|

7/ “““\\\ A ECO" SEARCH

% // RESEARCH IN AGRICULTURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.


https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

Sampling Schemes for Policy Analyses
Using Computer Simulation Experiments

Alicia L. Carriquiry, IF. Jay Breidt, and P.G. Lakshminarayan

Working Paper 96-WP 153
February 1996



Sampling Schemes for Policy Analyses Using
Computer Simulation Experiments

Alicia L. Carriquiry, F. Jay Breidt, and P.G. Lakshminarayan

Working Paper 96-WP 153
February 1996

Center for Agricultural and Rural Development
Towa State University
Ames, 1A 50011-1070

Alicia . Carriguiry is an associate professor of statistics, CARD and the Department of Statistics, lowa
State University; F. Jay Breidt is an assistant professor, Department of Statistics, ISU; and P.G.
Lakshminaravan is an associate scientist. CARD.

Corresponding author: Alicia L. Carriquiry, lowa State University, 222 Snedecor Hall, Ames, lowa S0011.
Phone: (515) 294-3440; email: alicia@iastate.edu.



ABSTRACT

Evaluating the environmental and economic impacts of agricultural policies
is not a simple task. A systematic approach to policy analysis would include
investigating the effect of factors such as tillage practices, crop rotations, type
and amount of chemical used, weather, topography, and other soil attributes,
on observables such as amount of soll eroded or chemical leached into the
groundwater. For comparison purposes, the effects of those factors on the
response variable would have to be assessed under alternative policy scenar-
ios. Because the number of factor levels 1s alarmingly high in most problems,
and becausc policies to be evaluated are often not in place at the time of
the study, practitioners have resorted to simulation experiments to generate
data. In this paper, we discuss the problem of designing computer simulation
experiments, and propose an approach that is based on subsampling the 1992
National Resources Inventory (NR1) points. We apply the procedure to the
problem of assessing soil erosion under different policy scenarios.

Keywords: computer experiment, sampling, policy analysis.



SAMPLING SCHEMES FOR POLICY ANALYSES USING
COMPUTER SIMULATION EXPERIMENTS

1. Introduction

Agricultural practices may have significant impacts on the environmeut.
One important example is the water quality problems caused by agricul-
tural nonpoint source (NPS) pollution (EPA 1992). Another example is soil
erosion resulting from the application of certain management practices in
combination with cropping systems (Ribaudo, 1986). There are several pol-
icy alternatives to guide agricultural activity to have minimum undesirable
impact on the environment, while not compromising on economic efficiency.
For some policy alternatives, the trade-off between environmental impact and
economic efficiency is significant. Thercfore, for informed policy decisions, it
is important to evaluate different policy alternatives in a systematic fashion.
acconnting not only for the economics of agricultural activities, but also for
their impact on the environment (Bouzaher et al., 1995).

Fvaluating the environmental and economic impacts of agricultural poli-
cies is not a simple task. Consider, for example, the issue of soil erosion.
Researchers interested in assessing the impact of agricultural activity on soil
erosion would have to consider the effect of several factors. Among those
are not only soil and weather characteristics, but also management practices
and cropping systems and rotations, since it is well known that all these
factors have a significant effect on crosion (Lal and Elliot, 1994). Thus, all
of these factors need to be accounted for when assessing the economic and
environmental consequences of the application of a given policy.

A similar case is that of regulating the use of triazines on corn and soy-
beans, which is currently under debate. The potential environmental damage
of triazines, as well as other chemicals nsed in agriculture, depends not only
on the amount of the chemical applied, but also on soil and weather condi-
tions, time of application, and other management practices such as tillage.
Iurthermore, farmers faced with regulations on the use of triazines are likely
to substitute the chemical by choosing from a varicty of alternative prod-
nicts, any of which may also have an environmental impact (Lakshminarayan,
Bouzaher, and Shogren, 1996).

