The model to be developed relies on the following notation:

t=0,1,2, ..., year index
k =0,1,2, ..., K year class or cohort index, where k = 0 = larval
' stage and k = K = oldest year class.
Xk £ = the number of fish of the kth year class in the
th year.
SO = the survival rate for larvae, invariant to the size

of the Tarval cohort.

Sk(Xk t) = ' the survival function for juveniles and adults, ex-
: clusive of fishing mortality.

Ty = spawning rate of the k th year class, where k = k*,
» K-1. Thus k* is the youngest year class to
spawn and K-1 is the oldest.

Ve ¢ = the number of Fish of the k°l class caught in the
* h

tt year; k = E »evs K=1. Thus k is the youngest
year class to be harvested and K-1 is the oldest.

Bk = | ' average weight for a member of the k th year class,

Pk = Market price per unit of cohort k.

Ck,t = Ck(Yk £ Xk,t) total cost of catching Yk,t with starting stock of
Xy ¢ such that aCk(-) > 0 aCkfn) <

aYk,t BXk’t



th th

Ne 4 = | | net revenues from the k- class in the t7 year.

1 = discount factor, where ¢ = discount rate.
1+§

Four aspects of the model should be emphasized
1. A particular cohort is spawned and moves through a juvenile stage

until it reaches maturity as year class k* where it will spawn for the
first time.

2. [t is assumed that there is no harvest of cohorts k < k, nor of the
last year class, (k = K}.

3. In each period it is assumed that the mature year classes spawn before
natural and fishing mortality take their toll. The last year class XK is

something of a biological and economic nonentity. It does not contribute
to spawning (yK = 0) nor is it commercially harvested (YK £ " 0). Includ-

ing such a class in the problem, however, facilitates solution and analysis
of steady state equilibrium, with no great loss in realism.

4. For juveniles and adults the survival function is such that 0<Sk(°)<xk,t
for ngt>0 and Sk(O) =0 for k=1, ..., K-1. For the terminal cohort

SK(') = 0 for all XK,t’ One might expect that natural survival might be
enhanced over an initial range of Xk np but at higher cohort densities the

rate of survival would diminish. Thas S£(=) % 0.

In any year the number of larvae will be given by

K-1

X = ) v, X (1)
o,t K= k* k "kt

With no harvest of the larval year class, and with a constant survival rate the
number of first year juveniles would be
K-1 |
X1, 41 = S0 by Yk Rt (2)
k=k
The transition for precommercial cohorts will occur according to Xk+1 t1

Sk(~). By substitution it is possible to express the stock of the harvestable

cohort & in period t+ﬁ as a function of adult stocks 1in period t; specifically
K-1
st trk Rt+k {kzk* Yk xk,t) (3)

Equation {3) will be referred to as the "spawning constraint.”
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For cohorts E < k ¢ K the transition equation would include deductions
for yield (or fishing mortality) so that

Xee1, w1 = S0 = Yy for k =k, ..., K-1 (4)

Equation (4) 1is referred to as the "recruitment constraint." We will aséume
that k* » ks that is, that sexual maturity is achieved at the same age or after
commercial maturity. In this case equations (3) and (4) will be functions of
only the commercial cohorts.

Presuming commercial harvest is profitable for cohorts k = E, cens K-l
the net revenues from the harvest of the kth year é]ass in period t would be
given by

N P.B,Y C ()] (5)

Lt T St -
Summing over all harvestable year classes we could calculate aggregate net re-
venues according to

K-1
N T [P BYYy ¢ = C o) . (6)
k=k

The present value of all such net revenues may be written as

oKl
oL PR - 6] 7
0 k=k

=
it
0t~ 8

t

Maximization of the present value of net revenues subject to spawning and

recruitment constraints could be accomplished by formulating the Lagrangian ex-

pression
It ()] + of ()
L= P [P, B Y - C ()T + ol ~ R () = X, 1
£=0 e Kkt ko t+k ek K, t+k
K-1
Lo, w1 IS0 = Y - Ky gl (8)

k=k



first order necessary conditions require

t ~
%%_ = " {IPBy - 3C, ()] = Phypq, a1l for k = ky ooy K-1 (9)
k.t W, ¢
t )
L = ot {1m 90 () + ehgq gy SKE - ey = O (10)
Y
Kot W, ¢
for k = %3 , k¥-1
b~ o {L- 3 ()1 + V. Reyil) + on St ()} - L =0 (11)
X K, PAR+1, t+1 7 k PGt
k,t SXk t BXk £
’ for k = k¥, ..., K-1
t+k ,
8k =0 [Ro.o{-)-X. .10
5. . bk K, t+k | (12)
k, t+k
_tH _
i ol IS0 - Ve R, ] 7O (13)
k+l, t+1

