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Abstract 

 

 

Studies examining the value of switching to a variable rate technologies (VRT) fertilizer 

program assume producers possess perfect soil nitrate information.  In reality, producers estimate 

soil nitrate levels with soil sampling.  The value of switching to a VRT program depends on the 

quality of the estimates and on how the estimates are used.  Larger sample sizes, increased 

spatial correlation, and decreased variability improve the estimates and increase returns.  

Fertilizing strictly to the estimated field map fails to account for estimation risk.  Returns 

increase if the soil sample information is used in a Bayesian fashion to update the soil nitrate 

beliefs in non-sampled sites. 

 

Key words: estimation risk, geostatistics, nitrogen fertilizer, optimal sample sizes, precision 

farming, single rate technology, variable rate technology, variogram.  

 



 

 

 

Introduction 
 

Use of soil test information to better match fertilizer applications with crop nutrient 

requirements and nutrient availability has long been proposed as a means for improving soil 

fertility management and environmental quality (Musser et al. 1995; Fleming et al. 1999; 

Babcock and Blackmer 1992).  It is widely accepted that uncertainty about soil fertility levels 

leads to increased applications of nitrogen fertilizer.  Advances in mapping and sensing 

technologies have renewed interest in soil testing as a means of moving to variable rate 

technologies (VRT) whereby a farmer varies fertilizer applications across space and/or time.  

Significant research efforts are underway to develop the knowledge and equipment needed to 

allow farmers to move to VRT (National Research Council 1997). 

Recent studies examining the potential value of switching to a VRT fertilizer program 

assume producers possess complete information about soil nitrate levels, as well as how to vary 

fertilizer applications optimally across the field (Babcock and Pautsch 1998; Lowenberg-DeBoer 

and Boehlje 1996; Sawyer 1994; Snyder et al. 1996; Solohub et al. 1996; Hertz 1994).  In reality, 

farmers using a VRT strategy will only sample a portion of the field rather than the entire field.  

The soil samples are then used to estimate the soil nitrate levels at the non-sampled sites.  These 

estimates are summarized and presented to the producer in the form of a soil nitrate field map 

where isoclines of equal soil nitrate levels are shown to guide fertilizer rates. 

A key factor in such a map is the precision with which the non-sampled points are estimated.  

Precision can be increased with more soil samples, but at a cost.  The purpose of this paper is to 

develop a framework for incorporating estimation risk into a decision model to determine the 

optimal amount of soil test information when applying nitrogen fertilizer under a variable rate 

program.  The optimal sample size is found by equating the marginal cost of sampling with the 

marginal benefit of sampling.  The marginal benefit of soil sampling is the increased expected 

returns from an additional soil test.  The marginal cost of sampling is the additional cost of 

obtaining a soil sample.  The analysis also estimates the value of switching to a VRT fertilizer 

program from the conventional single rate technology (SRT) fertilizer program where a farmer 
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applies fertilizer uniformly across the field.  These estimates aid producers, equipment 

manufacturers, input suppliers, and other agribusiness agents struggling with the adoption and 

implementation of new precision technologies by providing a benchmark on the level of 

investment that should be made in these new technologies and once adopted the level of 

investment in acquiring information or soil sampling.  Finally, the over-application of nitrogen 

fertilizer, which is potentially harmful to the environment, is shown to be dependent on adopting 

these new precision farming technologies and on the level of investment in soil sampling. 

While the specific application of this paper is to determine the optimal amount of soil test 

information to obtain, the economic questions that the paper addresses are fundamental to 

gaining a better understanding of how agriculture technologies in general can be brought into the 

information age.  The questions are (1) How much investment should be made in information?  

(2) Is it worth the investment to reduce farming uncertainty and move towards farming under 

variability?  (3) How does the amount of spatial variability and spatial correlation of soil 

properties affect the optimal level of investment in information acquisition and the return to 

investment?  

Two methods are used to process soil sample information into soil nitrate estimates for all 

non-sampled points.  Each method provides different estimates for the marginal benefits of soil 

sampling and thus differs on the optimal amount of soil nitrate information to acquire.  First, the 

soil nitrate estimates for the non-sampled points are treated as “truth” and directly inserted into 

optimal fertilizing rules.  This approach is called the plug-in method and is most widely used in 

agricultural studies (Lence and Hayes 1994).  The plug-in method, however, ignores estimation 

risk and is not consistent with expected utility maximization (Klein et al. 1978).  The second 

approach accounts for estimation risk by using Bayesian decision rules.  The approach is 

consistent with expected utility maximization (DeGroot 1970) but with the exception of a few 

studies (Chalfant et al. 1990; Lence and Hayes 1994; Babcock et al. 1996) it has not been widely 

used in the farm management literature. 

The optimal level of investment in information acquisition and the returns from investing in 

new precision farming technologies will depend heavily on field characteristics that determine 

the degree of spatial variability and spatial correlation of soil nitrate levels within the field.  The 
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Bayesian decision rule is used to determine how increases in soil nitrate variability and the 

spatial correlation of soil nitrate across a field affect the optimal number of soil samples.  

Increased variability and decreased correlation would seem to increase optimal sample size 

because more samples are needed to make reliable estimates of nitrate.  We show that increased 

soil nitrate variability increases the optimal number of soil samples but increased spatial 

correlation of soil nitrate levels may increase or decrease the optimal sample size depending on 

marginal sampling costs. 

The Model 

The analysis relies on Monte Carlo simulation rather than the sampling and fertilizing of an 

actual field.  Figure 1a presents an example of a simulated field mapped onto a six by six unit 

grid and thus divided into 36 square grid cells.  Each square grid cell is assumed to possess a 

single soil nitrate level and the soil nitrate level varies from cell to cell.  The center of each 

square cell is assumed to be the soil sampling site for that cell. 

To determine the producer returns from a given sample size, X, the following Monte Carlo 

experiment is replicated 1,000 times.  First, soil nitrate levels are simulated for each cell of the 

field through the use of a geostatistical model.  Second, the soil samples are taken at X evenly 

spaced sites throughout the field.  In Figure 1b, the darkened sites represent sampled sites, so that 

in this case the sample size is nine.  Third, the soil sample information is used to create an 

estimated soil nitrate map of the field.  Fourth, the producer fertilizes according to the estimated 

soil nitrate map and to whether or not they account for estimation risk.  Finally, the results of 

using a VRT fertilizer program are averaged over the 1,000 replications.  Another sample size is 

then selected and the Monte Carlo experiment is repeated over the same 1,000 draws of possible 

soil nitrate levels for the entire field.  Soil nitrate levels on a site in a field vary from year to year 

because of interactions between soil properties and variable weather events that occur before 

soils are tested (Babcock and Blackmer 1992). 