Ideally, evaluation of sustainable agricultural practices would proceed via
the “traditional” field experimental approach. A typical example is the Man-



agement Systerns Evaluation Area (MSEA) experiments (Ward et al., 1994).
An experiment would be planned where differences among the relevant fac-
tor combinations would be tested by measuring their effect on the chosen
observables. In the case of policy analysis, factors would include not only
those that are subject to variation as a consequence of the application of a
certain policy (e.g., tillage practices, type and amount of chemical used, crops
and crop rotations), but also those covariates that are likely to affect the ob-
servable outcome (e.g., weather conditions, topography, and soil atiributes).
For assessing environmental impacts from agricultural policies, observables
might include the amount of a chemical that leaches into the groundwater,
or the amount of a chemical that cnters surface water through run-off, or the
amount of soil eroded and the sediment damage caused by erosion.

From an experimental viewpoint, consideration of all feasible factor com-
binations results in three major problems

1. The number of factor combinations (soil types, chemicals, weather,
management practices) that arise when cvalnating environmental imn-
pacts of alternative agricultural policies can be dizzyingly large.

Lo

“Candidate” policies are often not in place at the time of the study.

and therefore data cannot be collected in the traditional way.

3. Tven for those policies currently in place, data on environmental indi-
cators may be expensive or even impossible to collect. Consider, for
example, the long-run average amount of soil lost to erosion for a given
set of management practices on a farm.

These problems become much more pronounced if such policy evaluations are
requiired at large regional levels. Rescarchers and policy makers cannot there-
fore rely on the nsual experimental approach to gather data, and must resort
to other approaches when attempting to answer “what if?” type questions.
An approach that has been gaining in popularity consists in simulating the
measurements that would have been collected in an experiment had a field
experiment been possible.

Biogeophysical process models to simulate, for example, the fatc and
transport of chemicals in different media, have been in use for some time



(Taub and Burns, 1991; Wagenet and Hutson, 1991). Soil erosion and leach-
ing of chemicals and nutrients into the groundwater and transport in surface
run-off and air are processes that can be simulated by using programs such
as PRZM (Pesticide Root Zone Model), EPIC (Erosion Productivity Impact
Calculator), SWAT (Surface Water Assessment Tool), and BLAYER (Bound-
ary Layer), for a variety of inputs (soil and chemical attributes, weather
conditions, and management practices, among them). The simulated obser-
vations generated from these programs have been used to draw conclusions
regarding soil erosion and the fate and transport of chemicals in the environ-
ment.

When the problem of interest consists of assessing the impacts of differ-
ent agricultural policies, then it becomes necessary to draw inferences about
a region or a collection of regions (e.g., states, major land resource areas
(MLRAS), etc.). If the study area is large, then the number of possible com-
binations of soils, crops, chemicals, and other factors such as tillage practices
becomes unmanageable. In this case, 1t is necessary to design a computer
stmulation erperiment using methods similar to those used when designing a
traditional experiment (Dillaha and Gale 1992, Bouzaher et al. 1993).

For the kinds of policy evaluations in which we are interested, the simu-
lation experiment must accomplish two important goals:

o Reduce the number of factor combinations that arc input into the sim-
ulation program(s) to a manageable number.

e Generate output that is representative of the study areca, such that in-
ferences for the arca can be drawn with acceptable statistical reliability.

One method of reducing the number of factor combinations is by sampling
from the set of all possible factor combinations. In this report, we review
one such sampling scheme, which draws a sample of soils from a soils series
data base. Soils are stratified by soil attributes, then randomly selected with
probability proportional to size.

We then propose an alternative factor-reducing sampling scheme, which
draws a subsample from the 1992 National Resources Inventory (NRI) points
in the Northcentral region of the United States. The sampling design is a
multi-stage stratified approach that uses the 1992 NRI points as a basis



and further stratifies according to crop and crop rotations. Sampling rates
from this study can then be combined with the 1992 NRI expansion factors
to obtain statistically reliable estimates at the regional, state, and MLRA
levels.