~

for k = k, ..., K-1

The last terms in equations (10) and (11) are obtained by “backing up" one term

in the Lagrangian tc year (t=1) and to term (k-1) within-the sum of recruitment

%

constraints and differentiating with respect to Xk &

To facilitate interpretation the first order conditions may be simplified

to
PkBk = ack(-) todry, 4l for kK = Ky ..., K-1 {14)
aykgt
A = N LI :A -
Kot o -3Ck( )+ Phel, ¢4l Sk( ) for k = k, , k*=1 {15}
axkst
A = -3C (-) + &x SR, o(=) + px Si() (16)
Kt k R Pherl, 41 Tk
axk’t axk,t

for k= k¥, ..., K-1



X. ~=R () {(17)

-~

Xk+1, t+1 Sk(') - Yk t for k = k, ..., K-1 (18)

Equation (14) requires that harvests be arranged so the marginal revenue
is equated to the sum of marginal harvest and user costs. In this instance user
cost is the discounted value of an additional fish in the next oldest cohort,

one year in the future. An additional fish harvested today would reduce the

stock of cohort (k+1) in (t+1) with certainty.

' Equations (15) and (16) provide rules for managing cohort stocks. For
Juveniles equation (15) requires that the stock of cohort k in year t be main-
tained so that its marginal imputed value (Ak,t) equals the sum of stock related

marginal cost (-aCk(-)>0) and user cost which is discounted for time and survival

axk,t
(pAk+1, 41 Si(-)). If Sk(') = Skxk,t where 0 < Si < 1, then S, could be inter-
preted as the probability that an unharvested member of cohort k will survive to
become a member of the k+1 cohort. In & sense the future values Tn equations
(15) and (16) are being discounted for time and risk; the risk being that a fish
left unharvested today may die from natural causes before it can be harvested
tomorrow. |
Equation (15) applies to juviniles who do not contribute to spawning; that
is, cchorts k = ﬁ, .;., k*-1. Equation (16) applies to cohorts that do spawn
(i.e., k=k*, ..., K~1). The stocks of spawners must be maintained so as to
equate marginal imputed value to the sum of stock reltated marginal cost, user

cost, and the discounted value of its progeny who reach commercial size in year

ek (MR, ).
K, tk —or K



This latter term is also discounted for time and risky survival. Equations
(17) and (18) are restatements of the spawning and recruitment constrainis.
A steady or stationary state is characterized by unchanging values for

stocks, yields, and shadow prices. Specifically

Xk,t = Xk; Yk,t = Yk; and Ak,t = X (19)
In steady state equilibrium the first order necessary conditions become
PkBk = ECk(=) *oody _ for k = ky ..., K-l (20)
aYk
A T -aCk(=) * oM Sé(~) for k = k, , k*¥-1 (21}
an
k ~ 3 \
Ay = -ack(») + p AL aRk(w) * g Sk(-) for k = k¥, , K-1 (22}
X Y.
k k
X. = R.() - (23)
k k
Xk+1 = Sk(~) - Yk for k= Kk, ..., K-1 (24)

When evaluated in steady state the first order conditions comprise a system

of 3(K—§) + 1 equations in 3(K-§) + 1 unknowns, where the unknowns are Yk

A

(k = Q, cees K-1), Xk(k =k, ..., K) and Ak(k = Qs ...s K-1). The previous as-

th

sumptions regarding the fecundity and commercial value of the K cohort imply

Ag = Q.

Suppose (=3 and K=11, then equations (22} - (27) would comprise a system
of 25 equations in 25 unknowns the solution of which could be plotted in a bar

graph and might Took something akin to the equilibrium shown in Figure 1 where

Xk and Yk are optimal steady state stocks and yields respectively.

