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Abstract

This study estimates year-specific optimal hedges for Central Illinois soybean
producers. The optimal hedge objective function employed is based on harvesttime
cash price and basis levels and their respective variances and covariance, where
farmers are assumed to make anticipatory hedges of production decisions. Past
studies which use such objective functions have typically assumed that the
parameters of price distributions are constants over the sample period. This study,
in contrast, addresses the measurement of optimal hedge parameters, permitting both
means and variances to change through time.

Cash price and basis equations are specified and estimated initially using
ordinary least squares {OLS). These equations are then examined for the presence
of non-constant error variances (the property of heteroskedasticity). Specifically, it
is hypothesized that increases in wuse relative to stocks for soybeans may be
associated with increasing variability in the equations’ errors.

The cash price and basis equations are also modelled as two seemingly
unrelated regression systems: one with constant variances and the other with non-
constant variances. The dependent variables provide estimates of the cash price and
basis levels in the optimal hedge equation. The equations’ residuals provide the
base for estimating the variance and covariance parameters of the optimal hedge.

The models were fitted with 1965-1984 data. With conventional (constant
parameter) models, the optimal (short) futures position for the risk averse hedger is

nearly 100 percent of expected production. With the non-constant variance
specification, optimal hedges for the risk averse hedger ranged from 75 to 100
percent of production. The non-constant variance specification, however, had a

somewhat unexpected result the heteroskedasticity is related to the Chicago stocks
variable in the basis equation and not the use to stocks specification.

All of the hedge levels obtained in this research are considerably larger than
the hedges typically made by Central Illinois soybean producers. Thus, the results
obtained here do not explain why farmers seemingly hedge at sub-optimal levels.
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Introduction

“Past optimal hedge analyses have assumed that price risks are constant over
time, and treat the optimal hedge ratio as fixed. Evidence from the price behavior
literature,  however, indicates that the distribution of supply and demand factors
influences the means and variances of price distributions, and suggests that optimal
hedges should be measured on a year-specific basis. :

In this context, year-specific estimation of optimal hedges is examined for the
Central Illinois soybean producer. A conceptual model is developed which permits
the mean and variance parameters defining the optimal hedge to change over time.
Econometric equations are specified and estimated for the Central Illinois area for
the 1965-1984 period, and are used in developing the framework for the optimal
hedge analysis. The results illustrate the potentially significant effects of year-
specific estimation on the determination of the optimal hedge.

Optimal Hedge Defined

Optimal hedge estimation requires assumptions about measurement and about
the specification of the objective function. The objective function used in this
paper is based on harvesttime cash price and basis levels, and their respective
variances and covariance. The producer is assumed to make anticipatory hedges of
production decisions in May, in expectation of the October date when the hedge is
lifted and the soybean crop is simultaneously sold. Yield risk is not considered.
The mean-variance criterion for utility maximization is given by:1

1) _ l, Maximize L = E{U) = E(R) + m Var(Rj

The E(U) term is expected utility; E(R) defines the expected return; Var(R)
denotes the variance in returns;. and m is the risk aversion parameter. Assumed
known,. m in the above formulation is mnegative for the risk -averse ' hedger,
increasing in absolute value as the risk aversion level increases. ‘

Because the soybean producer in effect has a long position in the cash
market, the futures position is assumed to be short.  Therefore, returns (R} and
expected returns [E(R)] are defined by

(2) : R = Q‘Pt + Qh(Ft_i-Pt—-Bt), and

3) . E(R) = (Q-QuP(* + QuFe.i - QuBy

. IThe literature suggests that either a) mean-variance analysis is a good
approximation to maximizing expected utility; or b) .mean variance analysis 1is
equivalent to maximizing expected utility (Meyer; Levy and Markowitz).



The cash return equals the bushel volume of the cash sale {Q) times the
harvesttime cash price (Pp). The futures market return equals the number of
bushels hedged (Qyp), multiplied by the difference between the springtime futures
price (Fi_.;) and the levels of the harvesttime cash price and basis (Py + Bt).2 The
springtime futures price (Fe-;} is known at the time of he ge placement, « The
expectations of the harvesttime cash and basis prices, E(Py)=P; and E(By)=B; , are
forecast the prior spring, at the time the hedge is placed. Because yield risk is
ignored, Q is non-stochastic.

The variance in returns, Var(R), is given by:

) Var(R) = (Q-Qn)? o052 + Qu2 op? - 2Qp(Q-Qn) “pb

The Up2 and sz parameters denote the variances associated with the cash
and basis price series, respectively, and Oph represents the cash price-basis
covariance.

Substituting equations (3) and (4) into equation (1), the optimal hedge, Qh*, is
then derived from the first order condition for a maximum, dE(U)/dQy, = 0:3

(5) Qp’ = Q[(Up2+0pb)/(0p2+20pb+0b2)] -

%
[(Fy_i-P¢ - By )/2m(op2+20pp+0,2)]

The first term on the right hand side of equation (5) is the "hedging
component,” and represents the portfolio solution =then m is assumed extremely
large and/or the futures price change (Ft-i-P¢ -By ) is assumed near zero. The
second term in equation (5) is the "speculative component.” This component
increases in absolute value as the expected futures price change over the hedging
interval becomes larger, with the effect becoming more pronounced as the hedger
grows less risk averse. As the anticipated futures price change increases, the
optimal hedge (Qp ) is an increasingly larger fraction of expected production Q)
for producers with low levels of risk aversion.

2Because the sum of the harvesttime cash and basis prices (Py+Bg) equals the
harvesttime futures price (F¢), the (F; ;-P;-B¢) term can be written as (Fi_i-Fp).
The latter specification is more commonly used in the objective function than is the
derivation explicitly including the basis. [See Ederington; Hayenga and diPietre;
Heifner (1972); and Heifner (1973) for examples.]

3peck introduced this specification of the objective function, which has also
been employed by Greenhall in an examination of the optimal hedge for selected
Western New York corn producers.



Parameter Measurement Issues

The strategies used to measure the variance, covariance, and price level
parameters of the optimal hedge differ in their assumptions about price behavior.
The oldest measurement strategy is consistent with the random walk theory, and
assumes that the distribution of price changes has a zero mean and constant
variance over time. Using this approach, the expected variances and covariance
(opz, crbz, and orpb) in equation (5) are calculated directly from - historical price
series. The variance of the cash price level, for instance, is given by: :

(6) 0p2 = T(Pg - P)/n-1

The P; term represents the harvesttime cash price in year t. = The P
parameter is the average of the Py values, typically calculated over a span of 10 to
20 years (n = 10..20), where P 18 implicitly an estimate of Py . Because price

distributions are assumed constant over time, the resulting optimal hedge estimate is
continuously applied to the anticipatory hedge decision.”

A more recent approach to estimation models price forecasting ability. Using
this approach, the accuracy of the hedger’s historical forecasting ability defines the
associated risk-return p3rameters. Price expectations are modeled using regression
equations in which Py and_ By are the dependent variables. The variance-
covariance parameters (o 2, abz, and Upb) are assumed equal to the equations’ mean
squared errors.* The cash price parameters, for instance, are given by:

Q) P = E(Py = By + F2Xp2 + - + AKXtk

(8) 0p? = B [Py - E(P)]1%/n-k

This approach assumes that the hedger has a subjective distribution of
harvesttime prices, where the mean of each distribution can - change over time (as
the Py and B forecasts change). The variance, however, is treated as a constant,
and depends on the hedger’s forecasting ability. The variance-covariance parameters
(apz, abz, and Upb) are, therefore, determined from regression series spanning n
years.

The approach wused in this study allows the variance and covariance
parameters associated with the hedger’s forecasts to change over time, It suggests
that heteroskedasticity may exist, and permits the error variances of the cash price
and basis equations to change as the price-generating process changes. Thus, the

4The mean squared error, ER—E(R)]Z, equals the variance in returns if R is an
unbiased estimator (if E(R) = R = p;, the true mean). Consequently, MS]%(R) can
be interchanged with Var(R) in equation (4), producing the identical Qp as in
equation (5). See Peck; Fried for more details. :



study assumes that a given price distribution exists at harvest in each vear,
characterized by a particular mean price and variance.

The fact that the variances of price changes are non-constant is well-
documented, but little understood. The majority of price change studies address the
variance of futures prices. Samuelson (1965, 1976), presenting the time-to-maturity
hypothesis, argues that the rate of information flow into the market increases as
maturity nears, and that the futures price variance per unit of time increases as the
time to maturity decreases. Anderson and Danthine, proposing the state variable
hypothesis, suggest that futures price variances are high (low) in periods when
relatively large (small) levels of supply and demand uncertainty are resolved.

Empirical research has been mixed in support of these hypotheses, but
indicates that intra-year price variances are typically non-constant. Rutledge,
examining the relationship between cash and futures price volatilities and time to
maturity for contracts traded from 1969-1971, rejected Samuelson’s hypothesis for
wheat and soybean oil, but accepted it for silver and cocoa. Anderson examined
nine commodities during the 1966-1980 period, supporting the state variable
hypothesis, but finding only weak evidence for the time-to-maturity hypothesis.
Castelino and Francis examined  the volatility of basis levels and futures price
spreads, and concluded that volatilities tend to decline with time-to-maturity.
Additional evidence supporting the hypotheses of intra-year variance changes is
provided by Miller; Taylor; and Castelino and VYora.

These theoretical and empirical results indicate that daily price changes can
be more-or-less variable, depending on time-to-maturity and/or seasonal effects.
Specific crop years often differ, in addition, in terms of the timing and intensity of
information flows. Because annual variances are a function of the aggregation of
daily price changes, these ¢rop year differences may cause annual price change
variances to differ. Further, the aggregation of price changes calculated over a
specific time periocd in one year can then differ from the associated variance
calculated in a different year,

Several authors have empirically documented annual differences in price
change wvariances. Milonas and Vora, examining five agricultural commodities for
the 1966-1982 period, indicate that price change volatilities differ both within and
among years, and claim that these volatilities depend on underlying economic
conditions. Booth, Kaen, and Koveos, in an examination of gold cash prices,
similarly support the existence of combined intra- and inter-year effects on price
variability.

5Two different information-flow scenarios are often hypothesized within the
state variable theory. In situations where demand uncertainty is the relatively
important factor, uncertainty is usually resolved just prior to the expiration of the
contract, and the volatility thus increases as time-to-maturity approaches, In a
case - in which supply uncertainty is the relatively important factor, it may be
resolved at earlier stages of the contract life cycle and thus lead to a decreasing
volatility as delivery approaches.