The accuracy of the estimated soil nitrate map depends upon the sample size.  Increasing the 

sample size, increases the amount of soil nitrate information collected and thus increases the 

accuracy of the soil nitrate estimates at the non-sampled points.  The marginal benefit of 

sampling in a VRT fertilizer program is the change in producer returns divided by the change in 
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the number of samples.  The producer returns from an SRT fertilizer program are also averaged 

over the same 1,000 draws of possible soil nitrate levels for the field and compared with the VRT 

fertilizer program. 

 

Field Data Simulation 

The overall soil nitrate mean and variance for the field is denoted as µ σ  and 2 .   The soil 

nitrate level at site  i, xi , differs from the soil nitrate level at other sites within the field.  The 

variance of the difference in soil nitrate levels on two sites  i  and  j  equals 

E x x E x xi j i j− = + −d i e j2 2 22 µ σ .  A semi-variogram expresses half of this variance as a 

function of the distance between the two sites.  If the distance between two sites is beyond some 

critical level (called the range), then E x xi j = µ 2  and the semi-variogram equals the overall soil 

nitrate variability of the field, σ 2 .   In other words, when the sites are so far apart the soil nitrate 

levels are uncorrelated or spatially independent, half the variance between the two sites equals 

σ 2 .   The soil nitrate level at one site provides no additional information about the soil nitrate 

level at the other site. 

As the two sites become closer, the variance of the difference in soil nitrate levels between 

the two sites will decrease.  The soil nitrate levels at these two closer sites become more 

correlated or spatially dependent.  That is, the sites are close enough, so that the soil nitrate level 

at one site provides additional information about the soil nitrate level at the other site.  The soil 

nitrate variation between any two sites is assumed to follow a spherical semi-variogram.  The 

spherical model is currently the most commonly used semi-variogram in soil science to measure 

variability in soil properties (Han et al. 1996).  The spherical semi-variogram is given by, 
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 half the variance in the difference between soil nitrate levels on any site i and site j,
      distance between site i and site j,

        range,
        soil nitrate variability that can be explained spatially,
      soil nitrate variability that cannot be explained spatially.

 (1) 

The overall soil nitrate variance of the field, Var xib g = σ 2 , is called the sill and is denoted 

as, Co + C.  This overall variation of soil nitrate levels is assumed to consist of a local random 

component, Co, called the nugget effect and a component, C, called the spatial variance.  The 

nugget effect represents measurement error.  It is the soil nitrate variability that occurs when two 

soil samples are taken from the same site, i.e., the variations in soil nitrate levels when distance 

between the sites is zero.  The spatial variance is the variability in the difference of soil nitrate 

levels on two sites which is attributable to the distance between those two sites.  As the distance 

between any two sites increases, the variability of soil nitrate levels between those sites also 

increases.  In other words, the spatial variance is the variability in soil nitrate levels that can be 

explained spatially. 

The spatial covariance of nitrate levels within the field is represented by 

σ ij ij ij ij ij
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 (2) 

The covariance (σ ij ) of soil nitrate levels between sites  i  and  j  depends on the distance 

between sites  i  and  j.  The soil nitrate levels between adjacent sites are more related than nitrate 

levels from sites further apart.  If the distance between sites  i  and  j  is greater than or equal to 

the range, then the corresponding nitrate levels are uncorrelated, σ ij = 0 .  Denote the covariance 

matrix of the soil nitrate levels as ϕ σ= ij . 

Cholesky’s factorization of the covariance matrix ϕ  is denoted as P, where P is a lower 

triangular matrix and PP′=ϕ .  Denote x  as the column vector containing the soil nitrate levels 
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on each of the sites.  Let x  equal Pz + µ 1
~
, where  z  is a column vector drawn randomly from a 

standard normal distribution, 1
~
 is the unit column vector, and µ  is a constant.  In this manner, 

the soil nitrate levels occurring in the field before fertilizer application are normally distributed 

with mean µ  and covariance structure ϕ . 

 

Soil Sampling and Soil Nitrate Maps 

To simplify the analysis, it is assumed that the true underlying process (semi-variogram) 

which generates the spatial distribution of soil nitrate levels is known when making estimates.  

This assumption represents a first step in combining geostatistical procedures and precision 

farming concepts to derive optimal sample sizes.  If the semi-variogram is not known, then one 

must be estimated from the sampled values.  When using the Monte Carlo simulation technique, 

such an endeavor is difficult and very time consuming when performed for each replication.  Our 

assumption of a known semi-variogram causes the absolute value of all soil sample information 

to be higher than if soil nitrate estimates were derived using an estimated semi-variogram.  

However, the effect of this assumption on the marginal benefit of sampling is indeterminate. 

Suppose  n  different sites are sampled and the soil sample information are represented by 

w w wn= ′( ,..., )1 , where wj is equal to the soil nitrate reading at the jth sampled site.  The sample 

is then used to estimate the nitrate levels at non-sampled sites.  Since the inherent soil nitrate 

levels are normally distributed, the joint distribution of ( , )x wi ′ ′ , where xi  is the soil nitrate level 

at a non-sampled site, is multivariate normal with mean vector ( , )
~

µ µ ′1n  and covariance matrix, 

            ...   
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where ϕ i  is n x 1 and ϕ  is n x n.  The conditional distribution of xi  given the sampled 

information w  is then normal with mean and variance (Graybill 1976) 
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� | ( )
~

x E x w wi i i n= = + ′ −−µ ϕ ϕ µ1 1  (4) 

Var x w C Ci o i i( | ) ( )= + − ′ −ϕ ϕ ϕ1   (5) 

The covariance of the ith non-sampled point with each of the  n  sampled points is 

represented by ϕ i  and its transpose is denoted as ′ϕ i .  The covariance of the sampled sites with 

the other sampled sites is represented by ϕ  and its inverse is denoted as ϕ −1 .  Given the sample 

information w , the soil nitrate estimate at a non-sampled site, �xi , is then the mean of the 

conditional distribution of xi  and the variance of the estimate is the variance of the conditional 

distribution of xi .  If none of the sampled points are within the range of the ith non-sampled site, 

the covariance between it and all the sampled sites is zero.  No additional information on the ith 

non-sampled site is gained and the soil nitrate estimate and its corresponding variance become 

the soil nitrate mean and variance for the overall field. 