Several points about steady state equilibrium might be noted:

1. Natural and fishing mortality guarantee that Xk > Xk+1 for k= ks -.25

K. This need not be the case out of equitibrium (for example, along an
approach path).



FIGURE 1. STEADY STATE EQUILIBRIUM
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2: While the steady state stock of older cohorts cannot increase the
yield from such cohorts may decrease, remain constant, or increase; i.e.,

Yk < Yk+1’ depending on economic and biological factoers.
N _

3. While the steady state stock of successively older cohorts cannot
increase, their biomass (equal to kak) may decrease, remain constant,
or increase.

4, If A = 0 why would XK > 0? A positive level for the Tast cohort

might be maintained if it was not economic to completely harvest the (K-1)
cohort. One would suspect that as X, ; ~ 0, CK-I( ) > w. If it is not

profitable to harvest all of the next to last year class some will survive
to become members of the last cohort.

5. As Clark (1973) has noted it is possible that economic factors might
lead to the extinction of certain commercial species. This could occur
if the market value of the last few individuals exceed their harvest cost.
In a multiple cohort model we might observe truncation of some of the
older cohorts, with remaining (younger) adults providing for regeneration
of the species; i.e., X, = 0 for k, ..., Ky and X, = k-1 MKy

k=k*

I1I., The Hard Clam in Great South Bay
The hard clam (Mercenaria, mercenaria) is a bivalue mollusk found in inter-

tidal and subtidal zones from Cape Cod, Massachusetts to the Gulf of Mexico.

Great South Bay, on the southern edge of Long Island, New York, supports a
highly productive hard clam Tishery. With the exception of a 13,000 acre tract
which is privately owned, (dating from a colonial grant). the rescurce is har-
vested on an open access basis. The recent decline in the level of clams har-
vested from the bay is symptomatic of overfishing. Part of the problem undoubt-
edly stems from the fact that a premium is.placed on the youngest Tegally har-
vestable cohorts (k=3,4,5); collectively referred to as "Tittlenecks", and
generally eaten raw on the half shell. Table 1 shows the approximate relation-
ship between shell thickness at the hinge, commercial classification, (1ittleneck,
cherrystone, and chowder), and price per hushel. Because each harvestable year

class falls into a commercial classification we de not need to explicitly
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Table 1: Average Growth and Commercial Class

Year Class (a) Commercial Class Price per Bushel {b)

k=10,1,1 Sublegal ——
shell thickness < 25.4 mm

k=3,4,5 Littleneck $63-65
shell thickness 25.4-36.4 mm

k=6, 7 | Cherrystone $22-23
shell thickness 36.4-41.2 mm

k=8, 9, 10 " Chowder $11
shell thickness 41.3 mm +

Source: (a) Smith (1971, p. 27) (b) National Marine Fisheries Service, Fishery
Market News Report, October 1, 1980, p. 3
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consider the weight of a clam meat for each cchort and we may dispense with Bk-
as it was defined in the general model.

Current state reguiations set a minimdm size of one inch or 25.4 mm at
the hinge before a clam may be legally harvested. This size is reached at about
three years of age. The first year of significant spawning also occurs at age.
three, so it was assumed that k=k*=3. More than 95% of the commercial harvest:
consists of cohorts 3 < k < 10 allowing one to set K=11. Based on the prices in

Table 1 values Tor Pk were adopted according to

$64/bushel for k = 3,4.,5
P.= { $23/bushel for k = 6,7 . (25)
$11/bushel for k = 8,9,10

The biology of the hard clam has heen studied extensively dating from the
classic work by Belding (1912). The first three columns of Table 2 are reported
in Smith (1979) and present estimates of the instanteous mortality rate for half
year intervals from age one to five. These instantaneous rates were used to solve
for a semi-annual mortality rate. The complement of the semi-annual mortality

rate is the semi-annual survival rate, shown in column five. Semi-annual sur-

vival rates were multiplied together to obtain the fraction of a cohort surviving
to the next oldest year class. For cohort four the annual survival rate.of 0.67
was not consistent with the trend in earlier survival rates and what is generally
regarded to be increased rates of survival as a hard clam outgrows certafn pre-
dators. Therefore S4 was arbitrarily adjusted upward to 0.80. The annual sur-
vival rate for cohorts k = 5,6, ..., 10 seems to level off at 0.85 according to
Greene (1978, p. 54) and Smith (1979, p. 49).