The presence of leptokurtosis6 in price distributions lends support to the
theory that non-constant variances exist, although the debate continues. Mann and
Heifner provide evidence contradicting the changing variance hypothesis, and
indicate that leptokurtosis results from the existence of infinite variances. Telser,
however, argues that such studies do not consider supply and demand distributions,
and argues that leptokurtosis results from the aggregation of normal distributions
which possess changing means and variances (which depend on supply and demand
distributions). Gordon’s empirical findings support Telser’s argument.

Storage theory lends support to the hypothesis that price variances can
change depending on underlying supply and demand conditions. Figure 1 indicates
that the variance in the basis level can change depending on the level of the
demand for storage. Because the supply of storage function is non-linear, the basis
may be less variable as the demand for storage shifts into the range of larger
inventories (I ranges from b to ¢) than it is at smaller inventory levels (Iy ranges
from a to b).

These changing (price level) variance relationships depend on the limitations
to relative cash and futures price movements. As inventories dwindle, the cash
price can rise to an unlimited level above the futures price. In this case, the basis
becomes very wide. At large inventory levels, on the other hand, a basis that is
wider than the cost of storage provides a large incentive to store, increasing the
cash price and reducing the basis. In this case, cash and futures are closely linked,
and the basis cannot exceed the cost of storage.

Figure 1 is drawn to suggest that the error variance associated with the
structural supply equation may change as a function of I;. When inventories are
low, random events may have a larger impact on the basis than when inventories
are more abundant. Heteroskedasticity, as a result, may be a declining function of
inventory levels (particularly beyond a critical level, such ‘as "b" in Figure 1).
Because the basis is determined from the relative levels of futures and cash prices,
a changing basis variance also can imply changing variances in cash and futures
price levels. '

Econometric equations modelling Central Illinois cash price and basis reduced
forms are specified in the following analysis. These eguations are used to develop
the harvesttime cash price and basis level forecasts (P and B¢ ), and to estimate
the non-constant variance-covariance parameters (apz, op*, and opp are estimated
using the equations’ mean squared errors).

Specification searches were used to develop the reduced-form equations for
the 1965-1984 sample period. These searches examined: the "best" specification of
variables thought to critically affect the cash price and basis levels; the impact of
"doubtful" variables on explanatory power (Leamer); functional form issues; and the
stability of the models across different sample periods. Because accurate forecasts
reduce price risks, the identification of models which forecast well is emphasized.

6a leptokurtic distribution has a greater concentration of observations in the
tails of the distribution than would be expected if the parent population were normal.

5
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Basis Equation

Storage theory is fundamental to understanding -the basis for annually
produced, storable commodities (Working). The basis is defined as a price for
future delivery less a specified cash price, and measures the expected return from
storage (the "price of storage") over a given time interval. At non-delivery points,
the basis also should reflect characteristics unique to the local market because it
measures the value of the commodity both over time and relative to the delivery
point (Martin, Groenewegen, and Pidgeon). Empirical basis studies include those by
Garcia and Good; Kahl; and Powers and Johnson.

Reduced Form

The equilibrium levels of the basis and the size of current inventory at a
point in time are jointly determined by the supply of and demand for inventories, as
shown in Figure 1. Hence, a reduced form basis equation can be derived from a
two equation system in which the basis and inventory levels are both endogenous,
The following analysis uses a two-period setting and assumes that the commodity is
storable. (A similar conceptual model was applied to an analysis of soybean prices
and inventories at the national level by Helmberger and Akinyosoye.) ' '

In period 1, the inverse demand relationship is given by:
%) - Pp=oy + 8] Dy

where P) is the period 1 cash price and Dj is the le\_rel of demand,

Period 1 demand can be written as a function of production (5;1) and
beginning and ending inventories (I and Iy}
(10) Dy =851 +1Ig-1

Production (Sj) is determined by prior plantings and beginning inventories (Ig)
are known. Period 1 ending inventories (I}), as well as P} and Dy, are endogenous.

Period 2 demand can be expressed similarly as:

(11) F| = o3 + 82Dp
(12) and D2=52+Il -

where Fy is the period 1 price quote for future delivery in period 2 and Dj
represents expected demand. The Sp variable denotes expected production in period

7



2. The Iz'variab‘le, representing expected inventory at the end of period 2, is often
‘given by the mean level I =L

Equations (10) and (12) can be Substituted into equations (9) and (11),

respectively, and the difference between the transformed equations gives a demand
for inventory equation (where it is assumed that I =1)

(13) Bj=F1-P = (ocy - x1) + 83 (21 - S1-Ip —T)
To complete the model, a supply 'of inventory equation is needed:

(14) By = F| - Py = £(I))

or I} = f(B)

where B is the period 1 basis, defined as the period 1 futures price (Fj) less
the period 1 cash price (Pq).

To solve for the reduced form of the basis, equation (13) can be rewritten to
express Ij as a function of B). The resulting expression can be substituted in
- equation (14), and the reduced form of the basis is then solved as:

(15) ' B) = mp + m1(81 + Ip) + mX| + m3Y]

The reduced form basis equation is a function of production (S;), beginning
inventories (Ig), and demand-~ and supply-shifters (given by X and Y], respectively).

Specification

The Central Tilinois area, defined by the Central, East, West Southwest, and
East Southeast crop reporting districts (see Figure 2), comprises approximately ten
percent of annual U.S. soybean production (Illinois _Agricultural Statistics; USDA
Agricultural Statistics). Central Illinois soybeans are harvested in late September
and early October, and about thirty percent of the crop is sold off the farm at

harvest to local elevators (Illinois Agricultural Statistics). The average Central
Illinois basis for the first ten trading days in October (By) is given by:

(16) _ By =  (Fjt - Pip)/10

where: Fi¢ = the November futures price quoted on each of the first ten
trading days (i=1,2,...,10) in October in vyear t;
Pit = . the Central Illinois cash price quoted on the identical days;

t=1,2,...,20 years.
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The futures prices are daily closing prices for the Chicago Board of Trade’s
November soybean contract, and the cash price series represents elevator cash bid
prices for the Central Illinois (Decatur) area (Good).7 The harvest basis ranges
from -8.72 to 31.15 cents per bushel over the 1965-1984 sample period. The mean
basis is 14.06 cents per bushel; the standard deviation is 12.13 cents per bushel.

Production and carryover levels for the Central llinois area and the U.S.
should affect the local basis (through futures and cash prices), and are important
demand-shifting factors [denoted by S) and Iy in equation (15)].  As Central Illinois
soybean inventories increase (relative to the national level), the cash price is
expected to decrease relative to the futures price, and the basis is expected to
widen. Increases in national (relative to local) inventories are expected to decrease
- the futures price relative to the local cash price, and narrow the basis.  Supply is
measured as the sum of production and carryover. The LOCPRO, LOCSUP,
NATPROL, and NATSUPL variables, as well as all other variables primary to the
analysis, are defined in Table 1.

As contract maturity approaches, the basis also may be influenced by delivery
costs.  The "short squeeze" is a type of market imperfection which occurs when
deliverable Chicago stocks are in short supply relative to open interest, and
represents the potentially large costs of making delivery (Paul, 1976). In this sj-
tuation, short position-holders may prefer to offset their positions at a premium
instead of obtaining deliverable stocks and making delivery, thus widening the basis.
The regressors measuring  the "squeeze potential” include Chicago stocks levels
(CHICST), open interest (OPINT), and the ratio of Chicago stocks to open interest,

In practice, the supply of storage function can shift, as represented by the
Y; wvariable in equation (15). The opportunity cost of grain storage (OPPCOST)
captures the largest and most variable component of the rental price of binspace,
and represents an important supply-shift factor, As the rental price of storage -
increases, fewer soybeans should be held in storage, and larger volumes of soybeans
are expected to be for sale in the cash market, The cash price should drop relative
to the futures price then, as the rental price increases, and the basis is expected to
widen, '

Shifts in consumption demand should also contribute -to explanation of the
basis [represented by the X variable in equation (15)]. Variables measuring
changes in the demand for Central Illinois soybeans (relative to the national level)
were not available; thus, national demand - data (representing expected crush and
export levels) were used ag proxies (FOSCRUSH and FOSEXP).

Other wvariables also may be important in explaining the harvesttime basis.
The basis from past time periods (the previous springtime or the past year) may
reflect distributed lag effects which exist in basis behavior. The ratio of on-farm
to off-farm stocks may be important: as on-farm. stocks increase relative to off-
farm levels, farmers may sell only given higher prices and a narrower level of the
basis. The concept of competition for binspace (Paul, 1970) also may be an

TThe elevator cash bid prices are above the prices received by farmers; the
difference between the elevator and farm prices should, however, be stable (Good).

10



TABLE 1
INDEPENDENT VARIABLE DEFINITIONS

e e e o o et i ot 2 T ot o T i o Y o e o e T T o o T e s

Inventory Variables (crop vear):@

L.OCPRO--1.ocal soybean Illinois Ag. Statistics million bushels 166.41,
production ' 36.75
LOCSUP--Local soybean Illinois Ag. Statistics million bushels . 188.60,
supply (production plus 44.09
carryover)

NATPROL--US (less local) USDA and lIilinois Ag. million bushels 1290.84,
soybean production Statistics 393.13
NATSUPL--US (less local)  USDA and lllingis Ag. million bushels 1468.06,
soybean supply Statistics 437.76

Market Imperfection Variables: . ‘
CHICST--Ave. volume of CBOT’s Statistical million bushels . 494,
soybeans in Chicago ship- Annual 4.77

ping district and afloat

on Lake Michigan, first

ten days in October |

OPINT--Ave. volume of CBOT’s_Statistical million bushels 156.24,
soybeans held in long or Annual 70.66
short positions, first

ten days in October

Opportunity Cost Variable:

OPPCOST--Product of ave. U. of I11;; cents per bushel 3,22,
cash price and the 3-month CEA’s Economic 2.29
Treasury Bill rate {adjust- Indicators

ed to l-month until maturi-
ty), first ten trading days

in October

Consumption Demand Variables:® . .
FOSCRUSH--ex ante crop USDA’s Fats and Qils  million bushels - 828.74,
year forecasts of expect- (Qil Crops) Situation 210.08
ed US ¢rush
FOSEXP--ex ante crop USDA’s Fats and Oils  million bushels 553.84,
year forecasts of expect- (Qil Crops) Situation 222.13

ed US exports

Although production is reported by crop reporting district, carryover . is
reported at only the state level. Central Illinois carryover is thus calculated
assuming that the Central Illinois fraction of state production equals the
Central Illinois fraction of state carryover.