 

Decision Model 

The production decision is the amount of nitrogen fertilizer to apply given the relationship 

between soil nitrate concentrations and yield, the available technology (SRT versus VRT), and 

the producer’s information concerning inherent soil nitrate levels.  The soil nitrate concentration, 

measured in parts per million (ppm), represents the available nitrate in the top 12-inch layer of 

soil.  A producer can alter the soil nitrate concentration by applying an amount of nitrogen 

fertilizer ( F ) measured in pounds per acre.  The soil nitrate concentration after applying 

fertilizer ( N AF ) is assumed to be a linear relationship of the nitrogen found naturally in the soil 

( x ) and the amount of nitrogen fertilizer applied (Babcock et al. 1996).  The multiplicative 

constant k  indicates the pounds of fertilizer per acre needed to increase the soil nitrate 

concentration 1 ppm,  

N x FkAF = +   (6) 

The existence of a corn yield plateau and an approximately linear response to soil nitrates 

when nitrates are limiting is supported in the literature (Ackello-Ogutu et al. 1985; Cerrato and 

Blackmer 1990; Paris 1992; and Binford et al. 1992).  A review of linear response plateau (LRP) 

production function research is found in Jomini (1990).  The following LRP production 
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relationship is used, assuming that all other input decisions have been made and are at non-

binding levels,  

Y Y b N N Ii p i
AF

N Ni
AF= − −

<
( )*

{ }*   (7) 

For each site  i, the indicator variable I
N Ni

AF{ }*<
 equals one when the nitrogen level after 

fertilizing is less than the critical level of nitrogen ( N * ) and equals zero otherwise.  The plateau 

or maximum corn yield (Yp ) is reached when the soil nitrate concentration after fertilizing is 

greater than or equal to N * .  When the soil nitrate concentration is less than N * , the corn yield 

(Yi ) decreases linearly by a constant level ( b ) for each ppm less than N * . 

The optimal SRT fertilizer rate is the single rate that when applied to the entire field 

maximizes producer’s expected profit.  The spatial correlation and distribution of inherent soil 

nitrate levels are known, but information on spatial location is not used in SRT.  The SRT 

nitrogen fertilizer optimization procedure is,  

Max E Max E P Y b N x kF I P F
F

SRT

F c p i x kF N F
i

n

i
  π = − − + −L

NM
O
QP+ <

=

( ( ( )) )*
{ }*

1

   (8) 

where n  is the number of grid cells in the field, Pc  is the price of corn, and PF  is the price of 

nitrogen fertilizer.  Since each xi  is normally distributed with mean µ  and variance C Co + , 

equation (8) is rewritten as (see appendix for details), 

Max P Y b N kF G b C C g P F
F c p

N kF
C C o

N kF
C C F

i

n

o o
{ ( ( )) ( ) ( )}* ( ) ( )* *

− − + − + −− +
+

− +
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=

µ µ µ 
1

 (9)  

where g z e
z

( ) =
−1

2

2

2

π
is the standard normal probability density function and 

G z g u du
z

( ) ( )=
−∞z  is the corresponding cumulative distribution function.  The first-order 

condition for the optimal SRT fertilizer rate is then, 

P G N kF
C C
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o
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F
HG

I
KJ =µ   (10) 
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from which the optimal SRT fertilizer rate is determined to be, 

F N
k
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The producer fertilizes the entire field such that the expected marginal revenue product of 

nitrogen fertilizer equals the price of fertilizer.  When applying the optimal SRT fertilizer rate 

across the field, the probability of being short of the critical nitrogen level is equal to the ratio of 

the price nitrogen fertilizer to its marginal revenue product.  The optimal SRT fertilizer rate 

equals the overall field mean fertilizer rate plus an additional amount of fertilizer which changes 

the probability of being short of nitrogen from 50 percent to the ratio of the price of nitrogen 

fertilizer to its marginal revenue product conditional on fertilizer being nonbinding ( P bkc ). 

When using variable rate technology to make fertilizer decisions, the producer possesses a 

field map of estimated soil nitrate levels.  The map is based on the soil samples.  Let  w   

represent the vector of sampled nitrate levels at the sampled sites.  The producer’s posterior 

beliefs regarding the ith site’s inherent soil nitrate level is denoted by h x wi( | ) .  The optimal 

expected VRT profit for the entire field is the sum of the optimal expected profit from each site.  

The optimal VRT fertilizer rate for the ith site is the rate that maximizes producer’s expected 

profit on that site,  

Max E Max P Y b N x kF I P F h x w dx
F i

VRT

F c p i i x kF N F i i i
i i i i

 ] = [
-

+
[ ( ( ( )) ) ] ( | )*

{ }*π
∞

∞

+ <z − − + −   (12) 

The form of the posterior beliefs about the inherent soil nitrate level depends upon whether 

the site is a sampled or non-sampled site and whether the producer ignores or accounts for 

estimation risk.  Soil sampling errors are assumed to be zero, so that producers have perfect 

information about the true soil nitrate level at each sampled site.  The posterior beliefs about the 

soil nitrate level at a sampled site become a point density function at the sampled value.  Given 

perfect soil nitrate information, current prices of corn and nitrogen, and the marginal product of 

nitrogen fertilizer, the economically optimal fertilizer response is to raise the soil nitrate level to 

the physically optimum level N*.  If the producer were deciding whether or not to fertilize, then 

the optimal fertilizer prescription would also include application costs.  In our analysis, the 
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producer has already decided to fertilize, thus application costs are ignored and treated as a fixed 

cost.  At each sampled site, a producer fertilizes in the following fashion, 

F N x k x N
x N

i i i

i

= − <
≥

( ) /*                            if  <
          =         0                             if  

*

*

0
   (13) 

Producers do not possess perfect information about soil nitrogen levels at non-sampled sites.  

Instead, producers use estimated soil nitrate levels derived from the sampled sites to make their 

fertilizer decisions.  Nitrogen fertilizer decisions are analyzed under two different assumptions.  

First, producers ignore estimation risk by directly substituting the estimate for the true unknown 

level of soil nitrate at each non-sampled site.  This method is traditionally referred to as the 

“plug-in” approach.  The posterior density, h x wi( | ) , in this case is a point density function at the 

estimated value � |x E x wi i=  (equation 4) for each non-sampled site.  The optimal fertilizer rate 

is found by replacing the true soil nitrate level xi  with its estimate �xi  in equation (13). 

The second procedure accounts for estimation risk by using a Bayesian approach.  The 

posterior distribution of the true soil nitrate level for non-sampled sites is found by updating 

prior beliefs using Bayes Theorem.  The posterior beliefs are then conditional upon the sampled 

values at the sampled sites.  The posterior density, h x wi( | ) , is normal with mean � |x E x wi i=  

and variance Var x wi |b g , given in equations (4) and (5), respectively. 