This author was unable to find any published estimates of mortality or
survival from spawning to year one. Given the fecundity of the hard clam, (to
~be discussed shortly), one must assume that the survival rate is exceedingly

Tow. Anh estimate of SO = 2.0 x 10"9 was obtained by the admittedly ad hoc
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Table 2: Mortality and Survival of Hard Clams in Great South Bay
Age Length Instantaneous Semi-Annual Semi-Annual Annuai
{years=k) (mm) (a) Mortality (a) Mortality {b} Survival (c} Survival (d)
(m{ki)) 3=1,2 (M(k,3)) (5(ks3)) S,
0 < 15 - —-- ——- -
2.0x10™7 (e)
1.0 15.0
0.42 0.52 0.48
1.5 24,5 0.35
0.24 0.27 0.73
2.0 34.0
0.16 0.17 0.83
2.5 41.0 0.69
0.16 0.1/ 0.83
3.0 48.0
0.13 0.14 0.86
3.5 53.5 0.73
0.14 0.15 0.85
4.0 59.0
0.16 0.17 0.83
4.5 62.5 0.67 (f)
0.17 0.19 0.81
5.0 66.0
6:7,8,9,10 > 66.0 --- - - 0.85 (g)
Source or Method: (a) Sm1th (1979, p. 90) (d} Sy = S(k,1) S(k,2) (g) Greene (1978,

(b) M
(c) S(k,J)

»Jb = mlkad) g
1 -M(k.J)

(e) See Appendix A
(f) Questionable - opt for

S, =0.80

4

p. 54)
Smith (1979,
- p. 49)
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procedure described in Appendix A. Based on previous biological studies and the
calculations in Appendix A it was assumed that the rate of survival was not de-
pendent on cohort size; that is, Sk(~) = Ska t? and specifically that

_ ]

x 1072

for
for
for
for
for

for

s L= 0O

“
o
™

(26)

w
=
]
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OO OoOOMN
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Bricelj {1979) has studied the reproductive biology of the hard clam and

_has derived estimates of the number of eggs spawned per female at various sizes.
Because size and age is highly correlated the fecundity for a bushel of standing
ctock for each cohort could be calculated. These fecundities (yk) are given in
Table 3 and may be summarized according to

8

7.50 x 10 for k = 3.4,b

y= | 825100 for k

6,7 (27)
5.25 x 10° for k = 8,9,10

Great South Bay is a shallow body of water attaining a maximum depth of

15-20 feet. Commercial harvest is restricted to hand tongs and rakes. The com-
meribal fisherman or "bayman™ will typically work from a small shallow draft ves-
sel, propelled by an outboard motor. Thus there is a Timited capital investment
to enter the fishery. Estimates of yearly fixed costs range from $500 to $1,000.
Determination of optimal harvest and age structure will be determined based only
on variable coét considerations. When maintained at a steady state optimum it
will be possible to make a comparison between net variable revenues, (or fishery
rents), and fixed costs payments to determine the ultimate “"bottom line."

The stock dependent variable cost function specified for the hard clam
model took the iorm

k,t))ul

c, =BY .(n(— (28}
k kst Ykgt
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Table 3: Fecundity of the Hard Clam in Great South Bay

Year class Eggs per female | Clams per bushel Fecundity per bushel
(commercial class) f Fk (a) Uk (b) of stand1ng stock
| v, (¢)
k=1, 2 1.5 x 10° - -
(sublegal)
k=3,4,5 3.0 x 10° 500 7.50 x 108
(1ittleneck) '
P b | - 8
k=6, 7 6.0 x 10 275 8.25 x 10
{cherrystone) '
b 8
k=8, 9, 10 6.0 x 10 175 5.25 x 10
{chowder)

Source or Method: (a) Bricelj (1979, p. 83)
(b) Smith (1979, p. 27)
(c) vy =4, Fy
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X
where B, may be interpreted as a unit cost per bushel and the term (1n(v£i£))"1
K.t
is a stock dependent term which reduces the cost of a fixed level of harvest
for larger initial cohort stocks. The principal components of Bk would be the
opportunity cost of the baymans time and the fuel expended in harvesting a bushel

of clams. It was assumed that

Bk = $25 for k =3, ..., 10 (29)

given that under current stock conditions it takes four to five hours to harvest
a mixed bushel of littlenecks, cherrystones, and chowders.