2. Methods
We begin this discussion with an overview of the methods of probability
sampling, then turn to the design of computer experiments for assessing

environmental impacts of agricultural policies.

2.1 Probability Sampling

Consider a population of elements denoted by a set 7 of labels &; £ might
be thought of as the spatial location of a segment of land in what follows.
A probability sample is a randomized selection of a subset of Tabels, s C U,
where the inclusion probability

Plk € s]=m >0

is known for all & € U; that is, all elements of the population have a known,
positive probability of being included in the sample, s. Measurements y are
then obtained on the selected elements, & € s. This process of drawing the
sample and obtaining the measurements is a kind of designed observational
study called a survey sample. Cochran (1977) is a standard reference.

Probability sampling, as opposed to purposive selection of “representa-
tive” elements or haphazard selection of convenient elements, is now a stan-
dard scientific fool, since it gnards against selection biases and it leads to
objective inferences. In particular, inferences can be drawn about the pop-
ulation without appealing to any assumed statistical model. If a model 1s
desired, probability sampling is a good method for collecting the data used to
fit the model, because observations are likely to be well distributed through-
out the design space.

Probability sampling has a particularly long history in resource studies,
such as soil mapping, forest inventories, and crop surveys. See Schreuder,



Gregoire and Wood (1993), Chapter 1, for an overview of the history of prob-
ability sampling. An important feature of many probability sampling designs
is stratification. In stratification, the population is deliberately divided into
disjoint, homogeneous subpopulations, called strata, and independent sam-
ples are drawn from each stratumn. Stratification makes the design flexible,
since different probability sampling schemes can be used i different strata.
Stratification can allow for precise stratum-level estimation and stratum-to-
stratum comparisons, since the sample size {or each stratum can be deter-
mined in advance. Further, a well-chosen stratified sampling design can yield
estimators with substantially less variability than the corresponding estima-
tors from an unstratified design. For these reasons, stratification is nearly
always employed in surveys of real populations.

Real populations are often naturally subdivided into disjoint groups of
elements called clusters ; e.g., people live in households. Often, it is more
convenient or less costly to sample clusters of clements than to sample the
clements themselves. This may be because no adequate listing (sampling
fmm(:) of the elements is available, but a listing of the clusters is available, or
it may be because sampling elements will lead to a widely-scattered sample,
with high logistical costs. There is usually some loss of efficiency in drawing
a probability sample of clusters and observing all elements in cach selected
cluster instead of drawing a sample of elements directly, since elements within
a cluster are often positively correlated. Because of this positive correlation,
there is often little loss in efliciency, and substantial reduction in cost, if
a probability sample of elements within each selected cluster is drawn, a
procedure known as two-stage sampling. In two-stage sampling, the clusters
are sampled first and hence are called primary sampling units or PSUs. Multi-
stage sampling can also be used, in which case we have primary sampling
units, secondary sampling units, ..., ultimate sampling units.

For special studies (i.e., those with more expensive measurements), 1t is
fairly common to select a subsample s™ of a large-scale probability sample s, a
procedure known in the sampling literature as two-phase sampling or double
sampling. The advantage of subsampling, of course, is that data from the
large sample s may be used in the design and estimation for the subsample

x
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The basic principle of estimation in probability sampling is to compute
the inclusion probability 7 of element k, weight the measurements on k
inversely proportional to 7y, and sum the weighted measurements over the

D uk/ T

k€s

sample,

This is the famous Horvitz-Thompson estimator (Horvitz and Thompson 1952)
and it has the desirable property that, provided my > 0 for all £ in the pop-

ulation, it is unbiased: that is, its average value over all possible probability

samples is the true population total.

For two-stage sampling, element inclusion probabilities are computed via
the multiplication rule of elementary probability:

Plk € s] = Plk € s

ks cluster selected|P[A’s cluster sclected!.
Multi-stage sampling is handled analogously.