The variable rate fertilizer program maximization problem expressed in equation (12) can be 

rewritten as (this equivalence can be shown in a manner similar to the equivalence of equation 

(8) and equation (9)), 

Max P Y b N x kF G b Var x w g P F
Fi

c p i i
N xi kFi

Var xi w i
N xi kFi
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where g z( )  is the standard normal probability function and G z( )  is the corresponding 

cumulative distribution function.  The first order condition for the optimal VRT fertilizer rate is, 

P G N x kF
Var x w

bk Pc
i i

i
F

* ( � )
( | )

,
− +F

HG
I
KJ =     (15) 

 



Optimal Information Acquisition under a Geostatistical Model  /  15 

from which the optimal VRT fertilizer rate at site i is determined to be, 

F
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The producer fertilizes each grid cell such that the expected marginal revenue product of 

nitrogen fertilizer equals its price.  The optimal Bayesian VRT fertilizer rate equates the 

probability of being short of the critical nitrogen level in a grid cell to the ratio of the price of 

nitrogen fertilizer to its marginal revenue product ( P bkc ).  The optimal Bayesian VRT fertilizer 

rate equals the plug-in fertilizer rate plus an additional amount of fertilizer that changes the 

probability of being short of nitrogen from 50 percent to the ratio P P bkF c/ .  Under both the 

plug-in method and the Bayesian method, if an estimate other than the mean cannot be made on a 

site due to the lack of locally sampled sites, then no additional information has been gained and 

the optimal VRT response is to use the SRT fertilizer rate.  

The optimal Bayesian VRT fertilizer rate for each grid cell (equation 16) is similar in form 

to the optimal SRT fertilizer rate for the entire field (equation 11).  For both programs, the 

expected proportion of non-sampled sites under-fertilized equals the ratio of the price of nitrogen 

fertilizer to its marginal revenue product.  In the absence of soil sampling, as in the SRT fertilizer 

program, the overall field mean and variance are the best estimates for the soil nitrate level and 

soil nitrate variability at each non-sampled site.  The VRT fertilizer program uses sampling 

information to improve the quality of these estimates.  Subsequently, the overall amount of 

nitrogen fertilizer over-applied and under-applied will be lower under the VRT Bayesian 

fertilizer program. 

 

Optimal Sample Size 

Figure 2 shows the total benefit (TB) of sampling (expected returns over fertilizer costs), as 

a linear and then concave function of the sample size.  The linear portion for very small sample 

sizes reflects the possibility of drawing samples from sites that are at least twice the range in 

distance from each other.  In this case, each sampled site provides information about the same 

number of non-sampled sites and the sets of non-sampled sites associated with each sampled site 

are non-overlapping.  The sampled sites are so spread out that information about each non-
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sampled site is provided by only one sampled site.  Each additional sampled site on average will 

affect returns the same as the previously sampled sites.  However, if more than one sample 

provides information about a non-sampled site, the later sample provides less information than 

the previous samples.  As the sample size becomes large, each additional sample provides less 

and less information about the non-sampled points.  Hence, expected returns will eventually 

become a concave function of the sample size.  Expected returns are strictly concave if the range 

of soil nitrate is high enough that any two sampled points gives information about at least one 

non-sampled point. 

Figure 3 shows the expected marginal benefit (MB) of sampling, to be constant and then 

decreasing with the number of samples.  The marginal cost (MC) of sampling is assumed to be 

constant.  The intersection of the marginal benefit with the marginal cost of sampling determines 

the optimal sample size.  If MCo represents the marginal cost of sampling, then the marginal cost 

of sampling exceeds the marginal benefit at all sample sizes.  The optimal producer response is 

to fertilize the field using a single rate fertilizer program.  If the marginal cost of sampling is 

represented by MC1, then the optimal producer response is to sample  n*  sites and fertilize the 

field using a variable rate technology program.  It is assumed that the cost of investing in the 

capability of VRT technology has already been made.  Otherwise, fixed costs would need to be 

accounted for in the decision to switch from an SRT fertilizer program to a VRT fertilizer 

program. 

Monte Carlo Experiment 

Data and Procedures  

In the analysis, a 2,310 by 2,310 foot hypothetical field is mapped onto a 70 by 70 unit grid.  

The field is then divided into 4,900 square units each consisting on 0.025 acres.  Each square 

unit, 33 feet long and 33 feet wide, is assumed to possess a homogenous soil nitrate level.  The 

overall mean and standard deviation for the soil nitrate levels within the field are assumed to be 

15 ppm and 5 ppm, respectively.  The range of soil nitrate coefficients of variation occurring 

naturally in Iowa cornfields is estimated to be in the range of  {0.08, 0.43} (Chin 1997).  Our 

assumed coefficient of variation of 0.33 occurs near the upper end of this interval.  Hence, the 

estimated value of switching to a VRT fertilizer program may be slightly higher than on an 
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average field in Iowa, since greater variability of nitrate levels increases the value of switching to 

VRT programs (Hennessy and Babcock 1998). 

The nugget of the semi-variogram is assumed to be zero.  That is all samples are assumed to 

be measured without error.  The range of the semi-variogram is assumed to be 15 grid cells units 

(or 495 feet), so that the nitrate level at one point provides some information about the nitrate 

level at the other points within 15 grid cells.  This assumed range is very close to the midpoint of 

the interval (131 to 900 feet) typically found in precision farming studies of soil nitrate 

concentrations (Wollenhaupt et al. 1997).  The range of the semi-variogram provides the spatial 

covariance structure, Φ, of inherent soil nitrate levels within the field.  A Monte Carlo simulation 

is performed by averaging the results over 1,000 draws on the same field.  Each of the 1,000 

draws consists of 4,900 correlated soil nitrate values, where each draw is taken from a normal 

distribution with mean soil nitrate level of 15 ppm, standard deviation of 5 ppm, and covariance 

structure Φ.  

A non-strategic evenly spaced sampling procedure is used in the analysis.  Strategic 

sampling of a field implies gathering additional field information such as topography, soil type, 

and drainage properties and examining how soil nitrate levels vary according to these field 

characteristics (Pocknee et al. 1996).  Since all sites in the field are assumed to possess a 

common mean, soil nitrate levels are assumed to be invariant to other field characteristics.  If 

different portions of the field possessed different mean soil nitrate levels based upon topography, 

soil type, or drainage then a producer would use a strategic rather non-strategic sampling 

procedure. 

For simplicity, the non-strategic evenly spaced sampling procedure used for moderate and 

large sample sizes was to select points at the intersection of every  x1  rows with every  x1 

columns in the grid.  For example, in Figure 1b, the darkened circled sites represent the sampled 

sites, where sample points were selected at the intersection of every second row with every 

second column.  Table 1 presents the sampling procedure under the 70 by 70 unit grid when the 

sampled points are greater than or equal to 25.  For smaller sample sizes, the points were selected 

to maximize the number of non-sampled sites that could be estimated.  The results from four 

different single sites were averaged and represent the first sample point case.  Four sample points 



18  /  Pautsch, Babcock, and Breidt 

were chosen so that none of the sites were within 30 grid cells of each other (the range is 15 grid 

cells in any direction), i.e., no points overlapped with another.  A fifth sampled site was added 

which partially overlapped the previous four sampled sites.  A vast majority of the field could be 

estimated from only five sample points. 