Estimates from Crop Production and Grain Stocks in all Positions are used to
calculate the inventory variables used in the step-ahed analysis for 1985 and
1986 (discussed later in the text). The Central Illinois fraction of state

1




important factor affecting the basis, and is represented by the percent of local
binspace available for soybeans, and the level of Central Ilinois corn production.

Estimation

Although the conceptual model suggests the types of wvariables that are
important, a specification search is necessary to determine the “final" forecasting
model. The inventory, market imperfection, and opportunity cost variables, hypoth-
esized as the most important variables influencing the level of the basis, appeared
in all equations. The effects of introducing variables thought to be of "doubtful"
importance, as well as non-linear functional forms, were examined through
pretesting,

‘The criteria used to evaluate the models include traditional measures such as
the logic of signs, Durbin-Watson values, and goodness-of-fit (R4 and t-ratio
values). The potential effects of outliers and the sensitivity of coefficients to
alternative sample period lengths were also examined. The "final" pretest estimator
may produce misleadingly good results, a point which is discussed later. ‘

Results

Production and carryover, combined into one supply variable, proved to have
the greatest explanatory power. Although production and carryover variables are
expected to be important factors explaining the basis, the local and national levels
are collinear (r = 0.96), and the independent information these variables indi-
vidually contribute to the model is small. National and state supply Tegressors are,
however, somewhat less collinear than the production and stocks variables expressed
individually, and appear most important in explaining the basis. The opportunity
cost variable also appears consistently important.

Although open interest and the ratio of stocks to open interest appear
unimportant, the Chicago stocks variable has a large t-ratio. Low Chicago stocks
levels in early October may indicate conditions which frequently continue until con-
tract maturity (harvest delays or low rates of farmer marketing), and which affect
the futures price within the delivery period. This hypothesis is supported by
empirical evidence: stocks in early October vary considerably among vears, but
increase only moderately within the month in any given vyear.

None of the wvariables hypothesized to be of “"doubtful importance appear
important in the exploratory analysis. The coefficients associated with the lagged

$"Doubtful” variables include the lagged basis, the ratio of on-farm to off-farm
stocks, and variables representing grain competition for binspace. Because of the
fack of data on Central Illinois grain movements, the consumption demand variables
(national crush and export levels) are also considered “doubtful" For a discussion
of the distinction between “free" and "doubtful" variables in model specification, see
Leamer. '
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basis variable, the ratio of on-farm to off-farm stocks variable, and the grain
competition for binspace variables all had small t-ratios. The consumption demand
variables also appeared unimportant.

In this context, quadratic and logarithmic transformations of the supply,
opportunity cost, and Chicago stocks regressors were examined. Quadratic
specifications of the supply and Chicago stocks variables, shown in equations (17) to
(20) in Table 2, improved the fit of the model. Neither logarithmic transforma-
tions, nor non-linear transformation of the opportunity cost variable, provided
better results than the original linear forms of the variables.

The Chicago stocks coefficients in equations (17) and (18) are noteworthy.
The coefficient in equation (17) conforms to the original market imperfection
hypothesis. The coefficients in equation (18), on' the other hand, indicate that in-
creasing Chicago stocks levels up to the 8.1 million bushel mark are associated with
larger basis levels. Beyond 8.1 million bushels, larger Chicago stocks are associated
with declining basis levels. This result, of course, contradicts the market
imperfection hypothesis.

Indeed, the quadratic specification of the Chicago stocks regressors may be
capturing an effect other than the squeeze potential. Chicago stocks are highly
correlated with Central Iilinois and national stocks, ‘and at low Chicago stocks
levels, concerns about deliverable supplies may affect the basis. At large Chicago
stocks levels, however, the squeeze potential no longer exists, and the regressors
may be a proxy for demand factors that are reflected in inventory changes (such as
increasing movements to export).

Partial regression leverage plots lend support to ‘the inventory change
concept. They indicate that predicted basis values are about twelve cents per
bushel greater than the actual basis for the years 1966, 1969, 1970, 1972, 1973, and
1981. The only .factor appearing particular to these years is the optimistic level of
the USDA’s harvesttime expected use estimates (Fats and OQils Situation). Thus,
forecasts of particularly large national use levels may indicate grain movements
from the Central Illinois .area, and a narrower basis. (These years are also typically
associated with fairly large Chicago stocks levels.)

When the national export and crush variables were reexamined as proxies for
local shipments, however, they each appeared unimportant. Perhaps the large
degree of collinearity between the export, crush, and national supply variables
caused this result, or perhaps the observed variables inaccurately captured actual
expectations within the industry. Using a dummy variable equal to one in the six
years (and zero otherwise) to capture consumption demand effects results in egqua-
tion (19). Incorporating a linear Chicago stocks variable produces equation (20).

13



TABLE 2
SELECTED BASIS EQUATION SPECIFICATIONS?
(1965-1984 SAMPLE PERIOD)P

(17) 37.04 - 1.74 LOCSUP + 0.0061 QLOCSUP + 0.17 NATSUPL - 0.000076 QNATSUPL -
(0.75)(-1.44) (1.92) (1.55) (-2.21)

1.00 CHICST + 2.55 OPPCOST
(-1.55) (1.10})

R2 = 0.54 Durbin-Watson = 1.28
(18)  76.84 - 1.95 LOCSUP + 0.0065 QLOCSUP + 0.12 NATSUPL - 0.000059 QNATSUPL +
(2.02)(-2.20) - (2.81) (1.47) (-2.31)

5.00 CHICST - 0.31 QCHICST + 3.66 OPPCOST
(2.80) (-3.49) @2.11)

R2 = 0.77 Durbin-Watson = 1.78

(19)  59.53 - 1.87 LOCSUP + 0.0064 QLOCSUP + 0.15 NATSUPL - 0.000071 QNATSUPL
(3.42}-4.63) (6.10) (3.95) - (-6.05)

3.22 CHICST - 0.25 QCHICST + 4.77 OPPCOST - 12,17 DUM
(3.79) (-6.15) (5.93) (-6.88)

R2 = 0.96 Durbin-Watson = 2.36

(20) 25.20 - 1.6% LOCSUP + 0.0061 QLOCSUP + 0.19 NATSUPL - 0.000086 QNATSUPL -
(0.76)(-2.08) — (2.86) (2.58) (-3.72)

1.831 CHICST + 4.09 OPPCOST - 14.35 DUM
(-3.80) (2.54) (-4.10)

R2 = (.81 Durbin-Watson = 1.33

_____________________________________________________________________________________

t-ratios are in parentheses.

b LOCSUP=Central Illinois supply; QLOCSUP-—-(LOCSUP)2; NATSUPL=national supply
(less local); QNATSUPL= (NATSUPL)2; CHICST=Chicago stocks;
QCHICST=(CHICST)2; OPPCOST=opportunity cost; DUM=1 if 1966, 1969, 1970, 1972,
1973, 1981; DUM=0 if otherwise.
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Appraisal

For the quadratic equations, the t-ratio and R2 values are fairly large, and
the Durbin-Watson statistic indicates that autocorrelation is unimportant.” - With
perhaps the exception of the quadratic Chicago stocks coefficients, all coefficients
conform to economic logic.. When the dummy variable is included in the model, no
significant outliers are apparent. '

Although the models appear to fit the sample period well, specification eérror
is still an issue. The correct interpretation 'of the ‘Chicago stocks coefficients is
particularly ambiguous, and may be related to the specification issue. Specifically,
the superior performance of the quadratic specification may be caused by the omis-
sion of variables which measure the effects of consumption demand.

In addition, the coefficient values shown in Table 2 change considerably for a
particular variable among the specifications. Moreover, coefficients vary as the
sample period is altered. When the specification search is applied to different time
periods, however, alternative models rank identically in relative performance to
those given in Table 2. Thus, no clear evidence exists for altering the
specifications. : '

Forecasting

Accurate forecasts reduce basis risk and can enhance hedging returns. In the
following discussion, the predictive abilities of three naive models are compared
with the performance of equations (17) through (20). -The naive .models employed in
this analysis are often used to forecast the basis, and include the sample mean of
the regression series, the previous harvest (lagged) basis, and a three-year moving
average of past harvest bases. Tracking ability (Type I and II error), the root
mean squared error (RMSE), and Theil's Ujp coefficient (Up) are used to evaluate

9positive autocorrelation is suggested in equations (17) and (20). GLS
estimates of the models produce little change in coefficient values, and are not reported.
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~ the sample period simulations.!® Step-ahead forecasts for 1985 and 1986 are then
examined. : ‘ .

Within-Sample Results

The within-sample results, given in Table 3, indicate that the regression
forecasts are better than the naive forecasts. Among the regression models, the
quadratic specifications that include the dummy’ variable provide forecasts which are
better than those equations that exclude the dummy. Of the econometric models,
equation (19) performs the best in all - categories and is followed in performance by
equation (20). The superiority of the econometric specifications may, however,
result from over-fitting the mode! to the sample period. Thus, out-of-sample
performance is important in appraising the results.

Qut-of-Sample Results

The step-ahead forecast results are shown in Table 4 for the 1985 and 1986
years.  The 1985 forecasts .are based on the 1965-1984 regression coefficients and
1985 harvesttime data. The models were then re-estimated for the 1965-1985 sample
period, and 1986 harvesttime data were used to develop the 1986 forecasts.

The forecast errors, on average, are similar for the regression and naive
models. The three naive  forecasts misjudge the actual basis by an average of 9.7
and 6.2 cents per bushel, respectively, in 1985 and 1986. The regression models
produce an average error of 6.4 cents per bushel in 1985 and 10.0 cents ‘per bushel
in 1986. : : : ‘

lOTurning point errors are often used to assess the ability of the model to
‘predict directional changes (tracking ability). A turning point occurs when the sign
of (At-A¢_1) does not equal the sign of (A 1-A¢ o). (At is the current period
actual price, A¢_] is the previous period actual price, and A¢.o is the actual price
‘two periods past) A turning point is predicted when (Ft- A¢.1) has a different
sign than (A¢-1-A¢-2); no turning point is predicted when the signs of (F¢-A¢_1) and
(At_1-A(.p) are equal. (F¢ is the current period forecast.) Thus, a turning point
error exists when either a turning point occurs but is not predicted or a predicted
turning point is not realized. '

The RMSE is calculated as: RMSE = [(1/n) X(Fi-Ay)2], where Fj equals the
current period forecast (Fy) less the previous period actual value (At 1); A equals
the current period actual value (Ag) less the previous period actual (At_1) and n is
the number of periods over which the forecast is evaluated.