Though a well-designed probability sample can yicld precise estimates.
further efliciency is often gained by the effective use of auxiliary information.
Often this takes the form of a regression-type estimalor,

~ A —x'B
reg :t;B+Zu’
kE€s Tk

where x; is a J x 1 column vector of auxiliary variables observable for element
bot, = o Xk is a column vector of known totals of the auxiliary variables,
’ kel 2 :

and
o\ L
A XEXg — XiYk
B= > ——f) S ==
Tro2 -
kesllk k /\'ES“‘I‘: B

is a vector of estimated regression cocfficients, obtained via weighted least
squares regression of the sample yi's on the sample x;’s. Also,

2 2
op = 0 XA,

where X is a vector of known constants. Special cases of the regression
estimator ¢,., include the poststratified estimator, simple ratio estimator,



separate and combined ratio estimators, simple regression estimator, and so
on (c.g., Sarndal, Swensson and Wretman 1992). The regression estimator
is, to a very good approximation, unbiased for the population total.

It is important to note that though the regression estimator can he moti-
vated by modeling the measurements {yx} as uncorrelated randormn variables
with mean pp = x;3 and variance of = o’x} A, the approximate unbiased-
ness of the estimator still holds even if the model is comple vly misspecificd.
The better the specification of the model, the better the efficiency of the
regression estimator relative to that of the Horvitz-Thompson estimator,

The regression estimator can be rewritten as

li -1
’
~ . Xk XXy Yk
tv‘eg = E 1 + tr - § —_ § ) Xpt — = § WhsYk.
kes kes R ics kO Tk kes

from which it is apparent that f,., has the weighted-sum form of the Horvitz-
Thompson estimator, but the inverse inclusion probability weights are modi-
fied to take account of the auxiliary information in xx. The modified weights
wys are called regression weights or ezpansion factors.

In addition to increasing the precision of estimates for characteristics
correlated with X, regression estimation makes certain sample estimates
consistent with the known control totals, t,; specifically,

Z Wi Xk = ti

ke€s

The weighted estimators can be used to estimate population totals (hence
means and proportions as well) and linear combinations of population totals.
Many non-linear functions of interest take the form of functions of population
totals,

Ozg(\tl,...,f/q),

which can be effectively estimated by substituting the weighted estimators:

-3



This is exactly the principle employed in the estimated regression coefficient
vector B above; the population quantity

-1
!
XX ~ XpYk
B = Z ' >
o o
ke Tk keti Tk
a nonlinear function of the population totals Y iey @34, Sper T16Tak, - -,
kel Tops Yokt T1kYky - - o> and Ypop Trryk, 1s estimated by plugging in the

corresponding Horvitz-Thompson estimators.

Since the estimators in survey sampling often have the form of totals or
functions of totals, versions of the central limit theorem are available for
approximating the relevant sampling distributions and forming confidence
intervals. Provided v(f) is a consistent estimator of the variance of 0. the
interval

§+ 1.96{17(0)}1/2

will cover the true population ¢ in appreximately 95% of all samples.

For a complicated design and/or estimation procedure. the problem of
variance estimation becomes quite complex. Many variance estimation tech-
niques for data from complex surveys have been developed:; an excellent
summary is given by Wolter (1985).

2.2 Computer Simulation Experiments

Computer experiments have been in use for some time to assess envi-
ronmental effects of alternative agricultural policies (Bouzaher et al. 1993,
Bernardo et al. 1993). Researchers at CARD, Towa State University, have
proposed a novel approach to the systematic evaluation of the economic and
environmental impacts of agricultural policies. The environmental compo-
nent of this approach is a two-step process.

In the first step, simulation outcomes for chosen environmental indicators
are generated from program runs for a sample of inputs from the set of all
possible factor combinations. Typically, a simulated observation, for example
on the amount soil lost to erosion, is generated as the average over a large
number of “yearly” outputs from a long term (15-30 years) simulation run



of a process model, using historical weather data. In this context, a “yearly”
output is defined as the amount of soil eroded or chemical that leaches as a
result of one cycle of agricultural activity under specified weather conditions.