 

Table 1.  Intersection location of sampled sites for sample sizes of 25 or greater 

Intersection                                                Number of samples 

Location 25 36 49 64 81 100 144 196 324 576 1225 2450

Row 14 12 10 9 8 7 6 5 4 3 2 2 

Column 14 12 10 9 8 7 6 5 4 3 2 1 

 

The corn yield plateau (Yp) is 148.21 bushels per acre, the slope coefficient (b) is 3.95 

bushels per ppm, and the critical level of inherent soil nitrate concentration (N*) is 24.45 ppm 

(Babcock and Blackmer 1992). To raise the soil nitrate concentration 1 ppm, the producer needs 

to add 7.63 pounds of nitrogen fertilizer ( ).k = 1
7 63  (Babcock and Blackmer 1992). The price of 

corn is $2.50 per bushel and the price of nitrogen fertilizer is $0.20 per pound. 

 

Single Rate Fertilizer Program 

The SRT fertilizer rate is the field application rate that maximizes the producer’s expected 

profit given knowledge of the distribution of soil nitrate on a field.  This rate can be thought of as 

the single rate of fertilizer an experienced producer applies to the field.  In Tables 2 and 3, zero 

sample points represent a single rate fertilizer program.  The SRT fertilizer rate is 110.91 pounds 

of fertilizer per acre and the average per acre returns over fertilizer costs are $344.34.  Under the 

SRT program, producers over-apply nitrogen fertilizer (relative to optimal application rates 

under perfect information) to insure against possible yield losses (Babcock 1992; Babcock and 

Blackmer 1992). Given the values of b k P P Gc F, , , ,   and  ⋅b g equals 0.1545.   Therefore, producers 

over-fertilize 85 percent of the field and over-apply the field with 5,059 pounds of nitrogen 

fertilizer, relative to optimal applications under perfect information. The average per acre yield 

of 146.61 bushels is 99 percent of the maximum potential yield.  Only 15 percent of the field is 
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under-fertilized and only 379 pounds of fertilizer are needed for those areas to reach their 

optimum yield potential. 

 

Variable Rate Program—Plug-In Method 

Table 2 presents the per acre yields, fertilizer rates, and returns over fertilizer costs for 

various sample sizes under the plug-in approach.  If producers ignore estimation risk and use a 

sample size of less than 100 to generate the soil nitrate map, then they are better off using the 

SRT fertilizer program than the VRT program.  Returns decline because the producer uses a sub-

optimal decision making process by treating the soil nitrate estimates as completely accurate.  

This process is equivalent to assuming that the producer no longer over-fertilizes to insure 

against yield losses.  The percent of land over-fertilized and the amount of nitrogen fertilizer 

over-applied decline.  Yields decline by as much as 5.05 bushels per acre as the land under-

fertilized and the amount of nitrogen fertilizer needed to reach maximum yield potential increase. 

Soil nitrate estimates can be generated for every grid cell in the field when the sample size is 

greater than or equal to 25.  In these cases, half of the soil nitrate estimates over-estimate the true 

soil nitrate level leaving 50 percent of the grid cells under-supplied with nitrogen.  Similarly, half 

of the soil nitrate estimates under-estimate the true soil nitrate level leaving 50 percent of the grid 

cells over-supplied with nitrogen.  The amount of fertilizer over-applied in parts of the field is 

very close to the amount of fertilizer needed in other parts of the field.  Hence, the average 

fertilizer rate is fairly constant regardless of the amount of information acquired.  The 

misapplication of fertilizer, however, decreases as the sample size increases, since better 

estimates are being generated from increased soil nitrate information.  Reducing the 

misapplication of fertilizer increases both yields and returns.  However, for yields to equal the 

SRT level, approximately half of the grid cells (2,450) would need to be sampled.  The 

misapplication of fertilizer is completely eliminated and yields reach their maximum potential 

when the producer has perfect information by sampling all 4,900 grid cells. 

The plug-in approach, despite its sub-optimal nature, is often prescribed in the agricultural 

economics literature (Swinton and Jones 1998).  Producers are typically directed to fertilize so 

that the average soil nitrate level reaches its critical level.  Fertilizer prescriptions are usually 
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equal to the amount of fertilizer needed to raise the average soil nitrate estimate to the critical 

level of nitrogen. 

 

Variable Rate Program—Bayesian Method 

Table 3 presents the per acre yields, fertilizer rates, and returns over fertilizer costs for 

various sample sizes under the Bayesian approach.  The Bayesian approach assumes that 

producers account for estimation risk.  After each sample, producers improve or update their 

beliefs about the mean and variance of soil nitrate levels.  The additional information reduces the 

amount of misapplication of nitrogen fertilizer, both the amount of fertilizer needed and the 

amount of fertilizer over-applied.  Regardless of the sample size, a variable rate program using 

the Bayesian approach always produces higher yields, higher returns, and less over-fertilization 

than an SRT fertilizer program. 

Table 3 shows for many of the sample sizes that the land under-fertilized is approximately 

15 percent.  With a VRT program the first-order condition for the optimal fertilizer rate given the 

updated beliefs is given in equation (15), where G ⋅b g represents the probability that the soil 

nitrate level after fertilizing is less than the critical level of nitrogen ( N * ) or equivalently that 

yield is less the maximum potential yield.  Given the values of b k P P Gc F, , , ,   and  ⋅b g equals 

0.1545.  Therefore, each non-sampled grid in a field has a probability of 15.45 percent of being 

under-fertilized and a probability of 84.55 percent of being over-fertilized.  Hence, 

approximately 15 percent of the land that is not properly fertilized will be under-fertilized. 

Comparing Tables 2 and 3 reveals that VRT per acre returns over fertilizer costs are always 

higher with the Bayesian approach than with the plug-in approach.  The Bayesian approach deals 

with estimation risk in a manner that is consistent with expected profit maximization (Lence and 

Hayes 1994, 1995).  The plug-in approach is easier to implement but it is not consistent with 

expected profit maximization (Lence and Hayes 1994, 1995).  Producers using a VRT fertilizer 

program that strictly fertilizes according to an estimated map (plug-in approach) are using a sub-

optimal decision-making process.
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Variability of SRT and VRT Returns 

Tables 2 and 3 also present the standard deviation of per acre returns due to variations in soil 

nitrate.  This measure reflects the variability of producer returns when using the SRT and VRT 

fertilizer programs.  Under an SRT fertilizer program the variability of producer returns is very 

low at $1.56 per acre.  The over-fertilization of the SRT program has a stabilizing effect on 

returns by reducing the risks of yield losses.  Under a Bayesian VRT fertilizer program, the 

variability of producer returns decline even further as the sample size increases.  The increased 

soil nitrate information leads to better mapping accuracy and better decision-making, reducing 

the variability of returns and over-fertilization.  Under a plug-in VRT fertilizer program, the 

increased information is used sub-optimally leading to sub-optimal decision-making and 

increasing the variability of returns.  Eventually, enough information is acquired (and used sub-

optimally) to reduce the variability of returns below the SRT level. 