Theil's Uy coefficient is the ratio of the square root of the mean squared
error to the square root of the average squared actual change in values Uy =
\/[(l/n)E(Fi-Ai) ]/J[(l/n)E(Ai)z]. The Ujp coefficient is equal to one when the
forecast is measured as the previous period’s actyal value; if Up is less than one,
then the model is better than the naive forecast. ' ' :
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" TABLE 3 :
WITHIN-SAMPLE PREDICTIVE ABILITY OF
ALTERNATIVE BASIS MODELS
(1965-1984 SAMPLE PERIOD)

Model - Turning Point Root Mean " Theil’s Us
Errors Squared Error Coefficient

e e e o e e o 1 e ik T T 4o Y A T e B g Y el LRy m

9% Type I* % Type II°

Regression

Model:
(17) 0.11 _ 0.11 8.140 0.879
{18) 0.11 0.11 5.557 0.600
(19) 0.06 0.00 _ 2.432 0.263
(20) 0.06 0.06 5307 0.573
Naive
Model
(1) _
sample mean 0.22 0.17 _ 12.039 11.301
(2) :
lagged basis 0.00 100.00 9.257 1.000
3-year average 0.39 0.06 11.145 1.204
% A turning point is forecast, but no turning point occurs.

No turning point is forecast, but a turning point occurs.
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TABLE 4
ONE-STEP AHEAD PREDICTIVE ABILITY OF
ALTERNATIVE BASIS MODELS

..__..._...._.._.____....__.'____..._..._.____.._.__.._a._...-__..._,_....._._...__-....__....___..__...___,__...______...__._

_.-.-..____.._..__...._,._.__..__.__.___._.._._..___...__...__._._..._..____.._.....____..._..._._____...____...-...._.___.._..

cents per bushel

Regression
Model:2

sample mean
(2)

lagged basis
(3)

3-year average

__.._____.__..___.....__....___—...__-._._..-...__-.____...__...__......-_____..._....__.,__.,___...___.___.

Regression
Model:

(17)
(18)
(19)-
(20)

(H
sample mean
(2)
lagged basis
(3)

3-year average

__,..__....._..__..__‘.___......_....____....,.__..._______...___._...__...____.._..____......_.,._,.___.._....._-__....___

a8  See Table 2.

cents per bushel -

0.52
14.14
7.84
-3.97

0.59
7.01
-11.31
-18.61

cents per bushel

1985 Forecasts

2.43
2.43
2.43
2.43

1986 Forecasts

2.03
2.03
2.03
2.03

Estimates for 1965-1985 sample not shown.
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-1.91
11.71

5.41
-6.40

-1.04
4.98
-13.34
-20.64



Of the reduced form models considered, equation (17) performs the best in
the out-of-sample analysis, with forecast errors of -1.91 and -1.04 cents per bushel
in 1985 and 1986, respectively. This performance is considerably better than the
errors associated with the 1985 naive forecasts, but because. of the.small change in
the actual basis from 1985 to 1986, the lagged basis was the best individual forecast
for 1986. :

The superior out-of-sample performance of equation (17) appears to be a
function of local and national supply levels, which are near the maximum values of

‘the sample range in 1985 and outside the sample in 1986. In this case, the simpler

specification (excluding the dummy 6 variable and using the  linear Chicago stocks
variable), provides the best forecasts. In contrast, equations (19) and (20), which
provided better forecasts than equation (17) in the in-sample analysis, produce 1986
forecasts which significantly underestimate the basis, reflecting the impact of the
quadratic supply variables when the dummy variable is included in the model.

The results illustrate the potential benefits and the limitations from using

. econometric models in making marketing decisions. Equations (19) and (20) appear

best from the standpoint of conventional test statistics (t-ratios, R< wvalues, and
Durbin-Watson values within the sample period), and perhaps provide superior out-
of-sample forecasts when the data lie within the bounds. of the sample. . The simpler
specification, equation (17), seemingly provides the best out-of-sample forecasts
when the data lie outside the sample range. The best-fitting. equations for the
sample period, obtained by pretesting, clearly need not. be the best out-of-sample
predictors. ’ : * '

Equations (19) and (20), providing the best results over the sample range, are
used in the optimal hedge analysis. From the 1986 perspective, observations on the
production, stocks, and opportunity cost variables appear to be.declining from the
high levels of the mid-1980's. Thus, models performing well when these variables
are at neither extremely large nor small levels, such as equation (19) and (20},
appear best for short-run forecasting analysis.

Cash Price Equation

Several empirical models have examined the price determination process within
the soybean complex. The Houck-Mann model uses a 15-equation dynamic. block
recursive system which emphasizes the multiple market and joint product
relationships characterizing the demand-side of the market. Mathews, Womack, and
Hoffman specified a model which recursively links six regional acreage equations to
the Houck-Mann demand block. Meilke and Griffith developed a simultaneous
system of the world soybean/rapeseed market. Various other models have been
specified and used to examine world linkages within the oil-meal complex {Vanden-
borre; and Knipscheer and Hill). ‘ :
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Reduced Form

The number of exogenous factors influencing the harvesttime cash price is
extremely large. In the Houck-Mann model, for instance, over twenty exogenous
variables are treated as important in the price determination process. For small
samples (such as the Central Illinois data set), however, the number of independent
variables must be narrowed, and should probably not exceed 40% of the number of
observations (Belsley, Kuh, and Welsch).

The price of the November futures contract in May combines the many
exogenous price influencing factors into a single variable that the hedger can use as
a forecast of the harvesttime cash price (Tomek and Gray;, Kofi). One alternative
for forecasting the harvesttime cash price level is then:

1) . Py =f (Fo)

where Py is the forecast of the harvesttime cash price and Fg is a specified
level of the May futures price for November delivery.

With the passage of ‘time, however, expectations change and the springtime
futures price and the maturity cash price typically differ. In addition, the

producer’s expectations when the hedge is placed may differ significantly from
market expectations.

For these reasons, harvesttime estimates of inventory and use levels are
included in the equation to allow modification of the futures price estimate. The
" reduced form for the cash price level is given by: '

22) Py =my+ mFg + mI; + m3Y1

As expressed in equation (22), Central Tllinois inventories (Ij), rather than the
national inventory level, are expected to influence the local cash price.  Because
local consumption data were not available, national use estimates were used as
proxies (Yq)." ;

Specification

The harvesttime cash price (Py) is measured as the average Central TIllinois
cash price (Pjt) during the first ten (i) trading days in October for t = 1..20 years:

(23) Pi = 5 Pjg/10
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Cash' prices are  representative for the Decatur area and are identical to the
cash prices used in calculating the- harvesttime basis. The harvesttime cash price
ranges from 228.6 to 878.50 cents per bushel over the 1965-1984 sample period. The
mean cash price is 503.00 cents per bushel, with a standard deviation of 217.40
cents per bushel. : :

The May futures quote for the November contract (MAYNF), measured in
cents per bushel, is the average price quoted during the first ten trading days in
May. Central Illinois inventories are defined by the production (LOCPRO) and
carryover variables discussed in the basis estimation section, with the sum of
production and carryover reflecting a measure of supply. Expected use is measured
by the identicali crush and export variables used in the basis analysis (FOSCRUSH
and FOSEXP). - These crush and export variables are based on U.S.D.A. crop year
forecasts published in the Fats and Oils (Oil Crops) _ Situation during the
August/September period, with the total expected use variable representing the sum
of crush and export levels (TOTUSE). All inventory and use variables are measured
in million bushels. (See Table 1 for additional information.)

Estimation

4 While the reduced form suggests the types of variables that are important, a
specification search is used to determine the "final" forecasting model. The futures
price, inventory, and expected use variables- were included in all equations. The ef-
fects of alternative specification of these variables (such as production instead of
supply), as well as non-linear functional forms, were examined through pretesting.

The criteria used to evaluate the models were identical to the criteria
discussed in the harvesttime basis analysis, and include traditional measures such as
the logic of signs, Durbin-Watson values, and goodness of fit (R2 and t-ratio
values). The potential effects of outliers and the sensitivity of coefficients to
alternative sample period lengths were also examined. As mentioned previously, the
"final” pretest estimator may produce misleadingly good results, a point which is
discussed later. -

Results

The alternative supply specifications indicate that the production regressors
explain the largest proportion of the harvesttime cash price for each given use
specification.  The production variables consistently produce ' the largest t-ratio and
R2 values in comparison with the supply (production and carryover) - specifications.
When the supply variables are disaggregated into production and carryover
components, the carryover variable is statistically- unimportant.

These results are likely related to the information captured by the May
futures price regressor. Because uncertainties about yields can cause dramatic
changes in production estimates between May and October, the futures price quote
in May can differ significantly from the October cash price. In contrast, knowledge
of October stock levels are typically reflected in the May futures quote because
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May and October stock levels are closely correlated. As a result, the production
regressors  contribute more additional information to the model than do the
carryover or supply regressors, :

The preliminary regressions, each including the production variable, are shown
in equations (24) through (27) in Table 5. The export and crush variables each
appear unimportant in equation (24), perhaps -because of the large intercorrelations
between these regressors (r = (0.95). " Deleting the export and crush regressors in
turn produces equations (25) and (26); combining the export and crush variables
into a total expected use regressor results in equation (27). :

Quadratic- and logarithmic transformations of the production and - consumption
demand wvariables were then examined., Neither logarithmic transformations, nor
quadratic transformations of the production variables, improved the fit of the
models. Quadratic specifications of the consumption. demand variables, shown in eq-
uations (28) through (30), did improve the fit of the models: the t-ratios for nearly
all variables are larger than when the consumption demand variables are expressed
in linear form, and the Durbin-Watson statistic has increased from near 0.90 to the
1.20 to 1.50 range.