Equations (25) - (29) summarize all the parameter values and functional
forms sufficient to formulate a well defined multiple cohort model. Maximization
of the present value of net revenues subject to spawning and recruitment con-
straints may be written as

max V= ) pt{

R TN Pyt =~ Gl Y e
K.t

16
subject to: X3 ya = 5,550 kz3 kak,t (30)

S X I

Xk+1$ t+1 ~ CKMKLt (for k = 3, ..., 10}

k,t
The Lagrangian and first order necessary conditions are derived in Appendix B.
We will immediately proceed to the set of eguations describing steady state.

These may be written as:

oy X1
= BN )T (L4 (nly D7)+ oy (31)
for k = 3, , 10
X .
\ _ Y “kyy-2 3
Mt © Bk(?ﬁ) (m(Yk)) oS ey Y TS0 5 vde (32)
k
for k=3, ..., 10
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10
X3= 5555, 1w % (33)

=S X -Y (34)

As noted in the preceeding section, with E=3 and K=11 steady state is defined by
a set of 25 simu1taﬁé0us equations in 25 unknowns, the solution of which might
look something 1ike the -equilibrium shown earlier in Figure 1.

It turns out that equations (31} - (34) can be solved iteratively by a
technique described in Appendix C. The solution, given the preceeding assump-
tions on cost, price, mortality, and fecundity, is presented in Table 4. The
optimum is characterized by the nearly exclusive harvesting of Tittleneck cohorts
(k = 3,4,5). In the solution sequence an arbitratary lower bound of Yk > 1 for
k=3, ..., 10 was set to avoid division by zero. The near zero harvest of
cherrystone cohorts, (k = 6,7), and chowder cohorts {k = 8,9) would indicate
that the dominant value for these cohorts lies in their ability to provide for
future Tittleneck stocksn This fact is also reflected in cohort shadow prices
such that A > 23 for k = 6,7 and Ay > 11 for k = 8,9, In words, these cherry-
stone and chowder cohorts are more valuable in Great South Bay than on the half-
shell or in soup. A slight harvest of chowders (Y10 = 15,142 bushels) is optimal
before the cohort passes into bioeconomic oblivion.

The annual sustainable revenue is $54,411,814 which is 3.75 times the re-
venue reported in 1979. Variable costs are $12,210,264. If there are n = 3,000
full time baymen with annual fixed costs of $500 the annual revenue net of vari-
able and fixed costs would be $40,701,550. Gross income per baymen would be
$18,137. The total standing stock 6f 7,523,156 bushels is within the high and
low estimates of standing stock given by Smith (1979, pp. 29-34). Thus the
managed fishery would appear to provide forltonsiderab1y greater income per bay-

man than is currently the case.
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Steady State Optimum .for the Hard Clam
Fishery in Great South Bay

Stocks (bushels) Yield (bushels) Shadow Price ($)
X;; = 250,000 Yy, = 0 A = 0
Xjg = 311,932 Yp= 15.142 A = 9-50
Xg = 366,980 Yy = 1 Ag = 16.72
Xg = 431,742 Yg = 1 Ag = 22.30
X, = 507,933 Y, = 1 A, = 31.99
X = 597,569 Yo = 1 rg = 39.48
X = 957,000 Y. = 215,881 Ay = 46.49
X, = 1,510,000 Y, = 251,000 A, = 48.54
Xy = 2,590,000 Y; = 380,700 Ay = 49.30
11 10 10 ~
= X, 7,523,186 R= ] PY = 54,411,814 C = ] C, =$12,210,264
k=3 k=3 k=3

#l

nFn = $1,500,000 =

R-C-F = $40,701,550
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The management policies to achieve these gains are simple and would seem
feasible to 1mp1emént, In addition to the current legal minimum thickness (mea-
sured at the,hinge) the New York State Department of Environmental Conservation
should estab1ish a legal maximum of 36.4 mm (see Table 1). This would eliminéte
;_harvesting of cherrystone anﬁ chowder cohorts. In the short run they may have
to impose catch quotas less than-the'steady state Tevels for k.= 3,4,5 so as to
establish thé equilibrium Tevels for‘cherrystone and chowder stocks. Even in
equi]ibrium‘QUotaﬁ on the 11tt1eneck landings would have to be imposed to main-
tain cdhort stocks. Such gquotas may require a limitation on the number of full

- time baymen, and'possib]y a catch quota per man.