 

Marginal Benefit and Cost of Sampling 

Table 4 presents the VRT marginal production benefit and an indication of the 

environmental benefits from sampling.  Under the plug-in approach, the marginal returns are first 

negative, then increase to $14.48, and subsequently decline.  The indicator of marginal 

environmental benefit is very large at first, 479.02 pounds of fertilizer for the field, and then 

declines to 0.11 pounds of fertilizer.  The large environmental benefit and large reduction in 

returns with very small sample sizes occurs when producers no longer over-fertilize to insure 

against yield losses.  Instead, producers are accepting imperfect soil nitrate maps as the truth and, 

as a result, are suffering from yield losses.  If the marginal cost of sampling and other additional 

VRT costs exceed $4.02 per sample, producers are better off with an SRT fertilizer program than 

a VRT program that fertilizes strictly to an estimated map. 

Under the Bayesian approach, marginal returns over fertilizer costs and marginal 

environmental benefits decline as the sample size increases.  If the marginal cost of sampling and 

other additional VRT costs exceed $10.30 per sample, the profit from an SRT fertilizer program 

exceeds that of a VRT fertilizer program.  The marginal environmental benefit is also quite low.  
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The first four sample points each reduce over-fertilization in the field by 38.66 pounds (or 

154.64 pounds total).  

The marginal cost of obtaining a soil nitrate sample is approximately $9 per sample 

(Lowenberg-DeBoer and Swinton 1997).  Hence, a variable rate fertilizer program using the 

Bayesian approach appears to be feasible for only very small sample sizes, i.e., five or fewer 

sample points or sampling approximately 0.1 percent of the possible points in the field. 
 
Table 4.  Marginal production benefits and an indication of the environmental benefits from 

sampling 

 Plug-In Approach Bayesian Approach 

Sample Marginal Marginal Marginal Marginal 

Points Returns Environmental Benefit Returns Environmental Benefit 

      0 ($) (lbs. of fertilizer) ($) (lbs. of fertilizer) 

      1 -121.74 479.02 10.30 38.66 

      4 -121.74 479.02 10.30 38.66 

      5 -102.31 395.87 10.27 32.26 

    25    -24.11   60.56   8.61 28.93 

    36     14.48   12.76   8.49 32.21 

    49     12.18     9.05   7.21 25.29 

    64     10.27     7.49   6.09 21.35 

    81       6.79     5.38   4.12 15.10 

  100       4.02     2.80   2.33   7.98 

  144       3.56     2.56   2.08   7.37 

  196       1.76     1.38   1.07   3.89 

  324       1.34     0.97   0.79   2.79 

  576       0.65     0.48   0.38   1.36 

1225       0.33     0.25   0.20   0.70 

2450      0.17     0.13   0.10   0.36 

4900      0.15     0.11   0.09   0.31 
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However, other costs of moving to variable rate technology should be included such as new 

fertilizer spreaders, computer hardware and software, global positioning systems, and any 

additional labor costs.  This suggests that soil sampling to guide nitrogen fertilizer rates in a 

variable rate technology program are not likely to be financially feasible unless soil sampling 

costs are greatly reduced. 

 

Effect of Variability and Correlation on Optimal Sample Size 

This section examines the effects of changing the spatial correlation and variability of soil 

nitrate levels within a field on the marginal benefits from sampling and on the optimal sample 

size.  Marginal costs are assumed to remain constant.  The Bayesian method, not the plug-in 

method, of using estimated soil nitrate mappings is highlighted, since it is consistent with 

expected profit maximization. 

Spatial correlation.  Changing the range in the spherical semi-variogram alters the spatial 

correlation of soil nitrate levels.  The spatial correlation coefficient of soil nitrate levels for a 

spherical semi-variogram is, 
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Table 5 shows that increasing the range increases the spatial correlation of soil nitrate 

readings.  If the range is one grid unit, then all the soil nitrate levels in the field are uncorrelated.  

Sampling at a site provides information only about that site.  On the other hand, if the range is 99 

grid units, then sampling at one site provides some information about the nitrate levels at all the 

other sites in the field.  The previous analysis assumed the range was 15 grids.  For example, the 

spatial correlation coefficient for sites 5 grids (or 158.75 feet) apart is 0.52 when the range is 15 

grids and 0.92 when the range is 99 grids. 

To see how an increase in spatial correlation affects the marginal value of soil sampling, 

note first that the range does not affect either the optimal SRT fertilizer rate or the value of 

fertilizing according to the SRT rule because  a  does not appear in either equations (11) or (9).  

Next note that the value of fertilizing according to VRT under perfect information is not affected 
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by spatial correlation.  Under perfect information  a  does not appear in equation (16) or in 

equation (14) because Var x wi( | ) Z 0 .  Thus the value of moving to VRT under perfect 

information is unaffected by an increase in spatial correlation.  That is, the maximum value that 

can be obtained from soil sampling in a field is the same regardless of the degree of spatial 

correlation. 

 

Table 5.  Spatial correlation coefficients for various values of the range 

Distances between sites 

      0 31.75 63.50 158.75 317.50 476.25 feet

 

Range 

(grids)      0      1      2      5    10    15 grids

  1 1.00 0.00 0.00 0.00 0.00 0.00 

15 1.00 0.90 0.80 0.52 0.15 0.00 

99 1.00 0.98 0.97 0.92 0.85 0.77 

 

 

This result does not imply that the marginal benefit curves of VRT are unaffected by spatial 

correlation.  But, because the area under a marginal benefit curve equals the value of perfect 

information, we know that the area under two marginal benefit curves that differ only with 

respect to spatial correlation must be equal. 

Figure 3 shows the implication of this result.  An increase in spatial correlation rotates 

marginal benefits from MB1  to MB2 .  An increase in correlation increases the marginal benefit 

when sample size is low because each sample point reveals more information about adjoining 

non-sampled points.  The two curves must cross at least once, however, because the areas under 

MB1  and MB2  are equal.  That is, there is a finite amount of value that can be obtained from soil 

sampling.  

When marginal costs are relatively low, such as MCL  in Figure 3, an increase in spatial 

correlation reduces the optimal sample size from  n1   to  n2   because marginal benefits at this 

high optimal sample rate decrease.  This decrease in marginal benefit is a result of the increase in 

prediction capability of all previous sample points.  That is, there is a finite amount of 
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information to be obtained, and with a higher degree of spatial correlation, a greater proportion 

of this information is revealed by previously sampled points.  However, when marginal cost is 

high, such as MCH , then an increase in correlation increases the optimal sample size from  n3   

to  n4 .  Thus whether an increase in correlation increases or decreases optimal sample size 

depends on the level of marginal cost. 