The negative quadratic use coefficients in equations (28) to (30) are
noteworthy, indicating that the rate of increase in the cash price declines as
consumption demand increases. At the largest demand values within the sample
range, the cash price level declines in absolute value as expected use increases.
The quadratic total use variable, for instance, indicates that the price flexibility
with respect to total use is 2.43 at a use level of 900 million bushels, and is 0.60 at
a use level of 1,700 million bushels. This result is somewhat counterintuitive
because large consumption levels are more often associated with greater price
variability than are low demand levels.

- Appraisal

For the quadratic equations, the t-ratio and RZ2 values are fairly large, and
the Durbin-Watson statistics indicate that autocorrelation is less important than
when the linear forms are specified. All variable signs and magnitudes appear
logical, perhaps with the exception of the quadratic consumption demand variables.

Although the models appear to fit the sample period well, the coefficients
(particularly those associated with the May futures price and production regressors)
appear quite sensitive to sample period. length. This result is perhaps related to the
presence of multicollinearity relative to the number of observations. If additional
observations are less collinear than the existing data, as is true for the mid-1980%
observations, the effect of new information can be large. When specification
searches are applied to different time periods, however, alternative models rank
identically in performance to those given in Table 5.
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TABLE 5
SELECTED CASH PRICE EQUATION SPECIFICATIONS?
(1965-1984 SAMPLE PERIOD)b

________________________________________________________________________________

24y  167.86 - 3.68 LOCPRO + 0.62 FOSCRUSH - 0.081 FOSEXP + 0.98 MAYNF
' (0.65) (-3.06) (0.98) (-0.13) (3.35)

R2 = (0.8]1 Durbin-Watson = 0.9_0
(25) 19595 - 3.70 LOCPRO + 0.54 FOSCRUSH + 0.96 MAYNF
(1.43) (-3.21) @371 (3.68)
R2 = 0.81 Durbin-Watson = 0.90
(26) 389.79 - 3.73 LOCPRO + 0.49 FOSEXP + 0.94 MAYNF
(3.10) (-3.11) (2.08) (3.25)
R2 = 0.80 Durbin-Watson = 1.01
(27) 295.90 - 3.75 LOCPRO + 0.27 TOTUSE + 0.93 MAYNF
(2.39) (-3.20) (2.28) (3.39)
R2 = 0.81 Durbin-Watson = 0.93
(28)-445.59 - 4.18 LOCPRO + 2.26 FOSCRUSH - 0.00091 QFOSCRUSH + 0.88 MAYNF
(-0.96) (-3.59) - (1.87) C(-144) (3.40) '
R2 = 0.84 Durbin-Watson = 1.17
(29)  -130.16 - 4.20 LOCPRO + 1.87 FOSEXP - 0.0011 QFOSEXP + 0.84 MAYNF
(0.76) (-3.74) (2.61) (-2.02) (3.14)
R2 = 0.84 Durbin-Watson = 1.54
(30) -164.66 - 4.25 LOCPRO + 1.08 TOTUSE - 0.00026 QTOTUSE + 0.84 MAYNF
(-0.57) (-3.73) (2.25) (-1.74) (3.19)
R2 = 0.84 Durbin-Watson = 1.33

a t-ratios are in parentheses.

b LOCPRO=Central Illinois production; FOSCRUSH=forecast crop year crush;
QFOSCRUSH=(FOSCRUSH)2; FOSEXP=forecast exports; QFOSEXP= (FOSEXP)2;
MAYNF=May quote for November futures; TOTUSE=FOSCRUSH + FOSEXP;
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Forecasting

This section examines the forecasting abilities of equations (24) through (30),
and compares the results with those obtained from three naive forecasting methods.
The naive models used in the analysis are analogous to those used in the basis
forecasting comparison, and include: 1) the sample mean of the cash price series as
predictor; 2) the previous year’s harvesttime cash price as predictor; and 3) a three-
year moving average of past harvesttime cash prices as predictor.

Evaluation methods are also identical to those used in the basis forecasting
analysis. The within sample criteria, explained earlier, include: the tracking
abilities of the models (as measured by turning point errors); the root mean squared
error (RMSE); and Theil’s Uy coefficient (Us). The out-of-sample criteria are based
on an analysis of step-ahead forecasts for the 1985 and 1986 years.

Within-Sample Results

The within-sample comparisons of predictive ability are presented in Table 6,
and indicate that the regression forecasts are better than the naive model forecasts.
Within the regression category, the quadratic models are superior to those of a
linear nature: each quadratic model has a lower percentage of forecast errors
(using all criteria) than do any of the linear forms. Of the regression models,

equation (29) performs the best in each evaluation category, followed by equation
(30).

The superiority of the quadratic functional forms may result from over-fitting
the model to the sample period. As in the basis analysis, the search procedure may
have resulted in equations which fit the sample period, but that do not accurately
capture the systematic factors that affect the price determination process. The
out-of-sample analysis, discussed in the following section, is a more objective
approach than is the in-sample procedure.

Out-of -Sample Results

Step-ahead forecasts are shown in Table 7 for the years 1985 and 1986. The
1985 forecasts are based on the 1965-1984 regression coefficients and 1985
harvesttime data. The models were then re-estimated for the 1965-1985 sample
period, and 1986 harvesttime data were used to develop the 1986 forecasts. : :

The results indicate that the out-of-sample performance for the naive models
is poorer, on average, than for the regression models. The average regression
forecasts for 1985 and 1986 respectively misjudge the harvest cash price by -33.5 and
11.5 cents per bushel. For the naive models, the average forecast error is
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TABLE 6
WITHIN-SAMPLE PREDICTIVE ABILITY OF
ALTERNATIVE CASH PRICE MODELS
(1965-1984 SAMPLE PERIOD)

_________________ e 4 ap i i o e e o o o o o e o At i G L S A o T T

Model Turning Point Root Mean Theil’s Uy
Errors Squared Error Coefficient

% Type 12 % Type I1°

Regcression

Model:
(24) 0.17 0.06 ' 93.515 0.551
(25) 0.17 0.06 ' 93.538 0.551
26) 011 . 006 96.034 0.566
@7 | 0.1 0.06 7 94,323 0.556
(28) 0.06 0.06 88.032 . 0.519
(29 0.06 0.06 85910 0.506
(30) 0.06 0.06 86.542 0.510
Naive
Madel
(1) :
sample mean 0.28 0.22 208.751 1.230
2) o
lagged price 0.00 100.00 169.734 ‘ 1.000
(3)
3-year average 0.50 0.06 160.694 0.947

et et e e o ek o e (R A T W 27 T] Yo = o o o o o e e W A A U L T

a4 A turning point is forecast, but no turning point occurs.
. No turning point is forecast, but a turning point occurs.
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TABLE 7

OUT-OF-SAMPLE PREDICTIVE ABILITY OF
ALTERNATIVE CASH PRICE MODELS
(1965-1984 SAMPLE PERIOD)

Model Forecast Actual Error
‘ o Price
cents per bushel cents per bushel ' cents per bushel

1985 Forecasts
Regression

Model:2
(24) 557.78 503.85 53.93
(25) 548.96 503.85 45.11
(26) 490.01 503.85 -13.84
(27) _ 518.14 503.85 o 14.29
(28) 558.61 503.85 54.76
(29) 521.55 503.85 17.70

(30) 538.40 503.85 34.55
Naive Model:

(1) sample mean 503.00 503.85 -0.85

(2) lagged price 607.80 503.85 : 103.95
(3) 3-year average 665.02 503.85 161.17

1986 Forecasts

Regression

Model:
(24) 486.71 474.00 12.71
(25) 487.20 474,00 13.20
(26) 471.13 474.00 -2.87
27 481.87 474.00 7.87
(28) 478.69 474.00 4.69
(29) 492,01 474.00. ' 18.01
(30) 495.23 ' 474.00 21.23

Naive Model:

(1) sample mean 503.04 474.00 29.04
(2) lagged price 503.85 474.00 ' 2585
(3) 3-year average 657.27 = ' 474.00 183.27

2 See Table 5.
Estimates for 1965-19835 sample are not shown.
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considerably larger: in 1985, the error is 88.7 cents per bushel, and in 1986, the
average error is 80.7 cents per bushel.l!

In an analysis of individual performance, equations (26) and (27) provides the
most accurate out-of-sample forecasts, followed by equation (29). Equation (29) i
chosen, however, for use in the optimal hedge analysis because it provides the best
in-sample forecasts and among the best step-ahead forecasts in the out-of-sample
analysis. This specification expresses the importance of export movements, which
typically peak at harvest. In addition, forecasting the level of the export
regressors may be simpler in the ancillary analysis than forecasting total use
(composed of exports and crush), which is expressed in equation (27).

In the following sections, the cash price equation [equation (29)] and the
basis equations [equations (19) and (20)] are used to develop constant and non-
constant variance estimates of optimal hedges. These equations are first tested for
the presence of heteroskedasticity {non-constant variances). Knowledge of the error
structure then is used to estimate the Central Illinois anticipatory hedge for
soybeans. ' '

Heteroskedasticity Tests

The Koenker test for heteroskedasticity is chosen for use in the analysis.
This test can be used when the error variance is related to either a single variable
or a linear combination of wvariables (unlike the Goldfeld-Quandt and Szroeter’s class
of tests, which require that the heteroskedasticity is related to only one variable).
In addition, the Koenker test is less sensitive to error deviations from normality
than arel fither the Breusch-Pagan or White tests (particularly when the sample size
is small).

The Koenker test statistic. is developed from the regression of the
(normalized) OLS errors on the variables thought to affect the error variance. This
regression, estimated by OLS, is given by:

3D A2 - 62) = £ (z2)
- where: 2 =  the (TX!) vector of squared OLS resuluals
aé = the average of the utz,
Zt = a (TXK) matrix of variables thought to influence the error
variance, with first element equal to unity; )
a = a (KX1) vector of unknown coefficients.

11Although the regressmn models on average out- perform the naive models, the
sample mean and lagged price forecasts are surprisingly close to the actual 1985 and
1986 prices. This result is specific to the forecast years analyzed; it is a
peculiarity that rarely occurs in other years. ' o

12For  discussions concerning the assumptions and procedures associated with
these heteroskedasticity tests, see Judge, et al. and Kmenta. '
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. . * .,
The test statistic, N , is given by:

(32) N* = TR2
where: T = the number of observations in the equatiori given by (31);
RZ2 = the coefficient of determination obtained from the regression
in (31).