_IV - Summary, Conclusions, and Limitations |
The bioeconomic modelling of age structured species has heretofore been
limited by a number of Unrea]isticrassumptions necessary for mathematical
tractabi]ity;: This paper develops a reasonably general multiple cohort model’
which would seem app11¢ab]e]to a wide variety of renewable resources wheré'agé
structure is 1mportant fOr'bidlogita1 or eConomic reasons.
One such resource is the hérd c]am‘(Mercenaria, mercenaria) in Great South
~Bay on Long Island. Almost all thé commertial harvest is comprised of clams 10
| years of age or younger, M%nimum 1ega1'size.1s typically reachéd at'about ﬁhreé
| lyears of age, which is also the age where significant spawning takes place for
the first time. 'Thus a model containing eight, (k =3, ..., 10), commercially
éxp]oited cbhbrts Seeméd'adéquate to describe the fishery. Steady state equa-
| f tfohs were defived'from a-diSCrete time control model which maximized the pre-
sént.value offﬁet revenugs subject to épawning and recruitment constraints. This
'fsystém of 25 %quatiohs'in 25 unknowns (cohort stocks, yields, and shadow prices)
was solved in an 1hterati#e fashion and converged to a solution where harvesting

cactivity was restricted to the 1itt1eneck cohorts (k'= 3,4,5), but permitting

2

./f
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sufficient survival to cherrystone and chowder cohorts, (k = 6,7 and k = 8,9,10
respective1y), to allow for regeneration of 1ittleneck stocks.

Management prescriptions called for the establishment of a Tegal maximum
which would prohibit the harvest of cherrystone and chowder cohorts. These |
cohorts are more valuable in Great South Bay as spawning stock than in the mar-
ket. Short run dynamics may require reduced littleneck landings to establish
the necessary cherrystone and chowder cohorts; and in equi11brium it would be
necessary to impose baywide quotas sO as not to redissipate fishery rents.
Limited entry coup]gd with a catch quota per baymen would seem feasibie way
to maintain the optimal harvest and age structure;

Applied bioeconamic modelling requires a considerable amount of information.
In the general form described in Section I information on survival, fecundity,
growth, market price and harvesting cost was required. In the more valuable
commercial fisheries, biologists and economists may have assembled much of the
information necessary for applied modelling.

Establishing a managed fishery, operating at or nhear 2 bioeconomic optimum,
is not a costless undertaking. This study. as with most previous empirical
studies, has not assessed the cost of achieving and maintaining optimal fishery
conditions. With respect to the hard clam, Great South Bay 15 a shallow and
highly accessable body of water, and enforcement of any kind of program of
quotas and Timited entry would be expensive. Perhaps the principal value of
applied bioeconomic studies lies in their ability to estimate the opportunity cost
associated with an open access or a poorly managed fishery. Depending on the
magnitude of this opportunity 1oss a decision can be made as to whether the
gains from management can be expected to exceed research, administration, and

enforcement costs.
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Appendix A: Calculation of the First Year Survival Rate S0

In steady state equilibriym the number of three year oid lttlenecks
wWill equal

10 |
X3 = 5555, L e (A.1)

solving for S0 we obtain

S, = 3 (A.2)
g
5251 L X,

Shellfish biologists currently believe that third year litt]enecks constitute
about one-third of the standing stock; i.e,, X3 = 0.33X, where X is the unknown
standing stock equal to the sum of ajl commercial ]ittTeneck,cherrystone and
chowder stocks, and that collectively Tittlenecks constityte 60% of the standing
stock, (0.60X), while cherrystones and chowders each constitute 20% of the stand-
ing stock, {0.20x). %hen with the values for 52, S1 and Y 9iven in Tables 2

and 3 in the text we can calculate a value for S0 such that
|

Sy = 0.33x a
0 .
5551 [v7(0.60X) ¥ ¥epr(0-20K] #7570, 2077

s = 0.33 x 108 -
° (.69)( 35)[7.5(0.60) + 8.25(0.20) + 5.25(0.207T

1.90 x 107 = 2.0 x 1072

[72]
H



~21-
Appendix B: Derivation of First Order Necessary Conditions in
the Hard Clam Model