Other inpuls to the program need to be determined as well. For the case
of soil lost to erosion, the value of the simulation outcome depends on soil
characteristics such as clay, sand and organic matter content, pH, and bulk
density; on soil cover such as crop and crop rotation and weed populations:
soil topography; and on several other factors including tillage practices and
weather. In order to measure the erosion potential of a policy to be applied
to a large region, say the Northcentral United States, it is therefore necessary
to consider a very large number of factor combinations to be used as inputs
for computer runs. The universe of possible inputs becomes unmanageable
as the number of candidate policies and the size of the region increase.

Since it may be desired to “obscrve” the effect of a policy on every pos-
sible factor combination or to observe the effect of additional policies. the
second step of the two-step procedure is to estimate metamodels from the set
of simulation outcomes in step one. These metamodels can then be used for
predicting the value of the environmental indicator for those factor combina-
tions that were not included in the sample or policy scenarios that were not
considered (Bouzaher et al., 1993; Lakshminarayan, Johnson, and Bouzaher,
1995); hence the environmental impacts of different policies at different sites
can be assessed.

3. A Sampling Scheme Based on the 1992 NRI

The statistical reliability of the scheme outlined in the previous section
depends in great measure on the sample of factor combinations used as in-
put for generating the sirnulation ontcomes in the first step. Consider the
problem of generating simulation outcomes for an environmental indicator in
the major crop belt of the United States — the north central region. This
region is shown in Figure 1.

Suppose that soils, chemicals, tillage practices and crop rotations are
relevant factors to be used as inputs in the computer simulation experiment.



In the SOILS 5 data base!, there are approximately 2,141 different, soils that
appear in the region in Figure 1. If 20 chemicals, 10 crop rotations, and
four tillage practices are to be considered, then there are 2,141 x 20 x 10 X
4 = 1.7 million possible factor combinations for which to generate a pseudo
observation (assuming all factor combinations are viable). Furthermore, each
soil unit is represented by more than one layer (profile), up to a maximum
of six layers, so that the number of factor combinations expands alarmingly
depending on the number of soil layers.

[t is thercfore necessary to draw a sample of these factor combinations.
One sampling method, described in Gassman et al. (1994), sclects soils ac-
cording to those soil properties that are decemed most relevant regarding their
effect on the environmental indicator under study. As an example, let per-
cent sand, clay, and organic matter, bulk density, and pll be the properties
to be considered. Soils are stratified by their propertics and sclected at a
fixed rate, gunarantecing a representative sample of soils.

Allocating a level of each of the additional factors (tillage, crop rotation,
chemical, weather, ete.) to a sampled soil can be done in several ways. The
simplest methed is to allocate factors to soils at random. This method, while
simple to carry out, has a serious drawback: the biogeophysical model may
end up being run for sets of inputs that do not “exist,” and the combined
range of all inputs may be different than the population range. In this case,
predictions based on metamodels may indeed be extrapolations, and produce
misleading results. An alternative procedure consists in incorporating infor-
mation about the actual set of factors found in combination with each soil
in the population. and using this information to do a proportional allocation
of factors to soils. This method has the advantage of producing inputs for
process models that are not a product of the researcher’s imagination, and
thus predictions from metamodels will require no extrapolation. The disad-
vantage, however, is the amount of additional information that needs to be
collected. To alleviate this problem while at the same time keeping the num-
ber of simulation runs manageable, without compromising on heterogeneity
of production practices and chemical alternatives, we suggest an alternative

"The SOILS 5 data base is a layered soil series developed by the Natural Resources
Conservation Service (NRCS), formerly known as the Soil Conservation Service (SCS), as
part of their Soil Interpretation Record System (SIRS).
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Data Source: 1992 National Resource Inventory (NRI}