Only one or two wvariables (in addition to the in'tercept) appeared in each

error variance regression. Variables were specified in the z¢ matrix using the
functional forms ‘which appeared in basis equations (19) and (20) and in cash price
equation (29). = That is, - variables that appeared as quadratics in the original

regressions were specified as quadratics in equation (31). One variable was used if
the linear form of the variable appeared. in the original regression,

Because the equations are quite sensitive to sample period length, the
Koenker test also may be quite sensitive to the number of observations. Five series
of errors were thus used in equation (31); these series were obtained from the
regressions given in equations (19), (20), and (29), estimated from the 1965-1981
period through the 1965-1985 period.

The test results, shown in Table 8§, indicate that - heteroskedasticity is present
only in equation (20), and that it is a function of the level of Chicago stocks. This
result appears only in the 1965-1983 through 1965-1985 sample periods. When the
Chicago stocks wvariable is  ordered sequentially from smallest to largest values in
these sample periods and the corresponding error terms are examined, the error
variance appears to increase as the Chicago stocks level increases.

This result contradicts the hypothesized relationship that the error variance
increases as stocks decline, and may be caused by misspecification of the functional
form. = The heteroskedasticity associated with the linear Chicago stocks specification.
may indicate that equation (20) does not capture variable(s) that affect the basis
(and that possess changing variance relationships reflected in the error). The
quadratic Chicago stocks specification, equation (19), although fitting the data
better and resulting in the absence of heteroskedasticity, produces an unexpected
coefficient sign (unlike the linear form, which has expected signs).

The trade-offs existing between equation (19)--with the quadratic Chicago
stocks variables, and equation (20)--with the Ilinear specification, make it difficult
to determine which, if either, is -the appropriate specification. Certainly, it is
possible that the quadratic Chicago stocks variable is "picking up" unmeasurable
effects related to consumption demand or other . omitted variables that are not
explicitly included in the linear specification. ‘Thus, neither equation may correctly
measure the factors that affect basis determination. - These factors should be kept
in mind throughout the remainder of the analysis.

The heteroskedasticity results indicate that two systems, with different error
variance-covariance structures, can be composed from equations (19), (20), and (29).
One system [containing equations (19) and (29)] can be used to obtain constant
variance estimates of the optimal hedge parameters. The other system [composed of

28



TABLE 8

KOENKER TEST VALUES FOR HETEROSKEDASTICITY

LOCSUP" NATSUPL" CHICST" oPPCOST” ™

Equation 19:

1965-1981 0.97 1.61 2.85 1.82
1065-1982 1.44 1.26 . 216 1.98
1965-1983 0.95 1.33 - 3.04 4.18
1965-1984 1.80 1.80 0.16 0.80
1965-1985 1.85 2.14 0.09 1.23

Locsup*  NatsupL' cricst* oprcosT™™

Equation 2(:

1965-1981 1.51 1.72 0.03 1.79
1965-1982 036 0.36 0.002 1.26
1965-1983 0.76 1.14 8.74 3.04
1965-1984 . 0.40 0.80 5.60 2.20
1965-1985 | 0.40 0.85 : 6.52 223

LOCPRO™ FOSEXP" MAYNFE

Equation 29;

1965-1981 1.50 3.20 | 215

1965-1982 1.57 | 3.42 2.08

1965-1983 152 3.61 : 1.35

1965-1984 0.38 3.15 2.78

1965-1985 - 0.17 2.50 2.47

_-.....-___...-..__...,_,___.-___....._—__....___......_..-_....-.____..._____.....__..._____..__....___....._.....—_____a._.-.__.

Note: For the quadratic specifications, the degrees of freedom equal (K-1)
= 3-] = 2 (where K includes the intercept). For the linear
specifications, the degrees of freedom equal (K-1)=2-1=1.

The critical Chi-squared values are therefore:

*
&

5.99; at o« = 0.10,
3.84; at oc = 0.10,

At « = 0.05, X22=
At « = 0.05, Xl =

{1

x 2 _ 46l.
X 2 2.76.
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equations (20) and (29)] can be transformed to obtain non-constant, year-specific
estimates.

The cash price and basis equations in each system contain similar (although
not identical) regressors, and are interrelated through the cash price component,
Because it is also likely that the equations share common information in the error
terms (the across-equation covariances are non-zero), a seemingly unrelated
regression (SUR) framework is used to obtain final estimates of the coefficients.

Constant Variance Svstem

The basis and cash price equations used in the SUR estimation of the
constant variance system can be defined in stacked notation by:

) N r
(33) B l X; 0 [Bl ey
= 4 + r
P L 0 X, LBZ e
(2TX1) (TX(K +Ks]) (K1+K5]X1) (2TX1)

Each equation contains T observations on K (or K») regressors (including the

intercept). The error variance structure associated with this system, E[ee’],  is
given by: '
= : “
(34) op2 0 ! Obp 0
0b2_ 2 | O'bp
' [
0 op : 0 Obp
n = ———————n——————n———--————? —————————————————————————
o, o
pb i p
: 2
0 Opb E 0 %
!
L i i
(2TX2T)

The elements in the second and fourth quadrants reflect the variances of the
basis (obz) and the cash price (op“) equations, respectively, and the elements in the
first and third quadrants represent the across-equation error covariance (where
Upb=‘7bp)- The error variance (or covariance) within a partition is assumed constant
over time,
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The OLS approach is inefficient when across-equation correlations are non-
Zero (Upbst’bp £ 0 OLS, a single equation approach, does not consider across-

equation information. Zellner’'s seemingly unrelated regression (SUR) framework,
using generalized least squares (GLS) estimation, considers the entire structure of
the model (Zellner). The GLS estimator, using the inverse of the  matrix

presented above, is given by:
(35) b= a-ix)-! xn-ly

When the true variances and covariances among equations are known, GLS
estimation is more efficient than OLS. The gain in efficiency, however, depends on:
a) the degree of correlation among the errors; and ‘b) the correlation among the
regressors in the different equations.  As the error intercorrelations become larger
and the correlations among Tegressors become smaller, the efficiency of GLS
estimation (relative to OLS) increases (Judge, et al.; Kmenta).

In practice, an estimated GLS (EGLS) approach is required because the true
variances and covariances used in the I matrix are unknown. The most common
EGLS approach employs Zellner's two-step procedure; it uses the QLS errors. fo
gstimate the variance-covariance elements of the ©7' matrix and then b is based on
ag-1.  The iterative procedure, an alternative to the two-step method, is used in this
analysis; it re-estimates the EGLS errors until the error estimates converge (Judge,
et al.; Kmenta).

Both the two-step and iterative approaches produce asymptotically efficient
estimates of the 0-! and B matrices. In addition, Monte Carle studies suggest that
these EGLS approaches are more efficient than OLS even in small samples (Kmenta).

The SYSNLIN systems subprogram of the Statistical Analysis System (SAS)
package required fen iterations for the SUR-GLS estimation of the constant
variance system. The SUR regression estimates, shown in Table 9, are similar to
the least squares estimates, reflecting unexpectedly low across-equation error corre-

lations and the large across-equation correlations among regressors. The error
variance-covariance values for the system are: crp2 = 9,432.71; opp = 162.80; and
opZ = 12.25. | ‘

Optimal hedge estimates based on the constant variance system are shown in
Table 10. Risk aversion levels of -infinity, -0.1, and -0.01 are employed, and it i$
assumed that Q=1 (that the results can be interpreted as a percent of 'production).l
Recall that the optimal hedge formula is given by ‘ '

(38) Qh" = QUop>+opb)/(p2+20p1+ob>)] -

[(Fy_i-P¢ -B()/2m(0,24+20pp+952)]

13The risk aversion levels given by m = _0.1 and m = -0.01 are commonly used
in optimal hedge analyses (Peck). The assumption that Q = 1 is also common (Peck).
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TABLE 9

SUR ESTIMATES OF THE CONSTANT VARIANCE MODEL?2
(1965-1984 SAMPLE PERIOD)b

-Basis Equation

(36) . 58.14 - 1.89 LOCSUP + 0.0064 QLOCSUP + 0.15 NATSUPL -
_ (3.48)(-4.96) (6.47) (4.33)

0.000072 QNATSUPL + 2.84 CHICST - 0.24 QCHICST + 4.37 OPPCOST -
(-6.46) (3.55y - (-6.06) (5.73)

11.14 DUM
(-6.63)

Cash Price Equation

(37)  157.09 - 4.30 LOCPRO + 1.74 FOSEXP - 0.0010 QFOSEXP + 0.92 MAYNF
| (0.93) (-3.93) (2.54) (-1.98) (3.66)

Var_iables are defined in Tables 2 and 5.
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TABLE 10

CONSTANT VARIANCE ESTIMATES OF THE OPTIMAL HEDGE

__.__..-_.-.__...__...__..__....-__..___—__....__-...__.-_.-__.-.__..._..____.-__...__..._-....__..-__..__.___._—___._.._

Price C;han%e Hedging : Total Hedge
Year (F¢-i-Pt Bt ) Component  (Hedging and Speculative Components)
cents per bushel % of production % of production
' m=-0.1 m=-0.01
1965 12.6 - 98 99 105
1966 -47.0 98 96 74
1967 -51.8 _ 98 96 72
1968 - 35 98 ‘ 98 100
1969 52.3 98 101 125
1970 -143.8 98 91 22
1971 -39.0 98 96 78
1972 -59.6 : 98 95 68
1973 -57.2 : 98 95 _ 69
1974 -245.7 98 86 -27
1975 57.7 98 101 128
1976 -114.3 98 92 40
1977 75.2 98 102 137
1978 -23.9 - 98 97 36
1979 117.8 98 104 158
1980 -61.3 98 95 67
1981 54.2 ' 98 101 126
1982 : 109.7 © 98 104 _ 154
1983 -136.1 ‘ 98 91 29
1984 -76.7 - 98 94 59
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For the extremely risk averse hedger (m=-infinity), the speculative component
of the optimal hedge is =zero. The hedge ratio therefore depends solely on the
hedging component, which indicates that the short futures position should equal 98
percent of expected production:

(39) Qn'/Q = (op? + AR 20pp + 0p2) =.0.98

For the less risk averse producer, (m=-0.1 or m=-.01), Table 10 indicates that
the speculative component of equation (38) can have a large impact on the aoptimal
hedge. For the moderately risk averse hedger, (m=-0.1), the hedge ratio varies from
86 to 104 percent of;‘c expected production.  With forecasts of an increase in the
futures price, (Fi_i-Py -By < 0), the hedge ratio drops below the 98 percent level
defined by the hed&ing Lomponent of the equation. If a decline in the futures price
is forecast, (Fi_i-Pt Bt > 0), the hedge. increases to over 98 percent of expected
production.