For the hard clam mode] summarized by the optimization probiem in equation

(30) in the text, the Lagrangian expression becomes

® 10
T
mx L= 1 o 1 (P.Y, . = C (X 4 )y + (8.1)
Y 1 £=0 k=3 k k.t L ET kst
kst 0
3

10
te kZ3 e, e Skt T Yot T e, te1))
Values of Yk,t’ Xk,t’ and M1, tH1° (the Lagrange multipliers) which maximize
the present value of net revenues must satisfy a first order condition which

equates the partial derivatives of L to Zero. These derivatives may be written

as
t
o =o {(P- ack(w)) - oMy, t+1} =0 (B.2)
kot aYk t
ot
L 75,8513, w13t PSMkeL, pe1) (8.3)
3 .
k.t an &
T -
- p kk,t =0
10 .
.t )
& - 152150 kz3 Y, T s, g3l = 0 (B.4)
3, t+3
) . bl ) )
i R CE R IR RS U (8.5)
k+1, t+1
Kty y-1
Wwith C. (+) = B Y, (in S8y the partial derivatives with respect to Y, , and
k k'k Yk & k.t

Xk,t simplify to



ack(-) =
ayk,t
and
y X

0C, (+) = -B, (Koby (1n(Katyy-2

k k'YX y

k.t k,t

BXk
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%
B mn(—::—)) (e (n(glaty) T,

k t

In steady state the first order conditions become

o
[}

<
1

Xe1

Equations (B.8) - (B.11) are the same as {31) ~ (34) in the text.

= 5,5.5 Z YkX

X

Y X

= B (+5) (In(+X))2 + o5
%y} (ny, P

10

27170 k

k=3

= Sk = Yy

X
-Bk(M(Vf))_l (1 +(1n(ﬁ)'1) * N

for k

3
AT IR STR I T

for k

For k

i

3, ..

ceey 10

ceas 10

v 10

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)

(B.11)
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Appendix C: Solution Sequence for Steady State Optimum

Equations (31) - (34) can be expanded and ordered as follows:

X X
-1 - |
Py = BylIn2)) ™ (100t DRy | (c.1)
Xg.1-1 40 0-1
P4 = B4(1n(7;)) (]- +(1n(_)) ) + p)\s (C'Z)
4
X X
1041 1044-1
p. =B, (tn(x=H)) "0 (1 +(Inlg)) ) . (C.8)
10~ 100"V, 71
Y X
s 3 A3, -2
g = Balyd) (e 653y (c.9)
3
(1 - 075,545473)
Y X
- n (X "4yy-2 3
Ny = 84( 4) {In( 4)) + pSphg P 823150Y4x3 (C.10)
Y X
) 10 10y,-2 , 3
10 10
10 :
Xy = 55,5, kzs Ky (c.17)
X, = S3%g - V3 (C.18)
Xe = Sg¥q - Yy (.19)
Xy1 = S1¥10 - Y10 (€.25)
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The iterative procedure to solve (C.1} - (C.25) employed the following

steps:
(1) Assume a value for Xyp Then {C.25) and (C.8) +~[X10,Y10]

(2) Assume a value for A1g- Then {XIO,YIO,AIOJ + (C.16) ~ [2,]
(3) [Xlo’klo] + (C.7) + (C.24) » [X9,Y9]
(4) [Xgs¥gs21go2g] + (C.15) - (2]

(5) [ng)\g] + (C'ﬁ) + (C'23) s [X89Y8]

(;5) [x4,A4] + (C.1) + (C.18) + [x3,Y3]

A1l of the equations are consistent with our assumptions about Xll and Mo &xcept
equations (C.9) and (C.17) which will yield values for Ay and X3 that may be dif-
ferent from those obtained in steps (2) and {15). Values for Mo and X11 can be
respecified to bring the entire sysfem into arbitrarily close consistency,

In the process of working through steps (1) - (15) one will encouncer

"corner solutions" where for Yk near zero one observes

>

X
i Py < BInG )™ (1 r(ng)) ) (c.26)

k
in which case marginal revenue net of user cost is less than marginal harvest
cost. In this instance Yk was set equal to one, (essentiaily insignificant),

and Xk = (Xk+1 + 1). For the parameter values and functional forms defined in

Sk

(25) - (29) in the text, this iterative procedure yielded the steady state

optimum described in Table 4,
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