Map Source: Center for Agricultural and Rural Development, lowa State University

- Figure 1. The study region: The north central United States




sampling scheme based on linked NRI 92 and SOILS 5 data bases,

The 1992 NRI is a multi-resource inventory collected by the Natural Re-
source Conservation Service (formerly the Soil Conservation Service) of the
[Tnited States Department of Agriculture (USDA). Information gathered in-
cludes the status, condilion, and trends of land, soii, water, and related
resources on nonfederal land in the 50 states, Puerto Rico, and the .S,
Virgin Islands (e.g., Kellogg et al. 1994). An alternative design for a com-
puter experiment then would use the most recent NRI as the sampling frame,
and would select NRI points, rather than soils, to build the sample. 'This
approach presents several advantages over the method outhned in Gassman

(1994):

e The NRI points were selected according to a stratified two-stage sam-
pling design that guarantees a good spreading of the points over the
United States.

e Expansion factors have becen estimated for cach NRIT point. These
expansion factors are obtained by combining the sampling rates for cach
point and the post sampling weights computed so that relevant control
variables add up to the correct totals when obtaining estimates at the
regional, state, and substate (MLRA) levels. It is therefore possible to
draw inferences at those levels with given statistical reliability.

e The information available for each NRI point is extensive. It includes
not only soil characteristics, but also land use, cropping history, con-
servation practices, and so on. It is therefore unnecessary to link with
other data bases in order to access information on agricultural activities
at cach point.

e Confidentiality issues determine that exact latitude and longitude in-
formation for each NRI point not be available to the general public.
However, by combining information on county, hydrogeological group,
and primary sampling unit identification numbers it is possible to deter-
mine an approximate location for each point, to within the boundaries
of a spatially identifiable polygon (Kellogg et al. 1992). Simulated out-
comes generated in the experiment and aggregated over these polygons
can then be used for spatial analyses.
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In the remainder of the section, we give a brief description of the 1992
NRI, and present a sampling method to construct a subsample from the 1992
NRI sample.

3.1 The 1992 NRI

The basic region used for constructing the NRI sample was the countyv (or
analogous regions in some states). Samples were collected within counties,
following a stratified two-stage area sampling procedure. Strata were formed
geographically from parts of townships in regions covered by the Public Land
Survey, and from analogous divisions elsewhere.

In the first stage of sampling, land areas were the Primary Sampling Units
(PSUs). A typical PSU was a square arca, 1/2-mile on a side, containing 160
acres, but PSU sizes varied according to the heterogeneity of the area. Thus
in heterogencous areas such as those nnder irrigation; the PSU was as small
as 10 acres, and in homogeneous arcas such as range and forest lands, PSUs
might be as large as 610 acres. The sampling rates for the PSUs varied {rom
county to county, depending on factors such as the size of the county, the

type of agricultural activity, and the number of counties in the state.

In the second stage, points were selected within each sampled PSU using
a restricted random procedure that guaranteed that selected points were
spread throughout the PSU. A detailed description of the stratified two-
stage area sampling method used for drawing the 1982 NRI sample is given
in Goebel and Baker (1982). The 1992 NRI sample was constructed in a
similar manner.

Data for the 1992 NRI were collected for more than 800,000 locations.
The sampling design guarantees that inferences at the national, regional,
state, and substate (MLRA) levels can be made in a statistically reliable
manner. Each NRI point is accompanied by an expansion factor wyg, that
assigns each point the appropriate weight under the design and available
auxiliary information. Expansion factors were computed using a procedure
closely related to the regression estimation procedure described above.

Data collected by the NRI can be organized into several general categorices.
Those categories that are relevant for policy analysis as described in this

14



document include

e Soil characteristics and interpretation.

e Earth cover.

e Land cover and use.

e [rosion.

e Land treatment (i.e., conservation tillage).
o Vegetative conditions.

The information provided by the NRI, therefore, can be used to design the
computer experiments in which we are interested.

3.2 Subsampling the 1992 NRI Points

The sampling design we propose consists in drawing a stratified sample
from the NRI points in the region of interest. Points are stratified by crops
and crop rotations within MLRAs; i.e., points within ecach MLRA are clas-
sified into strata according to crop and crop rotation information. As an
example, an MLRA containing 50 NRI points may have some points under
a corn/soybean rotation, and the remainder under continuous corn.