For the less risk averse producer, (m=-0.01), the speculative component
dominates the optimal hedge calculation, and the hedge ratio varies from a 158
percent short hedge of expected production (when a price decline of 118 cents per
bushel is anticipated), to a 27 percent long hedge (when a price rise of 246 cents
per bushel is expected).

In summary, the optimal hedge for the extremely risk averse producer {m=
-infinity) is estimated at 98 percent of expected production. This result occurs
because the cash price variance (op“)} dominates the hedging component calculation
relative to the on* and Opb_ Parameters. For the less risk averse hedger (m=-0.1 or
m=-0.01), however, the optimal hedge can differ significantly from the 98 percent
level as harvesttime price forecasts increasingly diverge from market expectations,
and the speculative component becomes increasingly important.

Non-Constant Variance System

Estimation of the non-constant variance system is based on equations (20)
and (29). Because the non-constant variance nature of the basis equation produces
coefficient estimates which are inefficient, a weighted GLS procedure is used within
the SUR-GLS estimation _of the system.14 The weighted regression results then
provide a framework for the year-specific estimation of the non-constant variance
parameters, :

The weighting approach captures the relationship between the error variance

and the Chicago stocks variable. The functional form of the relationship  is
determined by examining the effects of various weighting assumptions on the
coefficient and t-ratio values of the OLS basis equation. The two weighting

14Least Squares estimation is inefficient because it weights large and small
errors equally. The weighted GLS procedure assigns larger weights to high variance
observations than to other observations, providing minimum variance estimates.
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assumptions used in the analysis are commonly encountered when heteroskedasticity
is presem.1 The first assumption models the error variance as a linear function of
the Chicago stocks level in each year, (CHICST)y:

(40) opt2 = 0p (CHICST)y
The second employs a quadratic functional form:
(41) - op? = op (CHICST)

In performing the weighting procedure, all observations on each variable .in
the OLS basis equation are weighted by the associated Chicago stocks level in each
year. If the structure in equation (40) is assumed, for instance, each row of the
basis data matrix (including observations for both dependent and independent
variables) is multiplied (weighted) by the corresponding 1/+/CHICST¢ value for that
year. -

The weighted basis equation estimates, shown in Table 11, are similar to the.
unweighted OLS estimates. Because the quadratic form used in estimating equation
(43) produces an unexpected (positive) Chicago stocks coefficient, the linear weight
[used in estimating equation (42)] is chosen for use in the SUR analysis. The signs
associated with the linear weight are logical, but the t-ratios are lower than when
the quadratic weight is used.

Expanding the analysis to the SUR system, the heteroskedasticity present in
the (unweighted) basis equation also affects the across-equation error covariance.
The non-constant variance relationships, using the linear Chicago stocks functional
form suggested by equation (42), are given by:

(44) opt2 = op2 (CHICST);
(45) opbt = opb (CHICST);

The variance-covariance matrix for the system, in year-specific form, is given
by:

15Because the heteroskedastic structure is estimated empirically, the weighted
least squares estimator is only asymptotically efficient. As for small sample '
properties, recent theoretical results indicate that weighted least squares estimation
is unbiased and that the efficiency loss from having to estimate the heteroskedastic
structure is relatively small.
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TABLE 11

WEIGHTED REGRESSION ESTIMATES FOR THE BASIS EQUATION®
(1965-1984 SAMPLE PERIOD)P

___...__-...-___..__.__..__.....__....__-..____.-__.____...__....___-..__._..___.____.___......____._....._____....._..

Weight = +/(Chicst),

(42) © 25.91 - 1.46 LOCSUP + 0.0053 QLOCSUP + 0.16 NATSUPL -
(1.17)(-2.86) - (3.81) (3.37)

0.000073 QNATSUPL + 3.81 OPPCOST - 0.87 CHICST - 12.94 DUM
(-4.68) (3.65) (~1.53) (-4.65)

Weight = (Chicst);

(43) 44,04 - 1.43 LOCSUP + 0.0052 QLOCSUP + 0,12 NATSUPL -
(2.75)(-4.45) (5.69) (4.19)
0.000061 QNATSUPL + 4.20 OPPCOST + 0.61 CHICST - 11.52 DUM
(-6.06) (5.63) (0.85) {-5.63)
; t-ratios are in parentheses. |

Variables are defined in Table 2.
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i
2(CHICST); © | opo(CHICST); O
Th b Jptla: | bp t
(46) op2(CHICST), = opp(CHICST)¢
o, 2(CHICST)¢ | opp(CHICST)
0 . { 0 .
0= e f e
opb(CHICST){0 L ot 0
opb(CHICST) ; op°
0 Opb(CHICST); ¢ 0 op2
: i
L ' -

The optimal hedge equation, combining equations (44) through (46), can be
rewritten to reflect the changing nature of the parameter estimates. It is now
given by:

(47) Q" = Qlop2+app/(Gp2+20ppe+obeD)] -

I(Fi- i”Pt*‘Bt* )/ 2m(op2+2apbt+obt2)]

Within the SUR system, the weighted basis equation provides a method for
obtaining year-specific ~ estimates of the optimal hedge parameters of equation (47).
The variance-covariance matrix from the weighted SUR system provides estimates of
the constant scale parameters, op~ and %pb- To  obtain year-specific estimates of

2 . . . .
opt” and Tpbt> these scale parameters are multiplied by the Chicago stocks level in
each year, (CHICST);. Yearly forecasts of the Py and Bt levels are also developed
using the weighted system estimates. The homoskedastic cash price equation is not
weighted within the system, of course, and the SUR estimate of %p 15 constant
over time,

The SYSNLIN procedure rtequired eight iterations for the SUR estimation of
the non-constant variance system. The resulting SUR estimates of the cash price
and weighted basis equations are presented in Table 12, and are similar to the QLS
estimates. The associated scale error variance-covariance estimates are: op =
10,153.98; sz = 11.18; and opp = 211.55. These estimates are the constant variance
parameters used to adjust the optimal hedge to the year-specific level. :

The vyear-specific levels of the non-constant variance optimal Thedge,
calculated using equation (47), are shown in Table 13. For the extremely risk averse
hedger (m=-infinity), the speculative component of the equation is zero. The
optimal hedge, defined by the hedging component, varies from 98 percent of
expected production in 1981 (with Chicago stocks at 0.846 million bushels) to a
minimum 77 percent in 1983 (with stocks at 18.632 million bushels).

The results indicate that the optimal hedge declines as the Chicago stocks
level increases, illustrating the impact of the Chicago stocks variable on the
covariance calculation. The basis variance, with 2 scale parameter of 11.18, is not
greatly affected by changing Chicago stocks levels. The Chicago stocks level has a
large impact, however, on the year-specific covariance estimate because the
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TABLE 12

SUR ESTIMATES OF THE NON-CONSTANT VARIANCE MODEL?
(1965-1984 SAMPLE PERIOD)P

Basis Equation

(48) 26.68 - 1.36 LOCSUP + 0.0049 QLOCSUP + 0.14 NATSUPL -
(1.30)(-3.03) (4.03) (3.46)

0.000066 QNATSUPL = 1.10 CHICST + 3.17 OPPCOST - 10.24 DUM
(-4.72) (-2.06) (3.30) (-4.14)

Cash Pric_e Eguation

(49)  276.08 - 4.34 LOCPRO + 1.34 FOSEXP - 0.00056 QFOSEXP + 0.81 MAYNF
(1.67) (-4.05) (2.02) (-1.16) (3.34)

T T T T e e e e e e e ———— e e

t-ratios are in parentheses. .
Variables are defined in Tables 2 and 5.
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TABLE 13

NON-CONSTANT VARIANCE ESTIMATES OF THE HEDGING COMPONENT

Year Chicago Stocks Hedge Ratio
million bushels 0 of production
1965 0.904 98
1966 ’ 1,331 . 97
1967 1.211 97
1968 2.279 a5
1969 4.311 92
1970 5.865 ' 90
1971 5.716 90
1972 2.485 _ : 95
1973 ' 3.479 93
1974 5.391 .9
1973 3.786 _ 93
1976 6.891 ’ . 88
1977 4,560 _ _ 92
1978 3.353 _ 94
1979 4.830 ‘ 91
1980 16.223 79
1981 0.846 _ 98
1982 1.908 _ & 96.
1983 18.632 . 77
1984 2.555 ' - . 95

_—_..__._..__.._.._.___..__...____..__...___..._...___......_....__..._.....___.__.____t.,._..___ ____________________
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- associated scale parameter, at 211.55, is much larger. The denominator of the
hedging component contains twice the year-specific Covariance magnitude, and the
optimal hedge declines quickly with increasing Chicago stocks (and year-specific
covariance) levels.

Table 14 indicates that the risk aversion level often has a larger impact on
the optimal hedge estimate than does “the introduction of non-constant variance
estimation. As an example, the 1974 optimat hedge for the extremely risk averse
hedger is 90 percent of expected production. When "the expected =.‘futlg':res price
increase  of 203 cents per bushel is included in the analysis, (Fi-i-P¢ -By = 203),
the optimal hedge drops to §2 percent (with m=-0.1), or 9 percent (with m=-.01).
Similar impacts also appear in the years 1970, 1977, 1979, 1980, and 1983.16

An Alternative Approach to Estimation

The in-sample approach may not accurately reflect the risks confronting
Central Ilinois soybean producers. The regressions capture the sample period data
well, with the basis equation, in particular, possessing a small mean squared: error.
The basis equation error variance is at such a low level, in fact, that the optimal
hedge is near 100 percent . of expected production for the extremely risk averse
hedger. Because producers typically hedge at levels much lower than this, the basis
equation forecasts may over-represent forecasting ability (and thus underestimate
risk). )

The out-of-sample approach used in this section is based on the sequential
estimation of “the constant variance System (equations (36) and (37)) for the time
periods from 1965-1980 to 1965-1985. The system is estimated first for the 1965-
1980 time period;: the 1981 basis and cash price forecasts are made (using 1981
harvest data); and the 1981 forecast errors are calculated. The system is then
updated to the 1965-1981 sample period, the 1982 forecasts and forecast errors are
calculated, and the process is ‘continued. There are six forecast errors in total, for
the vears 1981 through 1986 inclusive, on which the variance-covariance parameters
- are calculated.