Spatial Variability.  Increased variability in a field increases the potential gain from moving to 

variable fertilizer applications.  To see this note first from equation (11) that increased variability 

(C) increases the optimal single rate of fertilizer application.  Thus the potential amount of 

fertilizer saved as one moves to variable applications increases with C.  This implies that the 

total area under the marginal benefit curve of soil samples increases with increased spatial 

variability.  If increased variability results in an upward shift in marginal benefits for all sample 

sizes, then increased variability increases the optimal number of soil samples.  However, if 

increased variability results in a crossing of marginal benefit curves, then the optimal sample size 

may increase or decrease depending on the level of marginal cost, as was the result under 

increased spatial correlation. 

Figure 4 presents expected marginal benefits for three levels of soil nitrate variability (0.16, 

0.33, and 0.5) at nine soil sample levels using the Bayesian decision rule.  In this range of 

variability and for these sample sizes, it is apparent that marginal benefits increase with 

increased variability.  The marginal benefit of each sample increases, since each sample provides 

more information.  The size of the increase in marginal benefits is initially quite large and then 

decreases rapidly as the sample size increases.  Thus, given an interior solution, the optimal 

sample size increases with increased variability. 

Figure 4 also shows that increased variability increases the likelihood of an interior solution, 

which will also result in increased optimal sample size.  Suppose the cost of a soil sample is 

$6.00.  When the coefficient of variation of nitrate is 0.16, the optimal sample size is 0.  That is 

marginal benefits are never greater than marginal costs.  Increasing variability to 0.33 creates an 

interior solution and the optimal sample size increases to between 25 and 36 samples.  This is 

simply a reflection that there is a critical amount of variability that must exist before moving to a 

variable-rate application method becomes economically feasible. 
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Conclusions 
Studies examining the value of switching to a VRT fertilizer program assume the producer 

possesses perfect soil nitrate information (Babcock and Pautsch 19998; Lowenberg-DeBoer and 

Boehlje1996; Sawyer 1994; Snyder et al. 1996; Solohub et al. 1996; Hertz 1994).  In reality, 

producers estimate soil nitrate levels with soil sampling.  The value of switching to a VRT 

program from a SRT program depends greatly on how the producer uses the estimates and on the 

precision of the estimates at non-sampled points. 

Producers failing to account for estimation risk by strictly fertilizing to the estimated soil 

nitrate map are not following a VRT strategy consistent with expected profit maximization.  

Despite the inconsistencies, this strategy has been used in the precision farming literature 

(Swinton and Jones 1998).  To be consistent with expected profit maximization, producers 

should acknowledge that the soil nitrate mapping is a collection of estimates and does not 

provide perfect information at non-sampled sites.  The soil sample information should be used in 

a Bayesian fashion to fine-tune or update the producer’s beliefs about the soil nitrate levels in 

non-sampled sites. 

The accuracy of the soil nitrate estimates depends on the sample size as well as the degree of 

spatial correlation and variability among nitrate levels within the field.  Larger sample sizes, 

increased spatial correlation, and decreased variability improve the accuracy of the estimates and 

increase producer returns. 

The marginal benefit of sampling increases for smaller sample sizes when there is a high 

degree of spatial correlation among nitrate levels.  A few sampled sites are able to provide better 

information to a larger proportion of the field when the degree of correlation is high.  Since the 

marginal cost of soil sampling is substantial, switching to a VRT fertilizer program appears to be 

more plausible for fields with a high degree of spatial correlation. 

The marginal benefit of sampling increases for all sample sizes when there is greater 

variability in soil nitrate levels.  The optimal sample size increases under a VRT fertilizer 

program.  However, expected per acre returns decline under both SRT and VRT fertilizer 

programs due to the increased uncertainty surrounding soil nitrate levels.  Switching to a VRT 

fertilizer program from an SRT fertilizer program appears to be more plausible for fields with 

greater soil nitrate variability.  
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Appendix

The equivalence of equation (8) and equation (9) is outlined below.  Equation (8)

is restated,
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Rearranging terms yields,
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Since, soil nitrate level at site i xib g is normally distributed with mean µ  and variance

C Co + , the expected value of the indicator variable at the ith site will be equal to the

standard cummulative normal distribution at the critical nitrogen value N kF* − .
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The expected value of the soil nitrate level at the ith site multiplied by its indicator

variable is rewritten as,
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Substituting equation (A5) into the expression for the expected profit under an SRT fertilizer 

program equation, (A3), and rearranging terms yields, 
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Since, soil nitrate level at site i xib g is normally distributed with mean µ  and variance C Co + , 

the expected profit under an SRT fertilizer program can be rewritten using the standard normal 

density, 
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Finally, rearranging terms yields equation (9) of the text, 

E P Y b N kF G b C C g P FSRT
c p

N kF
C C o

N kF
C C F

i

n

o o
π µ µ µ= − − + − + −− +

+
− +

+
=

{ ( ( )) ( ) ( )}* ( ) ( )* *

 
1

 (A8) 

 



 

 
 
 

References 

Ackello-Ogutu, C., Q. Paris, and W.A. Williams.  “Testing a von Liebig Crop Response 
Function Against Polynomial Specifications.”  Amer. J. Agr. Econ. 67(1985):873-80. 

 
Babcock, Bruce A.  “The Effects of Uncertainty on Optimal Nitrogen Applications.”  Rev. Agr. 

Econ. 14(1992):271-80. 
 
Babcock, Bruce A., and Alfred M. Blackmer.  “The Value of Reducing Temporal Input 

Nonuniformities.” J. Agric. and Res. Econ. 17(1992): 35-47. 
 
Babcock, Bruce A., Alicia L. Carriquiry, and Hal S. Stern.  “Evaluation of Soil Test Information 

in Agricultural Decision-Making.”  Appl. Statis. 45(1996):447-61. 
 
Babcock, Bruce A., and Gregory R. Pautsch.  “Moving from Uniform to Variable Fertilizer 

Rates on Iowa Corn: Effects on Rates and Returns.”  J. Agric. and Res. Econ. 23(1998):385-
400. 

 
Binford, G.D., A.M. Blackmer, and M.E. Cerrato.  “Relationships Between Corn Yields and Soil 

Nitrate in Late Spring.”  Agron. J. 84(1992):53-9. 
 
Cerrato, M.E., and A.M. Blackmer.  “Comparison of Models for Describing Corn Yield 

Response to Nitrogen Fertilizer.”  Agron. J. 82(1990):138-43. 
 
Chalfant, James A., Robert N. Collender, and Shankar Subramanian.  “The Mean and Variance 

of the Mean-Variance Decision Rule.”  Amer. J. of Agri. Econ. 72(1990):966-74. 
 