Points within each stratum are selected as follows:

1. Determine the sampling rate (or inclusion probability in the subsam-
ple). For the purposes of our example, let the sampling rate be equal

to 10%.

2. Assien to cach MLRA a sample size given by 10% of the number of NRI
points within that MLRA. Compute the 1992 NRI estimated acrcages
for each crop or crop rotation classification within the MLRA, and
proportionally allocate the MLRA samplesize to the crop/crop rotation
strata; e.g., if in onr example, corn/soybean represents 80% of the acres
in the MLRA and continuous corn represents 20% of the acres, then
four points would be randomly chosen from the corn/soybean stratum
and one point would be selected from the continuous corn stratum, for
a sample size of five out of a total of 50 points in the MLRA.

15



Table 1: Summary Statistics of Key Soil Properties

Soil Property Mean
Population Sample
Clay (%) 27746 27.765
I -Factor 0.366 0.366
AWC 0.167 0.166
Bulk Density (gms/cc) 1.422 1.422
Organic Matter (%) 1.124 1165
Permeability (inch/hr) 1.652 1.630
pll 6.900 6.906
Slope (%) 2.471 2.465

In this sampling scheme, soil properties are implicitly accounted for, since
the design for the 1992 NRI gnarantees a good spatial spreading of the points,
Since soil properties are geographically distributed, it is to be expected that
the range for most soil attributes will be represented in the NRI (see 1'g-
ure 2). Figure 2 compares the frequency distributions of clay, bulk density,
pH, and organic matter for the population of NRI points and for a 10%
subsample.

Furthermore, varying inclusion probabilities for each point in the NRI
partially reflect and account for varying degrees of heterogeneity in land
and soil characteristics across the United States. This implies that those
areas with high variability in land/soil characteristics were sampled at a
higher rate. Thus, a sample drawn at random from the umverse of 1992
NRI points, with constant inclusion probabilities for cach point, should also
be representative for soil attributes (see Table 1). Table I summarizes the
mean of key soil properties for both the population of NRI points and the
subsample. The sample range for each attribute of interest can be expected
to increase as the inclusion probability increases. In addition, since the 1992
was drawn as an area sample, those soils that occupy a larger surface are
more likely to be selected in the subsample.

Fstimates at the regional, state, and MLRA levels can be obtained in a

16
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statistically reliable manner by combining the 1992 NRI expansion factors
with the sampling rates used to draw the subsample. For example, if inclusion
probability in the subsample is set at 0.1, and the expansion factor for the
kth point in the 1992 NRI was estimated to be wy,, then the new expansion
factor in the subsample 1s given by the ratio wi, = 0.1 = wys x 10. For a
discussion on the problem of estimation at different levels using the NRI
points, the reader is referred to Goebel and Baker (1982).

3.3 Other Experimental Factors

As mentioned carlier, computer experiments to assess environinental im-
pacts from alternative policies must account for several factor effects. The
use of the 1992 NRI points as the sampling frame partially solves the proh-
lem of allocating factors to points. Soil properties and crop and crop rotation
effects were brought into the experiment through the sampling scheme for
NRI points described in the previous subsection. Other factor of potential
importance is weather,

Weather variables associated to each NRI point are those obtained from
historical observations from the nearest weather station. Consider, as an
example, the region shown in Iigure 1. There are 359 weather stations in
this region, with records that go back at least 30 years. Since the approximate
geographic location of each point in the subsample can be determined (as in
Kellogg et al. 1992), it is possible to assign each point to its closest weather
station, so that “real” weather conditions can be used when running the
simulations. Given that the number of subsampled points can be expected
to be much larger than the number of weather stations in the region, the full
set of weather conditions in the study area gets replicated multiple times in
the study. without an increase in the number of experimental points.