Because there are only six forecast errors, the variance-covariance estimates
may be quite sensitive to the addition or deletion of a year in the estimation
process.  Thus, the errors from four different time period lengths are used in the
calculation:  the 1981-1983 errors (three errors); the 1981-1984 errors (four errors);
through the 1981-1986 errors (six errors). In application, the optimal hedge
calculated for the 1981-1983 period would determine the hedge for 1984, and so on,

The results for the extremely risk averse hedger (m=-infinity) are shown in
Table 15. They indicate that the out-of-sample hedge Ievel ranges from 97 to 99
percent of expected production in each of the four series of years. These levels
are near the 98 percent level suggested by the in-sample approach for the ex-

16Note that for the less risk-averse hedger (m=-0.1 or m=-0.01}, non-constant
variance estimation has a smaller effect on optimal hedges than does constant
variance estimation.
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TABLE 14

NON-CONSTANT VARIANCE ESTIMATES OF THE OPTIMAL HEDGE

e e e o e o At T e i o e T R - e A 0 St NS g A Ay S

Price (,;hang‘e Hedging Total Hedge
Year (Fi-i-Pt -Bt ) Component (Hedging and Speculative Components)
cents per bushel % _of production % of production
' m=-0.1 =-0.01
1965 -7.3 93 - 98 95
1966 -59.7 97 94 69
1967 ~-57.4 97 : 94 70
1968 -2.6 95 95 94
1969 48.3 ' 92 . . 94 112
1970 : -139.0 90 85 35
1971 =256 . 90 89 80
1972 -50.5 95 93 73
1973 -32.6 93 92 79
1974 -203.3 _ 90 82 . 9
1975 92.8 93 97 132
1976 -75.7 88 85 59
1977 1296 92 97 145
1978 ~-10.7 94 94 89
1979 130.1 91 96 144
1980 -114.4 79 76 46
1981 61.0 98 101 o 127
1982 66.3 9 959 126
1983 -185.4 77 . 72 26
1584 -83.2 95 ' 91 58

e e e e e e Py T} e o e ek L i e L o Ty S e L S g S S T
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TABLE 15

OUT-OF-SAMPLE ESTIMATES OF THE OPTIMAL HEDGE RATIO
USING EX POST FORECASTS

___........____.-..._.________._...___-...____.-____..____..___....__...____...___....._-__..__...___.__.__...______._

Period for

Error apz sz %pb Optimal Hedge
Calculation : o : (% of production)
1981-1983 13;009 ‘ 92 378 97
1981-1984 23,939 §2 _ 712 97
1981-1985 . 19,185 71 583 97
1981-1986 17,458 796 - _555 . 99

..__....___.-.-____...___......-__—.....___..__._..._.___._..____.___._....__.____........_.._._,__..-_.....____...__..._.__..._
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tremely risk averse hedger; they are also within the 77 to 98 percent range
indicated by the in-sample non-constant variance approach.

The previous analysis was repeated using springtime ancillary forecasts of the
independent variables. Using this approach, the system Iis first estimated for the
1965-1980 period, and the 1981 cash price and basis forecasts are estimated (using
ancillary forecasts of the independent variables developed from 1965-1980
regressions). The 1981 forecast errors are then computed as the difference between
the realized prices and the forecast prices; a series of these errors are used to
calculate the variance-covariance parameters. The estimation procedure continues
until the 1986 forecasts are made.

The ancillary forecasts used in this process are given for the 1965-1984
period in Table 16. Each equation was determined from a search procedure that
analyzed: the explanatory power of the dependent variable measured in May;
variables showing a large correlation with the dependent variable; and a trend
variable.

The regressors estimated by the ancillary analysis include: local production
(LOCPRO); local supply (LOCSUP); national supply less local (NATSUPL);, Chicago
stocks (CHICST); opportunity cost (OPPCOST); and expected exports (FOSEXP). The
production and  supply estimates are the only forecasts which were not obtained
directly from the ancillary equations. They are estimated as:

(59) NATPRO = (USHA)(USYIELD)

(60) NATSUPL = NATPRO + TNATSTO - LOCSUP
(61) LOCPRO = (ILHA)(IYIELD)

(62) © LOCSUP = LOCPRO + TLOCSTO

National production (NATPRQ) is the product of the average U.S. yield for a
particular year and U.S. harvested acreage for that year [equation (59)].  National
supply less local supply (NATSUPL) is the sum of national production and total
stocks less the Central Illinois level of supply {equation (60)). Central Illinois
production and supply levels (LOCPRO and LOCSUP) are calculated in a similar
manner, according to equations (61) and (62).

The results obtained from the ancillary approach, shown in Table 17, indicate
that the optimal hedge varies from 93 to 100 percent of expected production in
each sample period. Although the variance-covariance estimates are larger and more
variable than before, the cash price variance continues to dominate the optimal
hedge calculation, As a result, the optimal hedge for the -extremely risk averse
producer (m=-infinity) is near the 100 percent level of previous analyses.

Conclusions

Year-specific measurement of the optimal hedge indicates that the hedge level
for the Central Illincis soybean producer can vary importantly from year to year.
Specifically, non-constant variance estimation can reduce the optimal hedge level for
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TABLE 16

ANCILLARY FORECASTS FOR THE BASIS AND CASH PRICE EQUATIONS
(1965-1984 SAMPLE PERIOD)

Ancillary Equation RZ
(50) USYIELD? = 10.82 + 0.22 TRD 0.33
(51) USHA = 1.09 + 0.96 MUSPA 0.97
(52) TNATSTO = -86.22 + 0.36 MTNATSTO 0.76
(53) IYIELD = 13.66 + 0.27 TRD 0.17
(54) ILHA = 0.73 + 0.87 MILPA 0.93
(55) TLOCSTO = -10.99 + 0.36 MTLOCSTQ 0.72
(56) CHICST = -4.27 + 0.012 MTNATSTO 0.43
(57) OPPCOST = -20.45 + 0.32 TRD : 0.69
(58) FOSEXP = -2278.05 + 38.19 TRD 0.92

a USYIELD = U.S. soybean yield; TRD = trend; USHA = U.S. harvested
soybean acreage; MUSPA = U.S. planted soybean acreage in May;
TNATSTO = total U.S. stocks at harvest; MTNATSTO = total U.S. stocks
in May.

IYIELD = lllinois soybean yield; ILHA = Illinois harvested soybean
acreage; MILPA = Tllinois planted soybean acreage in May; TLOCSTO =
local Central Illinois stocks at harvest; MTLOCSTO = total Central Illinois
stocks in May.

CHICST = Chicago stocks at harvest; OPPCOST = harvest opportunity
cost; FOSEXP = predicted crop-year exports at harvest.
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TABLE 17

OUT-OF-SAMPLE ESTIMATES OF THE OPTIMAL HEDGE RATIO
USING ANCILLARY EX ANTE FORECASTS '

Period for - :

Error. : op2 sz ~ Opb ' Optimal Heglge
Calculation™ - ‘ (% of production)
1981-1983 29,309 453 -745 101
19811984 25,116 658 440 %
1981-1985 21,241 750 8_59 o 93
1981-1986 = 20,204 . 627 781 ' ‘ 94
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the extremely risk averse producer from 98 percent (the constant variance level) to
approximately 77 percent of expected production. For the less risk averse hedger,
both the constant and non-constant variance optimal hedge levels are affected to an
even larger extent. Depending on producer price expectations, the optimal hedge
estimates range from a short hedge of 158 percent to a long hedge of 27 percent of
expected production. .

Although the impact of non-constant variance estimation is evident, several
limitations within the study must be noted. That larger Chicago stocks levels
should increase basis variability; (and reduce the short hedge as a percent of
production) is not intuitive.l Other important qualifications involve data
availability, the presence of multicollinearity, and uncertainties as to correct model
specification. With a longer (and less collinear) data series, the equations may have
been specified differently or they may have been more stable. In addition, the
limited availability of data (particularly consumption demand data) may have resulted
in omitted variable bias.

The specification of the objective function also limits implementation of the
non-constant variance approach. Although the objective function used in this study
is one of the most widely-used specifications, it has resulted in optimal hedges
which are ' significantly larger than actual farmer hedging levels. This study
suggests an optimal hedge of near 100 percent for the risk averse producer, but
recent survey evidence ‘indicates that less than 10 percent of Central Illinois
farmers hedge, and typically at suboptimal levels (Olmstead).

One explanation for this behavior is that the costs of hedging are not
accurately reflected in the objective function. Variation margin often represents an
important cash flow constraint when futures prices move against the hedger (for
instance, when the hedger is short and the futures price increases).  Yield risk is
another consideration: the farmer may be forced into a short speculative position
(because of smaller quantities produced) at a time when futures prices are
increasing. The farmer would experience a significant loss both in the cash market
(through the decline in crop size) and in the futures market (through variation
margin), The lumpiness of the contract is also important: because few farmers
produce soybeans in multiples of the 5,000-bushel contract size, the producer again
may be exposed to a substantial speculative position. :

Refinements of the vyear-specific approach used in this study would create a
broader understanding of the optimal hedge decision. One. refinement involves
improving data availability, particularly regarding local Central Tllinois consumption
demand. Other potential extensions involve analysis of different producer locations
and the study of individual production/hedge levels. The examination of non-
constant variance estimation of the optimal hedge for alternative commodities would
also be useful.

Another potential contribution involves improved specifications of the
objective function. Introducing yield risk and the uncertainty of margin calls is
particularly important, along with the year-specific analysis of optimal' hedge

17Indeed, the original hypothesis suggested that the error variance should
increase, in both the cash price and basis equations, as inventories decline.
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sensitivity to these alternative specifications. The non-constant variance approach
could also be analyzed through a time-series framework, or by the use of implied
options volatilities. Bootstrapping, involving Monte Carlo re-samplings of the
empirical errors, provides an alternative approach to variance estimation.

Perhaps the primary conclusion is that the changing variance assumption has
potential importance for year-specific estimation of the optimal hedge. In this
paper, however, data problems. and possible misspecification of the equations do not
provide definitive conclusions about optimal hedges  for - Central Illinois soybean
producers. :
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