Chin, Kian-Chung.  Soil Sampling for Nitrate in Late Spring, unpublished Ph.D. dissertation, 

Iowa State University, Department of Agronomy, Ames, IA, 1997. 
 
DeGroot, M.H.  Optimal Statistical Decisions, McGraw-Hill, New York, N. Y., 1970. 
 
Fleming, R.A., R.M. Adams, and D.E. Ervin.  “Soil Testing to Reduce Groundwater Pollution.” 

J. Agric. Res. Econ. 23(1999):20-38. 
 
Graybill, Franklin A.  Theory and Application of the Linear Model, Duxbury Press, North 

Scituate, Mass., 1976.  
 
Han, Shueng, Robert G. Evans, Sally M. Schneider, and Stephen L. Rawlins.  “Spatial 

Variability of Soil Properties on Two Center-Pivot Irrigated Fields”, In Precision 
Agriculture, P.C. Robert, R.H. Rust, and W.E. Larson (eds.), pp. 97-106.  Proceedings of the 



32  /  Pautsch, Babcock, and Breidt 

Third International Conference on Precision Agriculture, ASA-CSSA-SSSA, Madison, WI, 
1996. 

 
Hennessy, David A., and Bruce A. Babcock.  “Information, Flexibility, and Value Added.” 

Inform. Econ. and Pol. 10(1998):431-49. 
 
Hertz, C.  An Economic Evaluation of Variable Rate Phosphorous and Potassium Fertilizer 

Application in Continuous Corn.  M.S. thesis, University of Illinois, Champaign-Urbana, IL, 
1994. 

 
Jomini, P.  The Economic Viability of Phosphorous Fertilization in Southwestern Niger: A 

Dynamic Approach Incorporating Agronomic Principles.  Ph.D. dissertation, Department of 
Agricultural Economics, Purdue University, West Lafayette, IN, 1990. 

 
Klein, R.W., L.C. Rafsky, D.S. Sibley, and R.W. Willig.  “Decisions with Estimation 

Uncertainty.” Econometrica 46(1978):1363-87. 
 
Lence, Sergio H., and Dermot J. Hayes.  “The Empirical Minimum-Variance Hedge.”  Amer. J. 

of Agr. Econ. 76(1994):94-104. 
 
__________.  “Land Allocation in the Presence of Estimation Risk.”  J. of Agr. and Res. Econ.. 

20(1995):49-63. 
 
Lowenberg-DeBoer, J., and M. Boehlje.  “Revolution, Evolution, or Dead-End: Economic 

Perspectives on Precision Agriculture.” In Precision Agriculture, P.C. Robert, R. . Rust, and 
W.E. Larson (eds.), pp. 923-44.  Proceedings of the Third International Conference on 
Precision Agriculture, ASA-CSSA-SSSA, Madison, WI, 1996. 

 
Lowenberg-DeBoer, J., and S.M. Swinton.  “Economics of Site Specific Management of 

Agronomic Crops.” In The State of Site Specific Management for Agriculture, F.J. Pierce 
and E.J. Sadler (eds.), pp. 369-96, ASA-CSSA-SSSA, Madison, WI, 1997 

 
Musser, W.N., J.S. Shortle, K. Kreahling, B. Roach, W.C. Huang, D.B. Beegle, and R.H. Fox.  

“An Economic Analysis of the Pre-Sideress Nitrogen Test for Pennsylvania Corn 
Production.”  Rev. Agric. Econ. 17(Jan 1995):25-35. 

 
National Research Council (NRC).  Precision Agriculture in the 21st Century: Geospatial and 

Information Technologies in Crop Management. Washington, D.C: National Academy 
Press, 1997. 

 
Paris, Q.  “The Return of von Liebig’s Law of the Minimum.” Agron. J. 84(1992):1040-46. 
 
Pocknee, S., B.C. Boydell, H.M. Green, D.J. Waters, and C.K. Kvien.  “Directed Soil Sampling.” 

In Precision Agriculture, P.C. Robert, R.H. Rust, and W.E. Larson (eds.), pp. 159-68.  



Optimal Information Acquisition under a Geostatistical Model  /  33 

Proceedings of the Third International Conference on Precision Agriculture, ASA-CSSA-
SSSA, Madison, WI, 1996. 

 
Sawyer, J.E.  “Concepts of Variable Rate Technology with Considerations for Fertilizer 

Application.”  J. Prod. Agr. 7(1994):195-201. 
 
Sinclair, T.R., and W.I. Park.  “Inadequacy of the von Liebig Limiting-Factor Paradigm for 

Explaining Varying Crop Yields.”  Agron. J. 85(1993):91-6. 
 
Snyder, C., T. Schroeder, J. Havlin, and G. Kluitenberg.  “An Economic Analysis of Variable 

Rate Nitrogen Management.”  In Precision Agriculture, P.C. Robert, R.H. Rust, and W.E. 
Larson (eds.), pp. 989-98.  Proceedings of the Third International Conference on Precision 
Agriculture, ASA-CSSA-SSSA, Madison, WI, 1996. 

 
Solohub, M.P., C. van Kessel, and D.J. Pennock.  “The Feasibility of Variable Rate N 

Fertilization in Saskatchewan” In Precision Agriculture, P.C. Robert, R.H. Rust, and W.E. 
Larson (eds.), pp. 65-73.  Proceedings of the Third International Conference on Precision 
Agriculture, ASA-CSSA-SSSA, Madison, WI, 1996. 

 
Swinton, S.M., and K.Q. Jones.  “From Data to Information: Value of Sampling vs. Sensing Soil 

Data.”  Department of Agricultural Economics, Staff Paper 98-15, Michigan State 
University, East Lansing, MI, 1998. 

 
Wollenhaupt, N.C., D.J. Mulla, and C.A. Gotway Crawford.  “Soil Sampling and Interpolation 

Techniques for Mapping Spatial Variability of Soil Properties.” In The State of Site Specific 
Management for Agriculture, F.J. Pierce and E.J. Sadler (eds.), pp. 19-55, ASA-CSSA-
SSSA, Madison, WI, 1997. 

 


	Optimal Information Acquisition under a Geostatistical Model
	Gregory R. Pautsch, Bruce A. Babcock, and F. Jay Breidt

	Working Paper 99-WP 217
	
	
	
	Center for Agricultural and Rural Development




	Abstract
	
	
	
	
	
	Introduction






	Field Data Simulation
	Soil Sampling and Soil Nitrate Maps
	Decision Model
	Optimal Sample Size
	
	
	Data and Procedures



	Intersection                                                Number of samples
	
	
	Single Rate Fertilizer Program
	Variable Rate Program—Plug-In Method
	Variable Rate Program—Bayesian Method



	Plug-In Approach

	Points
	Distances between sites
	
	
	
	
	
	Conclusions