4. An Application of the NRI Based Sampling Scheme to Estimate
Sheet and Rill Erosion

Using the sampling method described in Section 3.2, we obtained a 10%
sample of points from the 1992 NRI database for the Northcentral region. On
these sites we ran the EPIC program, to simulate soil erosion measurements.
EPIC is a field based crop growth and physical process simulation program
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developed by the Soil and Water Rescarch Laboratory, U.S. Department of
Agriculture (USDA, 1990). This model has been extensively tested and cal-
ibrated to Midwest conditions. A statistical response function summarizing
the input-output relationship captured in the EPIC simulated outcome for
sheet and rill erosion was estimated for the subsampled NRI points. This
response function, a simple regression model explaining the complex simula-
tion program outcomes by a subset of input parameters, 1s a useful tool for
summarizing EPLC simulated output. Because of their ease of use, estimated
response functions are widely used in agricultural nonpoint source pollution
assessments using integrated modeling systems (Kleijnen, 1987; Bouzaher et

al., 1993).

An EPIC simulation experiment is a set of executions of the simulation
model intended to approximate the vahies of a response variable y (in this
case, sheet and rill erosion) associated to a vector of site-specific physical
and management variables v. For statistical purposes, it would be preferable
to experiment with the real-life system itself rather than a simulation model
of the syvstem. However, this would mean incurring the cost and delay of
walting, in this case for 30 vears of weather to present itself to the real-life
system. Let ¢ be the unknown, true function relating the response variable
y to the input vector v

y =g(v).

Given the EPIC output, we can specify an analytical response function f,
that is an approximation to g, with relatively few inputs. Letting {z,s,r u}
represent management inputs, soil characteristics, topography and hydrolog-
ical characteristics, and random error, respectively, the response function can
be written as

y = flr.s,ru).

Standard statistical regression procedures were employed to identify and
estimate the function f which approximates the true, unknown function g.
The estimated function was a linear model, and regressors in the model
included location effects, variables related to soil properties and topography,
and to management practices, and indicator variables to represent various
crop rotations.
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Table 2: Summary statistics for values of erosion estimated under the model,
and for average values reported by NRCS.

Estimated NRCS Reported

Statistic

Mean erosion rate (tons/acre) 4.10 3.36
Standard deviation 6.06 5.53
Correlation 0.82 .82
Frequency Distribution

0to3 63% 2%
3105 13% 12%
5to 10 14% 9%
10 to 15 5% 3%
15 to 20 2% 1%
> 20 3% 2%

Using the regression model estimated for the EPIC simulated sheet and
rill erosion values, we predicted erosion rates for all the NRI cropped points in
the study region. In Figure 3, erosion rates for the population predicted using
the estimated response function fitted to the sampled points are compared
to the annual average slieet and rill erosion rates reported by the NRCS,
USDA. County-level maps of predicted sheet and rill erosion rates (top map)
and average crosion rates reported by the NRCS (bottom map) are given in
Figure 3.

Summary statistics for the county-level aggregates shown in Figure 3 are
displayed in Table 2. Note that in spite of the fact that the model fitted
to the data generated at the sampled points appears to suffer mild lack of

fit, the statistics calculated from the predicted values and from the values
reported by NRCS are similar.

5. Conclusions

There is an increasing need for regional scale agricultural NPS pollution
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Figure 3. County-level maps of regression model predicted sheet and
rill erosion rates (top map) and average erosion rates reported by the
NRCS. USDA (bottom map).



assessments and identification of best management practices to regulate and
eliminate NPS pollution. A cost effective and scientific approach to make re-
gional assessment of NPS pollution is to use biogeophysical model simulation
experiments. Because NP5 pollution is highly heterogencous, any experimen-
tal approach should consider all diverse physical and management factors.
On a regional scale there are millions of such factor combinations, which
make 1t impractical if not impossible to evaluate all factor combinations.
This paper outlined spatial sampling schemes for diverse agricultural NPS
pollution assessment using biogeophysical model simulation experiments. A
unique feature of the sampling design 1s that 1t is based on a state-of-the-art
geophysical database called NRI
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